1
|
Kim SH, Tsao H. Acral Melanoma: A Review of Its Pathogenesis, Progression, and Management. Biomolecules 2025; 15:120. [PMID: 39858514 PMCID: PMC11763010 DOI: 10.3390/biom15010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Acral melanoma is a distinct subtype of cutaneous malignant melanoma that uniquely occurs on ultraviolet (UV)-shielded, glabrous skin of the palms, soles, and nail beds. While acral melanoma only accounts for 2-3% of all melanomas, it represents the most common subtype among darker-skinned, non-Caucasian individuals. Unlike other cutaneous melanomas, acral melanoma does not arise from UV radiation exposure and is accordingly associated with a relatively low tumor mutational burden. Recent advances in genomic, transcriptomic, and epigenomic sequencing have revealed genetic alterations unique to acral melanoma, including novel driver genes, high copy number variations, and complex chromosomal rearrangements. This review synthesizes the current knowledge on the clinical features, epidemiology, and treatment approaches for acral melanoma, with a focus on the genetic pathogenesis that gives rise to its unique tumor landscape. These findings highlight a need to deepen our genetic and molecular understanding to better target this challenging subtype of melanoma.
Collapse
Affiliation(s)
| | - Hensin Tsao
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
2
|
Hou M, Zhao Z, Li S, Zhang Z, Li X, Zhang Y, Huang W, Li L, Xi W, Liang F, Lin L, Zhang Y, Chai G. Single-cell analysis unveils cell subtypes of acral melanoma cells at the early and late differentiation stages. J Cancer 2025; 16:898-916. [PMID: 39781353 PMCID: PMC11705046 DOI: 10.7150/jca.102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/01/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Melanoma, a malignant neoplasm originating from melanocytes, is a form of skin cancer with rapidly increasing global incidence, often exacerbated by UV radiation[1]. Particularly, acral melanoma, characterized by its swift metastasis and poor prognosis, underscores the significance of further research into its heterogeneity. Single-cell sequencing has been widely utilized in the study of tumor heterogeneity; however, research related to melanoma remains to be further refined. MATERIALS AND METHODS We employed single-cell RNA sequencing (scRNA-seq) transcriptomic analysis to delve into the melanoma cells from six samples of melanoma patients. This approach enabled the identification of critical melanoma cell subpopulations and their roles in melanoma progression. Subsequently, we examined the interactions among these subpopulations and analyzed their interactions with other cell types. RESULTS Our analysis identified C3 ID2+ melanoma cells as an early-stage subpopulation and C4 PCLAF+ cells as a late-stage subpopulation in melanoma evolution. Through our analysis, we identified C4 PCLAF+ Melanoma cells as a significant subpopulation in acral melanoma (AM), playing a pivotal role in the differentiation and development of AM. Further analysis of transcription factors, enriched pathways, cell stemness, and cell trajectories highlighted the significant role of C4 PCLAF+ melanoma cells in acral melanoma (AM) proliferation. CONCLUSION This study identifies new factors influencing melanoma progression, providing a foundation for subsequent research.
