1
|
Tang Y, Yuan F, Cao M, Ren Y, Li Y, Yang G, Zhong Z, Liang H, Xiong Z, He Z, Lin N, Deng M, Yao Z. CircRNA-mTOR Promotes Hepatocellular Carcinoma Progression and Lenvatinib Resistance Through the PSIP1/c-Myc Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410591. [PMID: 40231634 DOI: 10.1002/advs.202410591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/26/2024] [Indexed: 04/16/2025]
Abstract
Circular RNAs (circRNAs) are crucial regulators of targeted drug resistance in hepatocellular carcinoma (HCC). However, the specific mechanisms underlying resistance that significantly hampers the effectiveness of HCC treatments remain unclear. Here, it is found that circRNA-mTOR is highly expressed in HCC and strongly correlated with patient prognosis. Furthermore, circRNA-mTOR enhances the stemness of HCC cells, thereby promoting the progression of HCC and contributing to lenvatinib resistance. Mechanistically, circRNA-mTOR promotes the nuclear translocation of the RNA-binding protein (RBP) PC4 and SRSF1 interacting protein 1 (PSIP1) through specific binding. The enhancement of HCC cell stemness by circRNA-mTOR occurs via the PSIP1/c-Myc signaling pathway, ultimately driving HCC progression and lenvatinib resistance. This study highlights the important role of circRNA-mTOR in HCC progression and the maintenance of lenvatinib resistance and underscores its potential as a biomarker for the diagnosis and prognosis of HCC. In conclusion, this study provides an experimental foundation for targeted drug therapy in HCC and offers novel insights, perspectives, and methodologies for understanding the development and occurrence of this disease. These findings are significant for the development of new diagnostic and therapeutic markers for HCC, with the ultimate goal of reducing drug resistance.
Collapse
Affiliation(s)
- Yongchang Tang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Feng Yuan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510120, China
| | - Mingbo Cao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yupeng Ren
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuxuan Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Gaoyuan Yang
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhaozhong Zhong
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Department of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Hao Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhiyong Xiong
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhiwei He
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Meihai Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhicheng Yao
- Department of Hepatobiliary and Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
2
|
Zhou X, Liu Z, Zhang W, Dai L, Chen T, Lin Z, Pan H, Qi Q, Wei H. Novel human single-domain antibodies exert potent anti-tumor activity by targeting EGF-like repeat epitope of EpCAM. Front Pharmacol 2025; 16:1530268. [PMID: 40017594 PMCID: PMC11865060 DOI: 10.3389/fphar.2025.1530268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction EpCAM (Epithelial cell adhesion molecule) is a key cancer stem cell marker involved in cancer progression, making it an important target for both diagnosis and therapy. Despite efforts using anti-EpCAM monoclonal antibodies (mAbs), their anti-tumor effects have been limited. Single-domain antibodies (sdAbs), in contrast, offer advantages such as efficient tumor penetration and reduced immunogenicity. This study aims to screen and explore novel sdAbs targeting EpCAM for cancer therapy. Methods A critical EGF-like repeat epitope on the EpCAM extracellular domain was selected for screening a human sdAb library via phage display. The selected sdAbs were purified and their anti-cancer activity was validated through specific binding with the EpCAM peptide. The effects of these sdAbs on cell proliferation, migration, invasion, and apoptosis were tested in vitro, and their anti-tumor activity was assessed in a xenograft model. Results Five fully human anti-EpCAM sdAbs were isolated, all of which specifically bound to the EpCAM peptide and showed selective binding to various cancer cell lines, but not to 293T and 3T3 cells. Functional assays demonstrated that these sdAbs significantly inhibited cancer cell proliferation, migration, and invasion, and induced apoptosis. Notably, two sdAbs (aEP3D4 and aEP4G2) exhibited potent anti-tumor effects in vivo, significantly reducing tumor volume and weight in a mouse xenograft model. Discussion This study provides compelling evidence that targeting EpCAM with sdAbs is a promising approach for cancer treatment. The identified anti-EpCAM sdAbs exhibit substantial anti-tumor activity both in vitro and in vivo, suggesting they are strong candidates for future therapeutic applications in cancer therapy.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Zhifang Liu
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Weixiong Zhang
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Lin Dai
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Tao Chen
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zexiong Lin
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Hong Pan
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qi Qi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Henry Wei
- Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Zhou H, Chen M, Zhao C, Shao R, Xu Y, Zhao W. The Natural Product Secoemestrin C Inhibits Colorectal Cancer Stem Cells via p38-S100A8 Feed-Forward Regulatory Loop. Cells 2024; 13:620. [PMID: 38607060 PMCID: PMC11011747 DOI: 10.3390/cells13070620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Cancer stem cells (CSCs) are closely associated with tumor initiation, metastasis, chemoresistance, and recurrence, which represent some of the primary obstacles to cancer treatment. Targeting CSCs has become an important therapeutic approach to cancer care. Secoemestrin C (Sec C) is a natural compound with strong anti-tumor activity and low toxicity. Here, we report that Sec C effectively inhibited colorectal CSCs and non-CSCs concurrently, mainly by inhibiting proliferation, self-renewal, metastasis, and drug resistance. Mechanistically, RNA-seq analysis showed that the pro-inflammation pathway of the IL17 axis was enriched, and its effector S100A8 was dramatically decreased in Sec C-treated cells, whose roles in the stemness of CSCs have not been fully clarified. We found that the overexpression of S100A8 hindered the anti-CSCs effect of Sec C, and S100A8 deficiency attenuated the stemness traits of CSCs to enhance the Sec C killing activity on them. Meanwhile, the p38 signal pathway, belonging to the IL17 downstream axis, can also mediate CSCs and counter with Sec C. Notably, we found that S100A8 upregulation increased the p38 protein level, and p38, in turn, promoted S100A8 expression. This indicated that p38 may have a mutual feedback loop with S100A8. Our study discovered that Sec C was a powerful anti-colorectal CSC agent, and that the positive feedback loop of p38-S100A8 mediated Sec C activity. This showed that Sec C could act as a promising clinical candidate in colorectal cancer treatment, and S100A8 could be a prospective drug target.
Collapse
Affiliation(s)
- Huimin Zhou
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (C.Z.); (R.S.)
| | - Minghua Chen
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Tiantan Xili, Beijing 100050, China;
| | - Cong Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (C.Z.); (R.S.)
| | - Rongguang Shao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (C.Z.); (R.S.)
| | - Yanni Xu
- NHC Key Laboratory of Biotechnology of Antibiotics, National Center for New Microbial Drug Screening, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Tiantan Xili, Beijing 100050, China;
| | - Wuli Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Antibiotic Bioengineering, Ministry of Health, Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (H.Z.); (C.Z.); (R.S.)
