1
|
Liu Q, Li A, Liu S, Fu Q, Xu Y, Dai J, Li P, Xu S. Cytotoxicity of Biodegradable Zinc and Its Alloys: A Systematic Review. J Funct Biomater 2023; 14:206. [PMID: 37103296 PMCID: PMC10144193 DOI: 10.3390/jfb14040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Zinc-based biodegradable metals (BMs) have been developed for biomedical implant materials. However, the cytotoxicity of Zn and its alloys has caused controversy. This work aims to investigate whether Zn and its alloys possess cytotoxic effects and the corresponding influence factors. According to the guidelines of the PRISMA statement, an electronic combined hand search was conducted to retrieve articles published in PubMed, Web of Science, and Scopus (2013.1-2023.2) following the PICOS strategy. Eighty-six eligible articles were included. The quality of the included toxicity studies was assessed utilizing the ToxRTool. Among the included articles, extract tests were performed in 83 studies, and direct contact tests were conducted in 18 studies. According to the results of this review, the cytotoxicity of Zn-based BMs is mainly determined by three factors, namely, Zn-based materials, tested cells, and test system. Notably, Zn and its alloys did not exhibit cytotoxic effects under certain test conditions, but significant heterogeneity existed in the implementation of the cytotoxicity evaluation. Furthermore, there is currently a relatively lower quality of current cytotoxicity evaluation in Zn-based BMs owing to the adoption of nonuniform standards. Establishing a standardized in vitro toxicity assessment system for Zn-based BMs is required for future investigations.
Collapse
Affiliation(s)
- Qian Liu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - An Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Shizhen Liu
- The School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK
| | - Qingyun Fu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yichen Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingtao Dai
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
2
|
Yao R, Han S, Sun Y, Zhao Y, Shan R, Liu L, Yao X, Hang R. Fabrication and characterization of biodegradable Zn scaffold by vacuum heating-press sintering for bone repair. BIOMATERIALS ADVANCES 2022; 138:212968. [PMID: 35913245 DOI: 10.1016/j.bioadv.2022.212968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Bone repair materials with excellent mechanical properties are highly desirable, especially in load-bearing sits. However, the currently used ceramic- and polymer-based ones mainly show poor mechanical properties. Recently, biodegradable metals have attracted extensive attention due to their reliable mechanical strength and degradability. As biodegradable metals, zinc-based materials are promising due to their suitable degradation rate and good biocompatibility. Here, we fabricated biodegradable porous Zn scaffolds with relatively high mechanical properties by vacuum heating-press sintering using NaCl particles as space holders. The microstructure, actual porosity, compressive mechanical properties, in vitro degradation behavior and the vitality of osteoblasts of porous Zn scaffolds were tested and investigated. The results show the porosities of the prepared porous Zn scaffolds are ranging from 11.3 % to 63.3 %, and the pore sizes are similar to the size range of the screened NaCl particles (200-500 μm). Compressive yield strength of 14.2-73.7 MPa and compressive elastic modulus of 1.9-6.7 GPa are shown on porous Zn scaffolds, some of which approach to that of cancellous bone (2-12 MPa and 0.1-5 GPa). Compared to bulk Zn, although the porous structures cause a partial loss of strength, the reliable mechanical properties are still retained. In addition, the porous structures not only greatly increase the degradation rate, but also promote the proliferation of osteoblasts. Based on these results, biodegradable porous Zn scaffolds (porosity in the 40 %-50 %) fabricated by vacuum heating-press sintering method show high application potential for clinical bone repair.
Collapse
Affiliation(s)
- Runhua Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shuyang Han
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yonghua Sun
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuyu Zhao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruifeng Shan
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lin Liu
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
3
|
Cockerill I, See CW, Young ML, Wang Y, Zhu D. Designing Better Cardiovascular Stent Materials - A Learning Curve. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2005361. [PMID: 33708033 PMCID: PMC7942182 DOI: 10.1002/adfm.202005361] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 05/07/2023]
Abstract
Cardiovascular stents are life-saving devices and one of the top 10 medical breakthroughs of the 21st century. Decades of research and clinical trials have taught us about the effects of material (metal or polymer), design (geometry, strut thickness, and the number of connectors), and drug-elution on vasculature mechanics, hemocompatibility, biocompatibility, and patient health. Recently developed novel bioresorbable stents are intended to overcome common issues of chronic inflammation, in-stent restenosis, and stent thrombosis associated with permanent stents, but there is still much to learn. Increased knowledge and advanced methods in material processing have led to new stent formulations aimed at improving the performance of their predecessors but often comes with potential tradeoffs. This review aims to discuss the advantages and disadvantages of stent material interactions with the host within five areas of contrasting characteristics, such as 1) metal or polymer, 2) bioresorbable or permanent, 3) drug elution or no drug elution, 4) bare or surface-modified, and 5) self-expanding or balloon-expanding perspectives, as they relate to pre-clinical and clinical outcomes and concludes with directions for future studies.