Collapse
Affiliation(s)
- Mengyuan Hou
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| | - Zhijie Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| | - Shuxiao Li
- Department of Burns and Plastic Reconstructive Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi Province, China
- Life Science and Clinical Medicine Research Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi Province, China
| | - Ziwei Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| | - Xin Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| | - Yichi Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| | - Wenyi Huang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| | - Li Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| | - Wenjing Xi
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| | - Feiteng Liang
- Department of Burns and Plastic Reconstructive Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi Province, China
- Life Science and Clinical Medicine Research Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi Province, China
| | - Li Lin
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| | - Yan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| | - Gang Chai
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| |
Collapse
|
3
|
Smith EA, Belote RL, Cruz NM, Moustafa TE, Becker CA, Jiang A, Alizada S, Prokofyeva A, Chan TY, Seasor TA, Balatico M, Cortes-Sanchez E, Lum DH, Hyngstrom JR, Zeng H, Deacon DC, Grossmann AH, White RM, Zangle TA, Judson-Torres RL. Receptor tyrosine kinase inhibition leads to regression of acral melanoma by targeting the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:317. [PMID: 39627834 PMCID: PMC11613472 DOI: 10.1186/s13046-024-03234-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/13/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Acral melanoma (AM) is an aggressive melanoma variant that arises from palmar, plantar, and nail unit melanocytes. Compared to non-acral cutaneous melanoma (CM), AM is biologically distinct, has an equal incidence across genetic ancestries, typically presents in advanced stage disease, is less responsive to therapy, and has an overall worse prognosis. METHODS An independent analysis of published sequencing data was performed to evaluate the frequency of receptor tyrosine kinase (RTK) ligands and adapter protein gene variants and expression. To target these genetic variants, a zebrafish acral melanoma model and preclinical patient-derived xenograft (PDX) mouse models were treated with a panel of RTK inhibitors. Residual PDX tumors were evaluated for changes in proliferation, vasculature, necrosis, and ferroptosis by histology and immunohistochemistry. RESULTS RTK ligands and adapter proteins are frequently amplified, translocated, and/or overexpressed in AM. Dual FGFR/VEGFR inhibitors decrease acral-analogous melanocyte proliferation and migration in zebrafish, and the potent pan-FGFR/VEGFR inhibitor, Lenvatinib, uniformly induces tumor regression in AM PDX tumors but only slows tumor growth in CM models. Unlike other multi-RTK inhibitors, Lenvatinib is not directly cytotoxic to dissociated AM PDX tumor cells and instead disrupts tumor architecture and vascular networks. CONCLUSION Considering the great difficulty in establishing AM cell culture lines, these findings suggest that AM may be more sensitive to microenvironment perturbations than CM. In conclusion, dual FGFR/VEGFR inhibition may be a viable therapeutic strategy that targets the unique biology of AM.
Collapse
Affiliation(s)
- Eric A Smith
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Rachel L Belote
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Nelly M Cruz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tarek E Moustafa
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Carly A Becker
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Amanda Jiang
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Shukran Alizada
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | | | - Tsz Yin Chan
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Tori A Seasor
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Michael Balatico
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Emilio Cortes-Sanchez
- Immuno Oncology Network Core, The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - David H Lum
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - John R Hyngstrom
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hanlin Zeng
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dekker C Deacon
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Allie H Grossmann
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Richard M White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Nuffield Department of Medicine, Ludwig Cancer Research, University of Oxford, Oxford, UK
| | - Thomas A Zangle
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Robert L Judson-Torres
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA.
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Kaszubski J, Gagat M, Grzanka A, Wawrzyniak A, Niklińska W, Łapot M, Żuryń A. Cyclin-Dependent Kinase Inhibitors in the Rare Subtypes of Melanoma Therapy. Molecules 2024; 29:5239. [PMID: 39598629 PMCID: PMC11596694 DOI: 10.3390/molecules29225239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Melanoma occurs in various forms and body areas, not only in the cutis, but also in mucous membranes and the uvea. Rarer subtypes of that cancer differ in genomic aberrations, which cause their minor sensibility to regular cutaneous melanoma therapies. Therefore, it is essential to discover new strategies for treating rare forms of melanoma. In recent years, interest in applying CDK inhibitors (CDKIs) in cancer therapy has grown, as they are able to arrest the cell cycle and inhibit cell proliferation. Current studies highlight selective CDK4/6 inhibitors, like palbociclib or abemaciclib, as a very promising therapeutic option, since they were accepted by the FDA for advanced breast cancer treatment. However, cells of every subtype of melanoma do not react to CDKIs the same way, which is partly because of the genetic differences between them. Herein, we discuss the past and current research relevant to targeting various CDKs in mucosal, uveal and acral melanomas. We also briefly describe the issue of amelanotic and desmoplastic types of melanoma and the need to do more research to discover cell cycle dysregulations, which cause the growth of the mentioned forms of cancer.