| |
Collapse
|
4
|
Yi SY, Wei MZ, Zhao L. Targeted immunotherapy to cancer stem cells: A novel strategy of anticancer immunotherapy. Crit Rev Oncol Hematol 2024; 196:104313. [PMID: 38428702 DOI: 10.1016/j.critrevonc.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Cancer is a major disease that endangers human health. Cancer drug resistance and relapse are the two main causes contributing to cancer treatment failure. Cancer stem cells (CSCs) are a small fraction of tumor cells that are responsible for tumorigenesis, metastasis, relapse, and resistance to conventional anticancer therapies. Therefore, CSCs are considered to be the root of cancer recurrence, metastasis, and drug resistance. Novel anticancer strategies need to face this new challenge and explore their efficacy against CSCs. Recently, immunotherapy has made rapid advances in cancer treatment, and its potential against CSCs is also an interesting area of research. Meanwhile, immunotherapy strategies are novel therapeutic modalities with promising results in targeting CSCs. In this review, we summarize the targeting of CSCs by various immunotherapy strategies such as monoclonal antibodies(mAb), tumor vaccines, immune checkpoint inhibitors, and chimeric antigen receptor-T cells(CAR-T) in pre-clinical and clinical studies. This review provides new insights into the application of these immunotherapeutic approaches to potential anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Shan-Yong Yi
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| | - Mei-Zhuo Wei
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China
| | - Ling Zhao
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| |
Collapse
|
5
|
Lei Z, Chen L, Liu Y, Yang Y, Chen G, Liu W, Nie Y, Lei Y, Tong F, Huang L, Wu H, Yang L, Zhang X, Yang C, Zhu J, Guo J. EpCAM deficiency causes premature aging of intestinal epithelium via hyperactivating mTORC1 pathway. Clin Transl Med 2022; 12:e903. [PMID: 35678096 PMCID: PMC9178350 DOI: 10.1002/ctm2.903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Zili Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouPeople's Republic of China
| | - Lei Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouPeople's Republic of China
| | - Yanyan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouPeople's Republic of China
| | - Yanhong Yang
- The First Affiliated Hospital (School of Clinical Medicine)Guangdong Pharmaceutical UniversityYue‐Xiu DistrictGuangzhouPeople's Republic of China
| | - Guibin Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouPeople's Republic of China
| | - Wanwan Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouPeople's Republic of China
| | - Ya Nie
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouPeople's Republic of China
- School of Traditional Chinese MedicineGuangdong Pharmaceutical University, Guangzhou Higher Education Mega CenterGuangzhouPeople's Republic of China
| | - Yuting Lei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouPeople's Republic of China
| | - Fengxue Tong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouPeople's Republic of China
| | - Li Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouPeople's Republic of China
- School of Traditional Chinese MedicineGuangdong Pharmaceutical University, Guangzhou Higher Education Mega CenterGuangzhouPeople's Republic of China
| | - Huijuan Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouPeople's Republic of China
- School of Traditional Chinese MedicineGuangdong Pharmaceutical University, Guangzhou Higher Education Mega CenterGuangzhouPeople's Republic of China
| | - Lanxiang Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouPeople's Republic of China
- School of Traditional Chinese MedicineGuangdong Pharmaceutical University, Guangzhou Higher Education Mega CenterGuangzhouPeople's Republic of China
| | - Xueying Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouPeople's Republic of China
- School of Traditional Chinese MedicineGuangdong Pharmaceutical University, Guangzhou Higher Education Mega CenterGuangzhouPeople's Republic of China
| | - Changyuan Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouPeople's Republic of China
- School of Traditional Chinese MedicineGuangdong Pharmaceutical University, Guangzhou Higher Education Mega CenterGuangzhouPeople's Republic of China
| | - Jiamin Zhu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouPeople's Republic of China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western MedicineGuangdong Pharmaceutical UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
6
|
Lin CY, Hsieh YS, Chu SC, Hsu LS, Huang SC, Chen PN. Reduction of invasion and cell stemness and induction of apoptotic cell death by Cinnamomum cassia extracts on human osteosarcoma cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:1261-1274. [PMID: 35146896 DOI: 10.1002/tox.23481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/07/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Cinnamomum cassia possesses antioxidative activity and induces the apoptotic properties of various cancer types. However, its effect on osteosarcoma invasion and cancer stemness remains ambiguous. Here, we examined the molecular evidence of the anti-invasive effects of ethanoic C. cassia extracts (CCE). Invasion and migration were obviously suppressed after the expression of urokinase-type plasminogen activator and matrix metalloprotein 2 in human osteosarcoma 143B cells were downregulated. CCE reversed epithelial-to-mesenchymal transition (EMT) induced by transforming growth factor β1 and downregulated mesenchymal markers, such as snail-1 and RhoA. CCE suppressed self-renewal property and the expression of stemness genes (aldehyde dehydrogenase, Nanog, and CD44) in the 143B cells. CCE suppressed cell viability, reduced the colony formation of osteosarcoma cancer cells, and induced apoptotic cell death in the 143B cells, as indicated by caspase-9 activation. The xenograft tumor model of immunodeficient BALB/c nude mice showed that CCE administered in vivo through oral gavage inhibited the growth of implanted 143B cells. These findings indicated that CCE inhibited the invasion, migration, and cancer stemness of the 143B cells. CCE reduced proliferation of 143B cell possibly because of the activation of caspase-9 and the consequent apoptosis, suggesting that CCE is a potential anticancer supplement for osteosarcoma.
Collapse
Affiliation(s)
- Chin-Yin Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yih-Shou Hsieh
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shu-Chen Chu
- Institute and Department of Food Science, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Li-Sung Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shih-Chien Huang
- Department of Health Industry Technology Management, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
Tămaș F, Bălașa R, Manu D, Gyorki G, Chinezu R, Tămaș C, Bălașa A. The Importance of Small Extracellular Vesicles in the Cerebral Metastatic Process. Int J Mol Sci 2022; 23:1449. [PMID: 35163368 PMCID: PMC8835738 DOI: 10.3390/ijms23031449&set/a 886656060+812772520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Brain metastases represent more than 50% of all cerebral tumors encountered in clinical practice. Recently, there has been increased interest in the study of extracellular vesicles, and the knowledge about exosomes is constantly expanding. Exosomes are drivers for organotropic metastatic spread, playing important roles in the brain metastatic process by increasing the permeability of the blood-brain barrier and preparing the premetastatic niche. The promising results of the latest experimental studies raise the possibility of one day using exosomes for liquid biopsies or as drug carriers, contributing to early diagnosis and improving the efficacy of chemotherapy in patients with brain metastases. In this review, we attempted to summarize the latest knowledge about the role of exosomes in the brain metastatic process and future research directions for the use of exosomes in patients suffering from brain metastatic disease.
Collapse
Affiliation(s)
- Flaviu Tămaș
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Rodica Bălașa
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurology, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania
| | - Doina Manu
- Center for Advanced Pharmaceutical and Medical Research, 540139 Târgu Mures, Romania;
| | - Gabriel Gyorki
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Rareș Chinezu
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Corina Tămaș
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
- Correspondence: ; Tel.: +40-749-867-513
| | - Adrian Bălașa
- University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| |
Collapse
|
8
|
The Importance of Small Extracellular Vesicles in the Cerebral Metastatic Process. Int J Mol Sci 2022. [DOI: 10.3390/ijms23031449
expr 878511370 + 954121262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Brain metastases represent more than 50% of all cerebral tumors encountered in clinical practice. Recently, there has been increased interest in the study of extracellular vesicles, and the knowledge about exosomes is constantly expanding. Exosomes are drivers for organotropic metastatic spread, playing important roles in the brain metastatic process by increasing the permeability of the blood–brain barrier and preparing the premetastatic niche. The promising results of the latest experimental studies raise the possibility of one day using exosomes for liquid biopsies or as drug carriers, contributing to early diagnosis and improving the efficacy of chemotherapy in patients with brain metastases. In this review, we attempted to summarize the latest knowledge about the role of exosomes in the brain metastatic process and future research directions for the use of exosomes in patients suffering from brain metastatic disease.
Collapse
|
9
|
Tămaș F, Bălașa R, Manu D, Gyorki G, Chinezu R, Tămaș C, Bălașa A. The Importance of Small Extracellular Vesicles in the Cerebral Metastatic Process. Int J Mol Sci 2022; 23:1449. [PMID: 35163368 PMCID: PMC8835738 DOI: 10.3390/ijms23031449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Brain metastases represent more than 50% of all cerebral tumors encountered in clinical practice. Recently, there has been increased interest in the study of extracellular vesicles, and the knowledge about exosomes is constantly expanding. Exosomes are drivers for organotropic metastatic spread, playing important roles in the brain metastatic process by increasing the permeability of the blood-brain barrier and preparing the premetastatic niche. The promising results of the latest experimental studies raise the possibility of one day using exosomes for liquid biopsies or as drug carriers, contributing to early diagnosis and improving the efficacy of chemotherapy in patients with brain metastases. In this review, we attempted to summarize the latest knowledge about the role of exosomes in the brain metastatic process and future research directions for the use of exosomes in patients suffering from brain metastatic disease.