Collapse
Affiliation(s)
- Irsalan Cockerill
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA
- Department of Materials Science and Engineering, University of North Texas, Denton, TX 76207, USA
| | - Carmine Wang See
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Marcus L. Young
- Department of Materials Science and Engineering, University of North Texas, Denton, TX 76207, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
4
|
Cockerill I, Su Y, Lee JH, Berman D, Young ML, Zheng Y, Zhu D. Micro-/Nanotopography on Bioresorbable Zinc Dictates Cytocompatibility, Bone Cell Differentiation, and Macrophage Polarization. NANO LETTERS 2020; 20:4594-4602. [PMID: 32401528 DOI: 10.1021/acs.nanolett.0c01448] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Bioresorbable metals are quickly advancing in the field of regenerative medicine for their promises of tissue restoration without adverse consequences from their lifelong presence. Zn has recently risen to the top of bioresorbable metals with great potential as a medical implant. However, cell adhesion and colonization on the Zn substrate surface remains challenging, which could damper interfacial tissue-implant integration. Inspired by the fact that surface topography can regulate cell function and fate, we hypothesize that topography on bioresorbable Zn can dictate material biocompatibility, cell differentiation, and immunomodulation. To verify this, surface-engineered Zn plates with nano-, submicro-, and microtopographies were systematically investigated. The microscale topography exhibited increased adhesion, pronounced self-renewal, and enhanced osteogenic differentiation of bone cells as well as less macrophage inflammatory polarization, reduced platelet adhesion, and better hemocompatibility. Thus, surface topography could be a viable strategy to enhance bioresorbable Zn's biocompatibility and integration with surrounding tissues while reducing inflammation.
Collapse
Affiliation(s)
- Irsalan Cockerill
- Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207, United States
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yingchao Su
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ji Hyung Lee
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Diana Berman
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Marcus L Young
- Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76207, United States
| | - Yufeng Zheng
- Department of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
5
|
Cockerill I, Su Y, Sinha S, Qin YX, Zheng Y, Young ML, Zhu D. Porous zinc scaffolds for bone tissue engineering applications: A novel additive manufacturing and casting approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110738. [PMID: 32204047 PMCID: PMC7096330 DOI: 10.1016/j.msec.2020.110738] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 12/27/2022]
Abstract
As a degradable metal, zinc (Zn) has attracted an immense amount of interest as the next generation of bioresorbable implants thanks to its modest corrosion rate and its vital role in bone remodeling, yet very few studies have thoroughly investigated its functionality as a porous implant for bone tissue engineering purposes. Zn bone scaffolds with two different pore sizes of 900 μm and 2 mm were fabricated using additive manufacturing-produced templates combined with casting. The compressive properties, corrosion rates, biocompatibility, and antibacterial performance of the bioscaffolds were examined and compared to a non-porous control. The resulting textured and porous Zn scaffolds exhibit a fully interconnected pore structure with precise control over topology. As pore size and porosity increased, mechanical strength decreased, and corrosion rate accelerated. Cell adhesion and growth on scaffolds were enhanced after an ex vivo pretreatment method. In vitro cellular tests confirmed good biocompatibility of the scaffolds. As porosity increased, potent antibacterial rates were also observed. Taken together, these results demonstrate that Zn porous bone scaffolds are promising for orthopedic applications.
Collapse
Affiliation(s)
- Irsalan Cockerill
- Department of Biomedical Engineering, University of North Texas, Denton, TX 76207, USA; Department of Materials Science and Engineering, University of North Texas, Denton, TX 76207, USA
| | - Yingchao Su
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Subhasis Sinha
- Department of Materials Science and Engineering, University of North Texas, Denton, TX 76207, USA
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yufeng Zheng
- Department of Materials Science and Engineering, Peking University, Beijing, China
| | - Marcus L Young
- Department of Materials Science and Engineering, University of North Texas, Denton, TX 76207, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|