Collapse
Affiliation(s)
- Jonatan Kaszubski
- Vascular Biology Student Research Club, Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland;
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (A.G.); (A.Ż.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland;
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (A.G.); (A.Ż.)
| | - Agata Wawrzyniak
- Department of Histology and Embryology, Institute of Medical Sciences, College of Medical Sciences of the University of Rzeszow, University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Wiesława Niklińska
- Department of Histology and Embryology, Medical University of Bialystok, 15-269 Białystok, Poland;
| | - Magdalena Łapot
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 09-402 Płock, Poland;
| | - Agnieszka Żuryń
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland; (A.G.); (A.Ż.)
| |
Collapse
|
5
|
Choi ME, Choi EJ, Jung JM, Lee WJ, Jo YS, Won CH. A Narrative Review of the Evolution of Diagnostic Techniques and Treatment Strategies for Acral Lentiginous Melanoma. Int J Mol Sci 2024; 25:10414. [PMID: 39408752 PMCID: PMC11477219 DOI: 10.3390/ijms251910414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Acral melanoma (AM) is a subtype of cutaneous melanoma located on the palms, soles, and nails. The pathogenesis of AM involves mechanical stimulation and characteristic tumor-promoting mutations, such as those in the KIT proto-oncogene. Dermoscopy is useful for diagnosing AM, which is characterized by parallel ridge patterns and irregular diffuse pigmentation. Although histopathological confirmation is the gold standard for diagnosing AM, lesions showing minimal histopathological changes should be considered early-stage AM if they clinically resemble it. Recently, immunohistochemical staining of preferentially expressed antigen in melanoma has been recognized as a useful method to distinguish benign from malignant melanocytic tumors. Research reveals that AM is associated with an immunosuppressive microenvironment characterized by increased numbers of M2 macrophages and regulatory T cells, alongside a decreased number of tumor-infiltrating lymphocytes. Mohs micrographic surgery or digit-sparing wide local excision has been explored to improve quality of life and replace wide local excision or proximal amputation. AM has a worse prognosis than other subtypes, even in the early stages, indicating its inherent aggressiveness.
Collapse
Affiliation(s)
| | | | | | | | | | - Chong Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; (M.E.C.); (E.J.C.); (J.M.J.); (W.J.L.); (Y.-S.J.)
| |
Collapse
|
6
|
Zhu Z, Liu M, Zhang H, Zheng H, Li J. Adjuvant Therapy in Acral Melanoma: A Systematic Review. Clin Cosmet Investig Dermatol 2024; 17:2141-2150. [PMID: 39345988 PMCID: PMC11439362 DOI: 10.2147/ccid.s477155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Background Acral melanoma presents distinct biological characteristics compared to cutaneous melanoma. While adjuvant therapeutic strategies for high-risk resected acral melanoma closely resemble those for cutaneous melanoma, the evidence supporting the clinical application of adjuvant therapy for acral melanoma remains inadequate. Our aim was to systematically analyze the efficacy and safety profile of adjuvant therapy in acral melanoma. Methods This systematic review adhered to a pre-registered protocol. We comprehensively searched four electronic databases and reference lists of included articles to identify eligible studies. The primary outcome was therapeutic efficacy, and the secondary outcome was adverse events (AEs). Results This systematic review included 11 studies with 758 acral melanoma patients undergoing adjuvant therapy. High-dose interferon α-2b (IFN) regimens showed no significant difference in recurrence-free survival (RFS), though the longer regimen was linked to increased hepatotoxicity. Adjuvant anti-PD-1 therapy demonstrated varying efficacy, with improved RFS in patients who experienced immune-related AEs. Targeted therapy with dabrafenib plus trametinib achieved high 12-month RFS in patients with BRAF-mutated acral melanoma. Comparative studies suggested that adjuvant anti-PD-1 therapy is similarly effective to IFN in prolonging survival for high-risk acral melanoma patients. Additionally, prior treatment with pegylated IFN enhanced RFS in patients receiving adjuvant pembrolizumab. Conclusion High-dose IFN was widely used as adjuvant therapy for acral melanoma, but serious AEs prompted the search for alternatives. Adjuvant anti-PD-1 therapy shows promise, though it may be less effective than in non-acral melanoma. Further prospective studies are needed to determine the optimal adjuvant treatment for acral melanoma.