Collapse
Affiliation(s)
- Flaviu Tămaș
- Doctoral School of University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Rodica Bălașa
- Doctoral School of University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurology, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania
| | - Doina Manu
- Center for Advanced Pharmaceutical and Medical Research, 540139 Târgu Mures, Romania;
| | - Gabriel Gyorki
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Rareș Chinezu
- Doctoral School of University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Corina Tămaș
- Doctoral School of University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| | - Adrian Bălașa
- Doctoral School of University of Medicine, Pharmacy, Science and Technology “George Emil Palade”, 540142 Târgu Mureș, Romania; (F.T.); (R.B.); (R.C.); (A.B.)
- Department of Neurosurgery, Emergency Clinical County Hospital, 540136 Târgu Mureș, Romania;
| |
Collapse
|
10
|
Meerson A, Khatib S, Mahajna J. Natural Products Targeting Cancer Stem Cells for Augmenting Cancer Therapeutics. Int J Mol Sci 2021; 22:ijms222313044. [PMID: 34884848 PMCID: PMC8657727 DOI: 10.3390/ijms222313044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSC) have been identified in several types of solid tumors. In some cases, CSC may be the source of all the tumor cells, the cause of the tumor's resistance to chemotherapeutic agents, and the source of metastatic cells. Thus, a combination therapy targeting non-CSC tumor cells as well as specifically targeting CSCs holds the potential to be highly effective. Natural products (NPs) have been a historically rich source of biologically active compounds and are known for their ability to influence multiple signaling pathways simultaneously with negligible side effects. In this review, we discuss the potential of NPs in targeting multiple signaling pathways in CSC and their potential to augment the efficacy of standard cancer therapy. Specifically, we focus on the anti-CSC activities of flavonoids, FDA-approved drugs originating from natural sources. Additionally, we emphasize the potential of NPs in targeting microRNA-mediated signaling, given the roles of microRNA in the maintenance of the CSC phenotype.
Collapse
Affiliation(s)
- Ari Meerson
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
| | - Soliman Khatib
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
| | - Jamal Mahajna
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
- Correspondence:
| |
Collapse
|
11
|
Ferreras C, Fernández L, Clares-Villa L, Ibáñez-Navarro M, Martín-Cortázar C, Esteban-Rodríguez I, Saceda J, Pérez-Martínez A. Facing CAR T Cell Challenges on the Deadliest Paediatric Brain Tumours. Cells 2021; 10:2940. [PMID: 34831165 PMCID: PMC8616287 DOI: 10.3390/cells10112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Central nervous system (CNS) tumours comprise 25% of the paediatric cancer diagnoses and are the leading cause of cancer-related death in children. Current treatments for paediatric CNS tumours are far from optimal and fail for those that relapsed or are refractory to treatment. Besides, long-term sequelae in the developing brain make it mandatory to find new innovative approaches. Chimeric antigen receptor T cell (CAR T) therapy has increased survival in patients with B-cell malignancies, but the intrinsic biological characteristics of CNS tumours hamper their success. The location, heterogeneous antigen expression, limited infiltration of T cells into the tumour, the selective trafficking provided by the blood-brain barrier, and the immunosuppressive tumour microenvironment have emerged as the main hurdles that need to be overcome for the success of CAR T cell therapy. In this review, we will focus mainly on the characteristics of the deadliest high-grade CNS paediatric tumours (medulloblastoma, ependymoma, and high-grade gliomas) and the potential of CAR T cell therapy to increase survival and patients' quality of life.
Collapse
Affiliation(s)
- Cristina Ferreras
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, 28046 Madrid, Spain; (C.F.); (L.C.-V.); (C.M.-C.)
| | - Lucía Fernández
- Haematological Malignancies H12O, Clinical Research Department, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (L.F.); (M.I.-N.)
| | - Laura Clares-Villa
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, 28046 Madrid, Spain; (C.F.); (L.C.-V.); (C.M.-C.)
| | - Marta Ibáñez-Navarro
- Haematological Malignancies H12O, Clinical Research Department, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; (L.F.); (M.I.-N.)
| | - Carla Martín-Cortázar
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, 28046 Madrid, Spain; (C.F.); (L.C.-V.); (C.M.-C.)
| | | | - Javier Saceda
- Department of Paediatric Neurosurgery, University Hospital La Paz, 28046 Madrid, Spain;
| | - Antonio Pérez-Martínez
- Translational Research in Paediatric Oncology, Haematopoietic Transplantation and Cell Therapy, Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, 28046 Madrid, Spain; (C.F.); (L.C.-V.); (C.M.-C.)
- Paediatric Haemato-Oncology Department, University Hospital La Paz, 28046 Madrid, Spain
- Faculty of Medicine Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
12
|
Circular RNA circIPO11 drives self-renewal of liver cancer initiating cells via Hedgehog signaling. Mol Cancer 2021; 20:132. [PMID: 34649567 PMCID: PMC8515748 DOI: 10.1186/s12943-021-01435-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most intractable tumors in the world due to its high rate of recurrence and heterogeneity. Liver cancer initiating cells also called cancer stem cells (CSCs) play a critical role in resistance against typical therapy and high tumor-initiating potential. However, the role of the novel circular RNA (circRNA) circIPO11 in the maintenance of liver cancer initiating cells remains elusive. METHODS CircRNAs highly conserved in humans and mice were identified from 3 primary HCC samples by circRNA array. The expression and function of circIPO11 were further evaluated by Northern blot, limiting dilution xenograft analysis, chromatin isolation by RNA purification-PCR assay (ChIRP) and HCC patient-derived tumor cells (PDC) models. CircIpo11 knockout (KO) mice were generated by a CRISPR/Cas9 technology. RESULTS CircIPO11 is highly expressed in HCC tumor tissues and liver CSCs. CircIPO11 is required for the self-renewal maintenance of liver CSCs to initiate HCC development. Mechanistically, circIPO11 recruits TOP1 to GLI1 promoter to trigger its transcription, leading to the activation of Hedgehog signaling. Moreover, GLI1 is also highly expressed in HCC tumor tissues and liver CSCs, and TOP1 expression levels positively correlate with the metastasis, recurrence and survival of HCC patients. Additionally, circIPO11 knockout in mice suppresses the progression of chemically induced liver cancer development. CONCLUSION Our findings reveal that circIPO11 drives the self-renewal of liver CSCs and promotes the propagation of HCC via activating Hedgehog signaling pathway. Antisense oligonucleotides (ASOs) against circIPO11 combined with TOP1 inhibitor camptothecin (CPT) exert synergistic antitumor effect. Therefore, circIPO11 and the Hedgehog signaling pathway may provide new potential targets for the treatment of HCC patients.
Collapse
|
13
|
Phytomedicines Targeting Cancer Stem Cells: Therapeutic Opportunities and Prospects for Pharmaceutical Development. Pharmaceuticals (Basel) 2021; 14:ph14070676. [PMID: 34358102 PMCID: PMC8308767 DOI: 10.3390/ph14070676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
The presence of small subpopulations of cells within tumor cells are known as cancer stem cells (CSCs). These cells have been the reason for metastasis, resistance with chemotherapy or radiotherapy, and tumor relapse in several types of cancers. CSCs underwent to epithelial–mesenchymal transition (EMT) and resulted in the development of aggressive tumors. CSCs have potential to modulate numerous signaling pathways including Wnt, Hh, and Notch, therefore increasing the stem-like characteristics of cancer cells. The raised expression of drug efflux pump and suppression of apoptosis has shown increased resistance with anti-cancer drugs. Among many agents which were shown to modulate these, the plant-derived bioactive agents appear to modulate these key regulators and were shown to remove CSCs. This review aims to comprehensively scrutinize the preclinical and clinical studies demonstrating the effects of phytocompounds on CSCs isolated from various tumors. Based on the available convincing literature from preclinical studies, with some clinical data, it is apparent that selective targeting of CSCs with plants, plant preparations, and plant-derived bioactive compounds, termed phytochemicals, may be a promising strategy for the treatment of relapsed cancers.
Collapse
|
14
|
Esmaeili SA, Sahranavard S, Salehi A, Bagheri V. Selectively targeting cancer stem cells: Current and novel therapeutic strategies and approaches in the effective eradication of cancer. IUBMB Life 2021; 73:1045-1059. [PMID: 34184810 DOI: 10.1002/iub.2524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022]
Abstract
Cancer stem cells (CSCs) are a subgroup of cells in malignant cancers, which possess self-renewal capacity, tumor-initiating capability, and pluripotency, as well as being responsible for tumor maintenance, metastasis, relapse, and chemoresistance. The treatment modalities previously established for cancer included surgery, chemotherapy, and radiotherapy. The majority of tumor cells of non-CSCs could be eradicated using conventional chemotherapy and radiotherapy. Therefore, novel and promising therapeutic strategies that selectively target CSCs are of great importance. In this review, we described different therapeutic strategies such as immunotherapy, metabolism-based therapeutic strategies, and additional potential therapeutic approaches (targeting microRNAs [miRNAs], histone deacetylase, and DNA methyl transferase) against CSCs. Taken together, due to the inefficiency of anticancer single therapies, targeting CSCs through their metabolism and using immunotherapy and miRNAs besides classical chemo- and radiotherapy may exert better therapeutic effects.
Collapse
Affiliation(s)
- Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shamim Sahranavard
- Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Astireh Salehi
- Biology Department, Islamic Azad University, Sanandaj, Iran
| | - Vahid Bagheri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
15
|
Zahan T, Das PK, Akter SF, Habib R, Rahman MH, Karim MR, Islam F. Therapy Resistance in Cancers: Phenotypic, Metabolic, Epigenetic and Tumour Microenvironmental Perspectives. Anticancer Agents Med Chem 2021; 20:2190-2206. [PMID: 32748758 DOI: 10.2174/1871520620999200730161829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/02/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chemoresistance is a vital problem in cancer therapy where cancer cells develop mechanisms to encounter the effect of chemotherapeutics, resulting in cancer recurrence. In addition, chemotherapy- resistant leads to the formation of a more aggressive form of cancer cells, which, in turn, contributes to the poor survival of patients with cancer. OBJECTIVE In this review, we aimed to provide an overview of how the therapy resistance property evolves in cancer cells, contributing factors and their role in cancer chemoresistance, and exemplified the problems of some available therapies. METHODS The published literature on various electronic databases including, Pubmed, Scopus, Google scholar containing keywords cancer therapy resistance, phenotypic, metabolic and epigenetic factors, were vigorously searched, retrieved and analyzed. RESULTS Cancer cells have developed a range of cellular processes, including uncontrolled activation of Epithelial- Mesenchymal Transition (EMT), metabolic reprogramming and epigenetic alterations. These cellular processes play significant roles in the generation of therapy resistance. Furthermore, the microenvironment where cancer cells evolve effectively contributes to the process of chemoresistance. In tumour microenvironment immune cells, Mesenchymal Stem Cells (MSCs), endothelial cells and cancer-associated fibroblasts (CAFs) contribute to the maintenance of therapy-resistant phenotype via the secretion of factors that promote resistance to chemotherapy. CONCLUSION To conclude, as these factors hinder successful cancer therapies, therapeutic resistance property of cancer cells is a subject of intense research, which in turn could open a new horizon to aim for developing efficient therapies.
Collapse
Affiliation(s)
- Tasnim Zahan
- Molecular Mechanisms of Disease, Radboud University, Nijmegen, The Netherlands
| | - Plabon K Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Syeda F Akter
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Rowshanul Habib
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Habibur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Rezaul Karim
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi-6205, Bangladesh,Institute for Glycomics, Griffith University, Queensland, Australia
| |
Collapse
|
16
|
Aspartame induces cancer stem cell enrichment through p21, NICD and GLI1 in human PANC-1 pancreas adenocarcinoma cells. Food Chem Toxicol 2021; 153:112264. [PMID: 33992720 DOI: 10.1016/j.fct.2021.112264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the molecular effects of the common natural sugar glucose and artificial sweetener aspartame on cancer stem cell (CSC) population and cancer aggressiveness of PANC-1 human pancreas adenocarcinoma cells. According to our findings while aspartame exposure significantly increased the CSC population, high glucose had no effect on it. The epithelial-mesenchymal transition marker N-cadherin increased only in the aspartame group. The findings indicate that a high level of glucose exposure does not effect the invasion and migration of PANC-1 cells, while aspartame increases both of these aggressiveness criteria. The findings also suggest that a high concentration of glucose maintains CSC population through induction of nuclear Oct3/4 and differentiation to parental cells via increasing cytoplasmic c-myc. Aspartame exposure to PANC-1 cells activated AKT and deactivated GSK3β by increasing levels of ROS and cytoplasmic Ca+2, respectively, through T1R2/T1R3 stimulation. Then p-GSK3β(Ser9) boosted the CSC population by increasing pluripotency factors Oct3/4 and c-myc via NICD, GLI1 and p21. In the aspartame group, T1R1 silencing further increased the CSC population but decreased cell viability and suppressed the p21, NICD and GLI activation. The presence and amount of T1R subunits in the membrane fraction of PANC-1 cells are demonstrated for the first time in this study, as is the regulatory effect of T1R1's on CSC population. In conclusion, the present study demonstrated that long-term aspartame exposure increases CSC population and tumor cell aggressiveness through p21, NICD, GLI1. Moreover, while aspartame had no tumorigenic effect, it could potentially advance an existing tumor.
Collapse
|
17
|
Lee NK, Kothandan VK, Kothandan S, Byun Y, Hwang SR. Exosomes and Cancer Stem Cells in Cancer Immunity: Current Reports and Future Directions. Vaccines (Basel) 2021; 9:vaccines9050441. [PMID: 34062950 PMCID: PMC8147426 DOI: 10.3390/vaccines9050441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs), which have the capacity to self-renew and differentiate into various types of cells, are notorious for their roles in tumor initiation, metastasis, and therapy resistance. Thus, underlying mechanisms for their survival provide key insights into developing effective therapeutic strategies. A more recent focus has been on exosomes that play a role in transmitting information between CSCs and non-CSCs, resulting in activating CSCs for cancer progression and modulating their surrounding microenvironment. The field of CSC-derived exosomes (CSCEXs) for different types of cancer is still under exploration. A deeper understanding and further investigation into CSCEXs’ roles in tumorigenicity and the identification of novel exosomal components are necessary for engineering exosomes for the treatment of cancer. Here, we review the features of CSCEXs, including surface markers, cargo, and biological or physiological functions. Further, reports on the immunomodulatory effects of CSCEXs are summarized, and exosome engineering for CSC-targeting is also discussed.