Collapse
Affiliation(s)
- Zhou Zhu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Mingjuan Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Hanlin Zhang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Heyi Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Jun Li
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Sun L, Ying J, Guo R, Jia L, Zhang H. A bibliometric analysis of global research on microbial immune microenvironment in melanoma from 2012 to 2022. Skin Res Technol 2024; 30:e70017. [PMID: 39167029 PMCID: PMC11337907 DOI: 10.1111/srt.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Melanoma is an aggressive malignancy primarily impacting the skin, mucous membranes, and pigment epithelium. The tumor microbial microenvironment encompasses both the microorganisms inhabiting the tumor vicinity and the environmental factors influencing their interactions. Emerging evidence highlights the pivotal role of the microbial immune microenvironment in melanoma. METHODS We conducted an extensive review of scholarly works published from 2012 to 2022, utilizing The Web of Science Core Collection. Subsequently, we employed analytical tools such as VOSviewer, CiteSpace, and the R programming language to scrutinize prevailing research patterns within this domain. RESULTS A sum of 513 articles were pinpointed, with notable input coming from the United States and China. Harvard University stood out as the top-contributing institution, while the journal Science received the most citations. Current research within this sphere chiefly focuses on two principal domains: the gut microbiota and the PD-L1 pathway concerning melanoma treatment. CONCLUSION The study offers an extensive analysis and overview of the worldwide research landscape concerning the immune microenvironment with a focus on microbes in melanoma. It underscores the promising prospects for harnessing the microbial immune microenvironment's potential in melanoma. These findings furnish valuable insights and guidance for advancing scientific inquiry and refining clinical approaches within this dynamic field.
Collapse
Affiliation(s)
- Lin Sun
- Department of RadiotherapyYantaishan HospitalShandongChina
| | - Jianghui Ying
- Department of Plastic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Rong Guo
- Department of Plastic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Lingling Jia
- Department of Plastic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Hongyi Zhang
- Department of Plastic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
8
|
Zhang C, Li W, Liu L, Li M, Sun H, Zhang C, Zhong L, Huang J, Li T. DDB2 promotes melanoma cell growth by transcriptionally regulating the expression of KMT2A and predicts a poor prognosis. FASEB J 2024; 38:e23735. [PMID: 38860936 DOI: 10.1096/fj.202302040r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Identification of potential key targets of melanoma, a fatal skin malignancy, is critical to the development of new cancer therapies. Lysine methyltransferase 2A (KMT2A) promotes melanoma growth by activating the human telomerase reverse transcriptase (hTERT) signaling pathway; however, the exact mechanism remains elusive. This study aimed to reveal new molecular targets that regulate KMT2A expression and melanoma growth. Using biotin-streptavidin-agarose pull-down and proteomics, we identified Damage-specific DNA-binding protein 2 (DDB2) as a KMT2A promoter-binding protein in melanoma cells and validated its role as a regulator of KMT2A/hTERT signaling. DDB2 knockdown inhibited the expression of KMT2A and hTERT and inhibited the growth of melanoma cells in vitro. Conversely, overexpression of DDB2 activated the expression of KMT2A and promoted the growth of melanoma cells. Additionally, we demonstrated that DDB2 expression was higher in tumor tissues of patients with melanoma than in corresponding normal tissues and was positively correlated with KMT2A expression. Kaplan-Meier analysis showed a poor prognosis in patients with high levels of DDB2 and KMT2A. Overall, our data suggest that DDB2 promotes melanoma cell growth through the transcriptional regulation of KMT2A expression and predicts poor prognosis. Therefore, targeting DDB2 may regulate the effects of KMT2A on melanoma growth and progression, providing a new potential therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Changlin Zhang
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Weizhao Li