Collapse
Affiliation(s)
- Na-Kyeong Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (N.-K.L.); (Y.B.)
| | - Vinoth Kumar Kothandan
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
| | - Sangeetha Kothandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600073, India;
| | - Youngro Byun
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; (N.-K.L.); (Y.B.)
| | - Seung-Rim Hwang
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
- Correspondence:
| |
Collapse
|
18
|
Yue D, Liu S, Zhang T, Wang Y, Qin G, Chen X, Zhang H, Wang D, Huang L, Wang F, Wang L, Zhao S, Zhang Y. NEDD9 promotes cancer stemness by recruiting myeloid-derived suppressor cells via CXCL8 in esophageal squamous cell carcinoma. Cancer Biol Med 2021; 18:705-720. [PMID: 33710809 PMCID: PMC8330544 DOI: 10.20892/j.issn.2095-3941.2020.0290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Esophageal squamous cell carcinoma (ESCC) has high morbidity and mortality rates worldwide. Cancer stem cells (CSCs) may cause tumor initiation, metastasis, and recurrence and are also responsible for chemotherapy and radiotherapy failures. Myeloid-derived suppressor cells (MDSCs), in contrast, are known to be involved in mediating immunosuppression. Here, we aimed to investigate the mechanisms of interaction of CSCs and MDSCs in the tumor microenvironment. METHODS ESCC tissues and cell lines were evaluated. Neural precursor cell expressed, developmentally downregulated 9 (NEDD9) was knocked down and overexpressed by lentiviral transfection. Quantitative PCR, Western blot, immunohistochemistry, cell invasion, flow cytometry, cell sorting, multiplex chemokine profiling, and tumor growth analyses were performed. RESULTS Microarray analysis revealed 10 upregulated genes in esophageal CSCs. Only NEDD9 was upregulated in CSCs using the sphere-forming method. NEDD9 expression was correlated with tumor invasion (P = 0.0218), differentiation (P = 0.0153), and poor prognosis (P = 0.0373). Additionally, NEDD9 was required to maintain the stem-like phenotype. Screening of chemokine expression in ESCC cells with NEDD9 overexpression and knockdown showed that NEDD9 regulated C-X-C motif chemokine ligand 8 (CXCL8) expression via the ERK pathway. CXCL8 mediated the recruitment of MDSCs induced by NEDD9 in vitro and in vivo. MDSCs promoted the stemness of ESCC cells through NEDD9 via the Notch pathway. CONCLUSIONS As a marker of ESCC, NEDD9 maintained the stemness of ESCC cells and regulated CXCL8 through the ERK pathway to recruit MDSCs into the tumor, suggesting NEDD9 as a therapeutic target and novel prognostic marker for ESCC.
Collapse
Affiliation(s)
- Dongli Yue
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shasha Liu
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tengfei Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yong Wang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100730, China
- Biomed Innovation Center, Yehoo Group, Shenzhen 518067, China
| | - Guohui Qin
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xinfeng Chen
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huanyu Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dong Wang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lan Huang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Feng Wang
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Liping Wang
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- School of Life Sciences, Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou 450052, China
| |
Collapse
|
19
|
Donini C, Rotolo R, Proment A, Aglietta M, Sangiolo D, Leuci V. Cellular Immunotherapy Targeting Cancer Stem Cells: Preclinical Evidence and Clinical Perspective. Cells 2021; 10:cells10030543. [PMID: 33806296 PMCID: PMC8001974 DOI: 10.3390/cells10030543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
The term “cancer stem cells” (CSCs) commonly refers to a subset of tumor cells endowed with stemness features, potentially involved in chemo-resistance and disease relapses. CSCs may present peculiar immunogenic features influencing their homeostasis within the tumor microenvironment. The susceptibility of CSCs to recognition and targeting by the immune system is a relevant issue and matter of investigation, especially considering the multiple emerging immunotherapy strategies. Adoptive cellular immunotherapies, especially those strategies encompassing the genetic redirection with chimeric antigen receptors (CAR), hold relevant promise in several tumor settings and might in theory provide opportunities for selective elimination of CSC subsets. Initial dedicated preclinical studies are supporting the potential targeting of CSCs by cellular immunotherapies, indirect evidence from clinical studies may be derived and new studies are ongoing. Here we review the main issues related to the putative immunogenicity of CSCs, focusing on and highlighting the existing evidence and opportunities for cellular immunotherapy approaches with T and non-T antitumor lymphocytes.
Collapse
Affiliation(s)
- Chiara Donini
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Ramona Rotolo
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Alessia Proment
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
| | - Massimo Aglietta
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Dario Sangiolo
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
- Correspondence: ; Tel.: +39-011-993-3503; Fax: +39-011-993-3522
| | - Valeria Leuci
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| |
Collapse
|
20
|
Trailblazing perspectives on targeting breast cancer stem cells. Pharmacol Ther 2021; 223:107800. [PMID: 33421449 DOI: 10.1016/j.pharmthera.2021.107800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BCa) is one of the most prevalent malignant tumors affecting women's health worldwide. The recurrence and metastasis of BCa have made it a long-standing challenge to achieve remission-persistent or disease-undetectable clinical outcomes. Cancer stem cells (CSCs) possess the ability to self-renew and generate heterogeneous tumor bulk. The existence of CSCs has been found to be vital in the initiation, metastasis, therapy resistance, and recurrence of tumors across cancer types. Because CSCs grow slowly in their dormant state, they are insensitive to conventional chemotherapies; however, when CSCs emerge from their dormant state and become clinically evident, they usually acquire genetic traits that make them resistant to existing therapies. Moreover, CSCs also show evidence of acquired drug resistance in synchrony with tumor relapses. The concept of CSCs provides a new treatment strategy for BCa. In this review, we highlight the recent advances in research on breast CSCs and their association with epithelial-mesenchymal transition (EMT), circulating tumor cells (CTCs), plasticity of tumor cells, tumor microenvironment (TME), T-cell modulatory protein PD-L1, and non-coding RNAs. On the basis that CSCs are associated with multiple dysregulated biological processes, we envisage that increased understanding of disease sub-classification, selected combination of conventional treatment, molecular aberration directed therapy, immunotherapy, and CSC targeting/sensitizing strategy might improve the treatment outcome of patients with advanced BCa. We also discuss novel perspectives on new drugs and therapeutics purposing the potent and selective expunging of CSCs.
Collapse
|
21
|
Chowdhury S, Ghosh S. Cancer Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Padhariya KN, Athavale M, Srivastava S, Kharkar PS. Substituted chloroacetamides as potential cancer stem cell inhibitors: Synthesis and biological evaluation. Drug Dev Res 2020; 81:356-365. [PMID: 31800121 DOI: 10.1002/ddr.21628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/24/2019] [Accepted: 11/09/2019] [Indexed: 02/05/2023]
Abstract
Cancer kills, irrespective of geographical and cultural origin. Novel modalities for treating cancer are desperately needed. Cancer stem cells (CSCs), main culprits behind chemoresistance and tumor relapse, are one of the few logical choices. Herein, we report the synthesis and biological evaluation of small molecules with chloroacetamide war-head. These molecules were screened for viability against various breast, prostate, and oral cancer cell lines using MTT and soft-agar assays. Further, promising hits were screened in sphere-forming assay with the aim of discovering potential anti-CSC agents. Our optimism yielded four hits inhibiting self-renewal of cancer cells with stem-like characters in vitro. Finally, the hits were evaluated for in vitro toxicity against human peripheral blood mononuclear cells and mouse embryonic fibroblast cell line. Overall, these preliminary investigations yielded three hits exhibiting promising anti-CSC potential with little or no toxicity against normal cells.