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Lixiang Liu
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Miao Li
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Haohui Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chi Zhang
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Li Zhong
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Jiajia Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tian Li
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Department of Dermatovenereology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
9
|
Smith EA, Belote RL, Cruz NM, Moustafa TE, Becker CA, Jiang A, Alizada S, Chan TY, Seasor TA, Balatico M, Cortes-Sanchez E, Lum DH, Hyngstrom JR, Zeng H, Deacon DC, Grossmann AH, White RM, Zangle TA, Judson-Torres RL. Receptor tyrosine kinase inhibition leads to regression of acral melanoma by targeting the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599116. [PMID: 38948879 PMCID: PMC11212935 DOI: 10.1101/2024.06.15.599116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Acral melanoma (AM) is an aggressive melanoma variant that arises from palmar, plantar, and nail unit melanocytes. Compared to non-acral cutaneous melanoma (CM), AM is biologically distinct, has an equal incidence across genetic ancestries, typically presents in advanced stage disease, is less responsive to therapy, and has an overall worse prognosis. Independent analysis of published genomic and transcriptomic sequencing identified that receptor tyrosine kinase (RTK) ligands and adapter proteins are frequently amplified, translocated, and/or overexpressed in AM. To target these unique genetic changes, a zebrafish acral melanoma model was exposed to a panel of narrow and broad spectrum multi-RTK inhibitors, revealing that dual FGFR/VEGFR inhibitors decrease acral-analogous melanocyte proliferation and migration. The potent pan-FGFR/VEGFR inhibitor, Lenvatinib, uniformly induces tumor regression in AM patient-derived xenograft (PDX) tumors but only slows tumor growth in CM models. Unlike other multi-RTK inhibitors, Lenvatinib is not directly cytotoxic to dissociated AM PDX tumor cells and instead disrupts tumor architecture and vascular networks. Considering the great difficulty in establishing AM cell culture lines, these findings suggest that AM may be more sensitive to microenvironment perturbations than CM. In conclusion, dual FGFR/VEGFR inhibition may be a viable therapeutic strategy that targets the unique biology of AM.
Collapse
Affiliation(s)
- Eric A Smith
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Rachel L Belote
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Nelly M Cruz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tarek E Moustafa
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Carly A Becker
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Amanda Jiang
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Shukran Alizada
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Tsz Yin Chan
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Tori A Seasor
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Michael Balatico
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Emilio Cortes-Sanchez
- Immuno Oncology Network Core, The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - David H Lum
- Preclinical Research Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - John R Hyngstrom
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hanlin Zeng
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dekker C Deacon
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Allie H Grossmann
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Richard M White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Ludwig Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford UK
| | - Thomas A Zangle
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Chemical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Robert L Judson-Torres
- The Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
10
|
Fang Y, Yongqian Z, Yin L, Li M, Mei Z, Jing Y, Di W. Clinical characteristics, survival analysis and influencing factors of distant metastasis in patients with acromelanomas: A retrospective study. Medicine (Baltimore) 2024; 103:e38230. [PMID: 38847674 PMCID: PMC11155514 DOI: 10.1097/md.0000000000038230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/23/2024] [Indexed: 06/10/2024] Open
Abstract