Collapse
Affiliation(s)
- Komal N Padhariya
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Maithili Athavale
- Department of Cancer Biology, Godavari Biorefineries Ltd., Mumbai, India
| | | | - Prashant S Kharkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
23
|
Alhabbab RY. Targeting Cancer Stem Cells by Genetically Engineered Chimeric Antigen Receptor T Cells. Front Genet 2020; 11:312. [PMID: 32391048 PMCID: PMC7188929 DOI: 10.3389/fgene.2020.00312] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The term cancer stem cell (CSC) starts 25 years ago with the evidence that CSC is a subpopulation of tumor cells that have renewal ability and can differentiate into several distinct linages. Therefore, CSCs play crucial role in the initiation and the maintenance of cancer. Moreover, it has been proposed throughout several studies that CSCs are behind the failure of the conventional chemo-/radiotherapy as well as cancer recurrence due to their ability to resist the therapy and their ability to re-regenerate. Thus, the need for targeted therapy to eliminate CSCs is crucial; for that reason, chimeric antigen receptor (CAR) T cells has currently been in use with high rate of success in leukemia and, to some degree, in patients with solid tumors. This review outlines the most common CSC populations and their common markers, in particular CD133, CD90, EpCAM, CD44, ALDH, and EGFRVIII, the interaction between CSCs and the immune system, CAR T cell genetic engineering and signaling, CAR T cells in targeting CSCs, and the barriers in using CAR T cells as immunotherapy to treat solid cancers.
Collapse
Affiliation(s)
- Rowa Y. Alhabbab
- Division of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Das PK, Pillai S, Rakib MA, Khanam JA, Gopalan V, Lam AKY, Islam F. Plasticity of Cancer Stem Cell: Origin and Role in Disease Progression and Therapy Resistance. Stem Cell Rev Rep 2020; 16:397-412. [PMID: 31965409 DOI: 10.1007/s12015-019-09942-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In embryonic development and throughout life, there are some cells can exhibit phenotypic plasticity. Phenotypic plasticity is the ability of cells to differentiate into multiple lineages. In normal development, plasticity is highly regulated whereas cancer cells re-activate this dynamic ability for their own progression. The re-activation of these mechanisms enables cancer cells to acquire a cancer stem cell (CSC) phenotype- a subpopulation of cells with increased ability to survive in a hostile environment and resist therapeutic insults. There are several contributors fuel CSC plasticity in different stages of disease progression such as a complex network of tumour stroma, epidermal microenvironment and different sub-compartments within tumour. These factors play a key role in the transformation of tumour cells from a stable condition to a progressive state. In addition, flexibility in the metabolic state of CSCs helps in disease progression. Moreover, epigenetic changes such as chromatin, DNA methylation could stimulate the phenotypic change of CSCs. Development of resistance to therapy due to highly plastic behaviour of CSCs is a major cause of treatment failure in cancers. However, recent studies explored that plasticity can also expose the weaknesses in CSCs, thereby could be utilized for future therapeutic development. Therefore, in this review, we discuss how cancer cells acquire the plasticity, especially the role of the normal developmental process, tumour microenvironment, and epigenetic changes in the development of plasticity. We further highlight the therapeutic resistance property of CSCs attributed by plasticity. Also, outline some potential therapeutic options against plasticity of CSCs. Graphical Abstract .
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Suja Pillai
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, 4029, Australia.
| | - Md Abdur Rakib
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Jahan Ara Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Vinod Gopalan
- School of Medicine, Griffith University Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Alfred K Y Lam
- School of Medicine, Griffith University Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
25
|
Yue Y, Xia L, Xu S, Wang C, Wang X, Lu W, Xie X. SURF4 maintains stem-like properties via BIRC3 in ovarian cancer cells. J Gynecol Oncol 2020; 31:e46. [PMID: 32026660 PMCID: PMC7286753 DOI: 10.3802/jgo.2020.31.e46] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 11/09/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE As cancer stem cells (CSCs) are considered as the origin of tumor development, recurrence, and drug resistance, we aimed to explore the mechanism related to modulating stemness in CSCs, thus facilitating to search for new therapeutic strategy for ovarian cancer. METHODS In this study, ovarian cancer stem cells (OCSCs) induced from cell line 3AO and A2780 were enriched in serum-free medium (SFM). The effect of SURF4 on CSC-like properties was evaluated by sphere-forming assays, re-differentiation assays, quantitative real-time polymerase chain reaction, flow cytometry, Western blotting, cell viability assays and in vivo xenograft experiments. The downstream molecule participating in SURF4 maintaining stemness was screened by RNA-sequencing and identified by the experiments of gene function. RESULTS SURF4 was upregulated expressed in OCSCs. Knockdown of SURF4 reduced the expression of the related stem markers (SOX2 and c-MYC), inhibited self-renewal ability, and improved the sensitivity to chemotherapeutic drugs (paclitaxel and cisplatin) in OCSCs. SURF4 knockdown also inhibited tumorigenesis in nonobese diabetic/severe combined immunodeficiency mice. BIRC3 expression was controlled by SURF4, and BIRC3 showed the similar effect as SURF4 did, and BIRC3 overexpression partially recovered stem-like properties abolished by SURF4 knockdown. CONCLUSION Our findings suggest that SURF4 possesses the ability to maintain stemness of OCSCs via BIRC3, and may serve as a potential target in stem cell-targeted therapy for ovarian cancer.
Collapse
Affiliation(s)
- Yongfang Yue
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Lili Xia
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shanshan Xu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Conghui Wang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xinyu Wang
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xing Xie
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
26
|
Liou YF, Chen PN, Chu SC, Kao SH, Chang YZ, Hsieh YS, Chang HR. Thymoquinone suppresses the proliferation of renal cell carcinoma cells via reactive oxygen species-induced apoptosis and reduces cell stemness. ENVIRONMENTAL TOXICOLOGY 2019; 34:1208-1220. [PMID: 31298468 DOI: 10.1002/tox.22822] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Thymoquinone is a phytochemical compound isolated from Nigella sativa and has various biological effects, including anti-inflammation, antioxidation, and anticancer. Here, we further investigated the anticancer effects and associated molecular mechanism of 2-methyl-5-isopropyl-1,4-benzoquinone (thymoquinone) on human renal carcinoma cell lines 786-O and 786-O-SI3 and transitional carcinoma cell line BFTC-909. Results showed that thymoquinone significantly reduced cell viability, inhibited the colony formation of renal cancer cells, and induced cell apoptosis and mitochondrial membrane potential change in both cancer cells. In addition, thymoquinone also triggered the production of reactive oxygen species (ROS) and superoxide and the activation of apoptotic and autophagic cascade. ROS inhibition suppressed the caspase-3 activation and restored the decreased cell viability of 786-O-SI3 in response to thymoquinone. Autophagy inhibition did not restore the cell viability of 786-O-SI3 suppressed by thymoquinone. Moreover, thymoquinone suppressed the cell sphere formation and the expression of aldehyde dehydrogenase, Nanog, Nestin, CD44, and Oct-4 in 786-O-SI3 cells. The tumor-bearing model showed that thymoquinone in vivo inhibited the growth of implanted 786-O-SI3 cell. All these findings indicate that thymoquinone inhibits the proliferation of 786-O-SI3 and BFTC-909 cell possibly due to the induction of ROS/superoxide and the consequent apoptosis, suggesting that thymoquinone may be a potential anticancer supplement for genitourinary cancer.
Collapse
Affiliation(s)
- Yih-Farng Liou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Feng Yuan Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shu-Chen Chu
- Institute and Department of Food Science, Central Taiwan University of Sciences and Technology, Taichung, Taiwan
| | - Shao-Hsuan Kao
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Yan-Zin Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yih-Shou Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Horng-Rong Chang
- Division of Nephrology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
27
|
Su H, Xue Z, Feng Y, Xie Y, Deng B, Yao Y, Tian X, An Q, Yang L, Yao Q, Xue J, Chen G, Hao C, Zhou T. N-arylpiperazine-containing compound (C2): An enhancer of sunitinib in the treatment of pancreatic cancer, involving D1DR activation. Toxicol Appl Pharmacol 2019; 384:114789. [PMID: 31669811 DOI: 10.1016/j.taap.2019.114789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
Previous studies showed that dopamine (DA) significantly reduces the frequency of cancer stem-like cells (CSC) and enhances the efficacy of sunitinib (SUN) in the treatment of breast cancer and non-small cell lung cancer (NSCLC). To overcome the shortcomings of DA in clinical practice, the purpose of this study was to investigate the efficacy as well as the underlying mechanism of an orally available, N-arylpiperazine-containing compound C2, in the treatment of pancreatic cancer when used alone or in combination with SUN. Our results showed that C2 and SUN exerted synergistic effects on inhibiting the growth of SW1990 and PANC-1 pancreatic cancer cells. C2 significantly inhibited colony formation and migration of both cells. SW1990 xenograft and patient-derived xenograft (PDX) models were utilized for pharmacodynamic investigation in vivo. C2 alone showed little inhibition effect on tumor growth but increased the anti-tumor efficacy of SUN in both xenografts. Moreover, C2 down-regulated CSC markers (CD133 and ALDH) of both cancer cells and up-regulated the expression of dopamine receptor D1 (D1DR) in tumor. Besides, the SW1990 tumor growth was dose-dependently inhibited when the cells were pretreated with C2 before implantation. C2 increased intratumoral cAMP level, and the combination with D1DR specific antagonist SCH23390 reversed the above-mentioned effects of C2 both in vitro and in vivo, indicating the activation of D1DR may be involved in the underlying mechanism of C2 action. In summary, C2 could reduce the CSC frequency and enhance the anti-cancer effect of SUN in the treatment of pancreatic cancer, demonstrating its potential in cancer therapy.
Collapse
Affiliation(s)
- Hong Su
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zixi Xue
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yaoyao Feng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Xie
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bo Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ye Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qiming An
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Liang Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qingyu Yao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junsheng Xue
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Guoshu Chen
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Tianyan Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
28
|
Abdel-Salam IM, Abou-Bakr AA, Ashour M. Cytotoxic effect of aqueous ethanolic extract of Luffa cylindrica leaves on cancer stem cells CD44 +/24 - in breast cancer patients with various molecular sub-types using tissue samples in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111877. [PMID: 30995545 DOI: 10.1016/j.jep.2019.111877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/06/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Luffa cylindrica (L.) M.Roem is a climbing plant its parts have been used as traditional medicine for the treatment of different types of diseases including diarrhea, inflammation, cancer and viral infections. The parts used include fruit, seeds and leaves. AIM OF THE STUDY Our study aims to investigate the effect of the aqueous-ethanol extract of Luffa cylindrica leaves on breast cancer stem cells CD44+/24- and other cell sub-populations using clinical samples with different molecular sub-types of breast cancer in vitro. MATERIALS AND METHODS Breast tissues were obtained from patients undergoing surgery for the removal of breast tumors after complete clinical and pathological investigations. Tissue samples were processed to cell suspensions and treated with the extract in the tissue culture laboratory. Percentages of cell sub-populations within tumors and viability were measured by flowcytometry using clusters of differentiation as cell markers. RESULTS Our results revealed that there were decreases in the total cell viability, CD44+/24- and total CD24+ cell sub-populations percentages after treatment with the extract, this may be an important indication of using Luffa leaves extract in the treatment of breast cancer or in combination with the traditional treatments. CONCLUSION Luffa cylindrica has proven to have anticancer activity on three different subtypes of breast cancer including luminal A, luminal B and Her2/neu enriched more over it has cytotoxic effect on both bulk tumor cells as well as cancer stem cells sub population CD44+/24- which possess high tumorigenic potency, these results were confirmed by measuring their viable number after treatment and sphere formation assay results.
Collapse
Affiliation(s)
| | - A A Abou-Bakr
- Pathology Department, National Cancer Institute, Cairo University, Egypt
| | - Mohamed Ashour
- Medical Research Department, National Institute of Occupational Safety and Health, Egypt.
| |
Collapse
|
29
|
Wu J, Zhu P, Lu T, Du Y, Wang Y, He L, Ye B, Liu B, Yang L, Wang J, Gu Y, Lan J, Hao Y, He L, Fan Z. The long non-coding RNA LncHDAC2 drives the self-renewal of liver cancer stem cells via activation of Hedgehog signaling. J Hepatol 2019; 70:918-929. [PMID: 30582981 DOI: 10.1016/j.jhep.2018.12.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Liver cancer is the second leading cause of cancer death worldwide. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer in adults. The aim of this study was to define the role of the long non-coding RNA lncHDAC2 in the tumorigenesis of HCC. METHODS CD13+CD133+ cells (hereafter called liver cancer stem cells [CSCs]) and CD13-CD133- cells (referred to as non-CSCs) were sorted from 3 primary HCC tumor tissues and followed by transcriptome microarray. The expression and function of lncHDAC2 were further assessed by northern blot, sphere formation and xenograft tumor models. RESULTS LncHDAC2 is highly expressed in HCC tumors and liver CSCs. LncHDAC2 promotes the self-renewal of liver CSCs and tumor propagation. In liver CSCs, lncHDAC2 recruits the NuRD complex onto the promoter of PTCH1 to inhibit its expression, leading to activation of Hedgehog signaling. Moreover, HDAC2 expression levels are positively related to HCC severity and PTCH1 levels are negatively related to HCC severity. Additionally, the Smo inhibitor cyclopamine was shown to impair the self-renewal of liver CSCs and suppress tumor propagation. CONCLUSION Our findings reveal that lncHDAC2 promotes the self-renewal of liver CSCs and tumor propagation by activating the Hedgehog signaling pathway. Downregulating lncHDAC2 is a promising antitumor strategy in HCC. LAY SUMMARY Liver cancer stem cells harbor high tumor-initiating potential and confer resistance to typical therapies, but the mechanism underlying their self-renewal remains elusive. LncHDAC2 augments the self-renewal of these cells, promoting tumor propagation. In liver cancer stem cells, lncHDAC2 activates Hedgehog signaling to initiate liver tumorigenesis. Therefore, lncHDAC2 and the Hedgehog signaling pathway may serve as biomarkers and potential drug targets for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jiayi Wu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingping Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tiankun Lu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Du
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanying Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Luyun He
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buqing Ye
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Benyu Liu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liuliu Yang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Gu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Lan
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yajing Hao
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei He
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing 100853, China
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
30
|
Badrinath N, Yoo SY. Recent Advances in Cancer Stem Cell-Targeted Immunotherapy. Cancers (Basel) 2019; 11:cancers11030310. [PMID: 30841635 PMCID: PMC6468501 DOI: 10.3390/cancers11030310] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are one of the reasons for the relapse of cancer cells and metastasis. They have drug resistance against most chemotherapeutic agents. CSCs are also responsible for tumor cell heterogeneity and cause minimal residual disease. In order to achieve complete regression of tumors, CSCs have to be targeted. Recent advances in immunotherapies have shown promising outcomes in curing cancer, which are also applicable to target CSCs. CSCs express immune markers and exhibit specific immune characteristics in various cancers, which can be used in immunotherapies to target CSCs in the tumor microenvironment. Recently, various strategies have been used to target CSCs. Adaptive T-cells, dendritic cell (DC)-based vaccines, oncolytic viruses, immune checkpoint inhibitors, and combination therapies are now being used to target CSCs. Here, we discuss the feasibility of these immunological approaches and the recent trends in immunotherapies to target CSCs.
Collapse
Affiliation(s)
- Narayanasamy Badrinath
- Biomedical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Korea.