The prognosis of acromelanomas (AM) is worse. The objective of this study was to investigate the clinical features of distant metastasis of AM and the factors affecting the survival and prognosis of patients. In this study, a retrospective study was conducted to select 154 AM patients admitted to Nanjing Pukou People's Hospital from January 2018 to April 2021 for clinical research. The clinical characteristics of distant metastasis were statistically analyzed, and the survival curve was drawn with 5-year follow-up outcomes. The median survival time of the patients was calculated, and the clinicopathological features and peripheral blood laboratory indexes of the surviving and dead patients were analyzed. Logistic regression model was used to analyze the risk factors affecting the prognosis of AM patients. In this study, 154 patients with AM were treated, including 88 males and 76 females, aged from 27 to 79 years old, with an average age of (59.3 ± 11.7) years old. Among them, 90 cases had distant metastasis. The main metastatic sites were lung (47.78%) and lymph nodes (42.22%). Among them, single site metastasis accounted for 41.11% and multiple site metastasis 58.89%. 89 cases survived and 65 cases died. The survival time was 22 months to 60 months, and the median survival time was 48.0 months. The Breslow thickness, stage at diagnosis, distant metastasis, site of metastasis and ulceration were compared between the survival group and the death group (P < .05). serum lactate dehydrogenase (LDH), neutrophil-to-lymphocyte ratio (NLR) and lymphocyte monocyte ratio (LMR) were compared between the survival group and the death group (P < .05). The results of Logistic regression model showed that LDH ≥ 281 U/L, NLR ≥ 2.96, LMR ≤ 3.57, newly diagnosed stage > stage II, distant metastasis, multiple site metastasis and tumor ulcer were independent risk factors for poor prognosis of AM patients (P < .05). Patients with AM had a higher proportion of distant metastasis, mainly lung and lymph node metastasis. Increased LDH, increased NLR, decreased LMR, higher initial stage, distant metastasis, multiple site metastasis, and combined tumor ulcer were closely related to the poor prognosis of patients after surgery.
Collapse
Affiliation(s)
- Yan Fang
- Department of Dermatology, Nanjing Pukou People’s Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Zhu Yongqian
- Department of Information, Jiangsu Provincial People’s Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Lu Yin
- Department of Dermatology, Nanjing Pukou People’s Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Min Li
- Department of Ultrasound, Jiangdong Community Service Center, Nanjing, Jiangsu, People’s Republic of China
| | - Zhang Mei
- Department of Pathology, Nanjing Pukou People’s Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Yang Jing
- Department of Dermatology, Nanjing Pukou People’s Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Wu Di
- Department of Dermatology, Jiangsu Provincial People’s Hospital, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
11
|
Chan PY, Corrie PG. Curing Stage IV Melanoma: Where Have We Been and Where Are We? Am Soc Clin Oncol Educ Book 2024; 44:e438654. [PMID: 38669609 DOI: 10.1200/edbk_438654] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Little more than 10 years ago, metastatic melanoma was considered to have one of the poorest cancer outcomes, associated with a median overall survival of 6-8 months. Cytotoxic chemotherapy offered modest response rates of 20%-30%, but no clear survival benefit. Patients were routinely enrolled in clinical trials as their first-line therapy in the search for effective novel therapeutics. Remarkable developments in molecular biology, cancer genomics, immunology, and drug discovery have dominated the early part of the 21st century, and nowhere have the benefits been better realized than in the transformation of outcomes for patients with metastatic melanoma: since 2011, 14 new agents have been approved that significantly increase survival, with long-term remissions and, possibly now, potential for cure. Even so, there is still much work to be done, given that most treated patients still die of their disease. Although most survival gains have so far been realized for cutaneous melanoma, improving treatment options for those 10% of patients with rarer, noncutaneous melanomas is a high priority. Key novel therapeutic approaches aimed at improving outcomes with potential for curing patients with melanoma are considered.