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea.
| | - So Young Yoo
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea.
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
31
|
Ratajczak MZ, Bujko K, Mack A, Kucia M, Ratajczak J. Cancer from the perspective of stem cells and misappropriated tissue regeneration mechanisms. Leukemia 2018; 32:2519-2526. [PMID: 30375490 PMCID: PMC6286324 DOI: 10.1038/s41375-018-0294-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 09/17/2018] [Indexed: 12/19/2022]
Abstract
Tumorigenesis can be considered as pathologically misappropriated tissue regeneration. In this review we will address some unresolved issues that support this concept. First, we will address the issue of the identity of cancer-initiating cells and the presence of cancer stem cells in growing tumors. We will also ask are there rare and distinct populations of cancer stem cells in established tumor cell lines, or are all of the cells cancer stem cells? Second, the most important clinical problem with cancer is its metastasis, and here a challenging question arises: by employing radio-chemotherapy for tumor treatment, do we unintentionally create a prometastatic microenvironment in collateral organs? Specifically, many factors upregulated in response to radio-chemotherapy-induced injury may attract highly migratory cancer cells that survived initial treatment. Third, what is the contribution of normal circulating stem cells to the growing malignancy? Do circulating normal stem cells recognize a tumor as a hypoxia-damaged tissue that needs vascular and stromal support and thereby contribute to tumor expansion? Fourth, is it reasonable to inhibit only one prometastatic ligand-receptor axis when cancer stem cells express several receptors for several chemotactic factors that may compensate for inhibition of the targeted receptor? Fifth, since most aggressive cancer cells mimic early-development stem cells, which properties of embryonic stem cells are retained in cancer cells? Would it be reasonable to inhibit cancer cell signaling pathways involved in the migration and proliferation of embryonic stem cells? We will also briefly address some new players in cancerogenesis, including extracellular microvesicles, bioactive phospholipids, and extracellular nucleotides.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute, Division of Hematology and Oncology, James Graham Brown Cancer Center, University Louisville, 500 South Floyd Street, Louisville, 40202, Kentucky, USA.
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland.
| | - Kamila Bujko
- Stem Cell Institute, Division of Hematology and Oncology, James Graham Brown Cancer Center, University Louisville, 500 South Floyd Street, Louisville, 40202, Kentucky, USA
| | - Aaron Mack
- Stem Cell Institute, Division of Hematology and Oncology, James Graham Brown Cancer Center, University Louisville, 500 South Floyd Street, Louisville, 40202, Kentucky, USA
| | - Magda Kucia
- Stem Cell Institute, Division of Hematology and Oncology, James Graham Brown Cancer Center, University Louisville, 500 South Floyd Street, Louisville, 40202, Kentucky, USA
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Warsaw Medical University, Warsaw, Poland
| | - Janina Ratajczak
- Stem Cell Institute, Division of Hematology and Oncology, James Graham Brown Cancer Center, University Louisville, 500 South Floyd Street, Louisville, 40202, Kentucky, USA
| |
Collapse
|
32
|
Terry S, Faouzi Zaarour R, Hassan Venkatesh G, Francis A, El-Sayed W, Buart S, Bravo P, Thiery J, Chouaib S. Role of Hypoxic Stress in Regulating Tumor Immunogenicity, Resistance and Plasticity. Int J Mol Sci 2018; 19:ijms19103044. [PMID: 30301213 PMCID: PMC6213127 DOI: 10.3390/ijms19103044] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 12/15/2022] Open
Abstract
Hypoxia, or gradients of hypoxia, occurs in most growing solid tumors and may result in pleotropic effects contributing significantly to tumor aggressiveness and therapy resistance. Indeed, the generated hypoxic stress has a strong impact on tumor cell biology. For example, it may contribute to increasing tumor heterogeneity, help cells gain new functional properties and/or select certain cell subpopulations, facilitating the emergence of therapeutic resistant cancer clones, including cancer stem cells coincident with tumor relapse and progression. It controls tumor immunogenicity, immune plasticity, and promotes the differentiation and expansion of immune-suppressive stromal cells. In this context, manipulation of the hypoxic microenvironment may be considered for preventing or reverting the malignant transformation. Here, we review the current knowledge on how hypoxic stress in tumor microenvironments impacts on tumor heterogeneity, plasticity and resistance, with a special interest in the impact on immune resistance and tumor immunogenicity.
Collapse
Affiliation(s)
- Stéphane Terry
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Rania Faouzi Zaarour
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Amirtharaj Francis
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Walid El-Sayed
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Pamela Bravo
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Jérome Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| |
Collapse
|
33
|
Costanzo V, Bardelli A, Siena S, Abrignani S. Exploring the links between cancer and placenta development. Open Biol 2018; 8:180081. [PMID: 29950452 PMCID: PMC6030113 DOI: 10.1098/rsob.180081] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 06/05/2018] [Indexed: 12/19/2022] Open
Abstract
The development of metastatic cancer is a multistage process, which often requires decades to complete. Impairments in DNA damage control and DNA repair in cancer cell precursors generate genetically heterogeneous cell populations. However, despite heterogeneity most solid cancers have stereotypical behaviours, including invasiveness and suppression of immune responses that can be unleashed with immunotherapy targeting lymphocyte checkpoints. The mechanisms leading to the acquisition of stereotypical properties remain poorly understood. Reactivation of embryonic development processes in cells with unstable genomes might contribute to tumour expansion and metastasis formation. However, it is unclear whether these events are linked to immune response modulation. Tumours and embryos have non-self-components and need to avoid immune responses in their microenvironment. In mammalian embryos, neo-antigens are of paternal origin, while in tumour cells DNA mismatch repair and replication defects generate them. Inactivation of the maternal immune response towards the embryo, which occurs at the placental-maternal interface, is key to ensuring embryonic development. This regulation is accomplished by the trophoblast, which mimics several malignant cell features, including the ability to invade normal tissues and to avoid host immune responses, often adopting the same cancer immunoediting strategies. A better understanding as to whether and how genotoxic stress promotes cancer development through reactivation of programmes occurring during early stages of mammalian placentation could help to clarify resistance to drugs targeting immune checkpoint and DNA damage responses and to develop new therapeutic strategies to eradicate cancer.
Collapse
Affiliation(s)
- Vincenzo Costanzo
- IFOM, The FIRC Institute of Molecular Oncology, University of Milan Medical School, Milan, Italy
- Department of Oncology, University of Milan Medical School, Milan, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute-FPO, IRCCS, University of Turin, Candiolo, Turin, Italy
- Department of Oncology, University of Turin, Candiolo, Turin, Italy
| | - Salvatore Siena
- Department of Oncology, University of Milan Medical School, Milan, Italy
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Sergio Abrignani
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
- University of Milan Medical School, Milan, Italy
| |
Collapse
|
34
|
Yadav UP, Singh T, Kumar P, Sharma P, Kaur H, Sharma S, Singh S, Kumar S, Mehta K. [Morbidity in primary medical services in the jurisdiction of Huamantla, Tlaxcala]. SALUD PUBLICA DE MEXICO 1982; 10:1010. [PMID: 32670883 PMCID: PMC7330710 DOI: 10.3389/fonc.2020.01010] [Citation(s) in RCA: 81] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Umesh Prasad Yadav
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Tashvinder Singh
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Pramit Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| | - Praveen Sharma
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Harsimrat Kaur
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
- Desh Bhagat Dental College, Mandi Gobindgarh, India
| | - Sadhana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| | - Sandeep Singh
- Laboratory of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Santosh Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| | - Kapil Mehta
- Department of Experimental Therapeutics, MD Anderson Cancer Centre, The University of Texas, Houston, TX, United States
| |
Collapse
|