Collapse
Affiliation(s)
- Pui Ying Chan
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Pippa G Corrie
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
12
|
Yu N, Huang K, Li Y, Jiang Z, Liu S, Liu Y, Liu X, Chen Z, He R, Wei T. The utility of high-frequency 18 MHz ultrasonography for preoperative evaluation of acral melanoma thickness in Chinese patients. Front Oncol 2023; 13:1185389. [PMID: 37869100 PMCID: PMC10585136 DOI: 10.3389/fonc.2023.1185389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Background Despite the increasing use of preoperative ultrasound evaluation for melanoma, there is limited research on the use of this technique for Acral Melanoma (AM). Methods This retrospective study analyzed the electronic medical records of patients who underwent preoperative evaluation for cutaneous melanoma maximum thickness using an 18 MHz probe and histopathological examination between December 2017 and March 2021 at the Department of Dermatology in Xiangya Hospital, Central South University. Results A total of 105 patients were included in the study. The mean tumor thickness was 3.9 mm (s.d., 2.3), with 63% of the specimens showing ulceration and 44 patients showing lymph node metastasis. The results showed a good correlation between the high-frequency ultrasonography (HFUS) and histopathological thickness measurements, with a Spearman's correlation coefficient of 0.83 [(95% CI 0.73-0.90) (P < 0.001)]. The positive predictive value (PPV) of sonography in identifying tumor thickness was also found to be high. Conclusion Our study suggests that high-frequency 18 MHz ultrasonography is an effective tool for the preoperative evaluation of AM thickness. The HFUS measurements correlated well with the histopathological thickness measurements, making it a valuable and reliable method for clinicians to assess the thickness of melanoma lesions preoperatively.
Collapse
Affiliation(s)
- Nianzhou Yu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kai Huang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yixin Li
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zixi Jiang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siliang Liu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuancheng Liu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaowan Liu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zeyu Chen
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Renliang He
- Department of Dermatologic Surgery, Dermatology Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Tianhong Wei
- Department of Ultrasound, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Mori T, Namikawa K, Yamazaki N, Kiniwa Y, Yamasaki O, Yoshikawa S, Inozume T, Kato H, Nakai Y, Fukushima S, Takenouchi T, Maekawa T, Matsushita S, Otsuka A, Nomura M, Baba N, Isei T, Saito S, Fujimoto N, Tanaka R, Kaneko T, Kuwatsuka Y, Matsuya T, Nagase K, Onishi M, Onuma T, Nakamura Y. Efficacy of salvage therapies for advanced acral melanoma after anti-PD-1 monotherapy failure: a multicenter retrospective study of 108 Japanese patients. Front Med (Lausanne) 2023; 10:1229937. [PMID: 37636577 PMCID: PMC10448186 DOI: 10.3389/fmed.2023.1229937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Background Anti-programmed cell death protein 1 (PD-1) monotherapy is one of the standard systemic therapies for advanced melanoma; however, the efficacy of salvage systemic therapies after PD-1 monotherapy failure (PD-1 MF), particularly in acral melanoma (AM), the main clinical melanoma type in Japanese patients, is unclear. This study aimed to investigate the efficacy of salvage systemic therapies in Japanese patients with AM after PD-1 MF. Patients and methods The study included 108 patients with advanced AM (palm and sole, 72; nail apparatus, 36) who underwent salvage systemic therapy at 24 Japanese institutions. We mainly assessed the objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). Results Thirty-six (33%) patients received ipilimumab, 23 (21%) received nivolumab and ipilimumab (nivo/ipi), 10 (9%) received cytotoxic chemotherapy, 4 (4%) received BRAF and MEK inhibitors (BRAFi/MEKi), and the remaining 35 (32%) continued with PD-1 monotherapy after disease progression. The ORRs in the ipilimumab, nivo/ipi, cytotoxic chemotherapy, and BRAFi/MEKi groups were 8, 17, 0, and 100%, respectively. The nivo/ipi group showed the longest OS (median, 18.9 months); however, differences in ORR, PFS, and OS between the groups were insignificant. The OS in the nivo/ipi group was higher in the palm and sole groups than in the nail apparatus group (median: not reached vs. 8.7 months, p < 0.001). Cox multivariate analysis demonstrated that nail apparatus melanoma independently predicted unfavorable PFS and OS (p = 0.006 and 0.001). The total OS (from PD-1 monotherapy initiation to death/last follow-up) was insignificant between the groups. Conclusion Nivo/ipi was not more effective than cytotoxic chemotherapy and ipilimumab after PD-1 MF in patients with advanced AM. The prognosis after PD-1 MF would be poorer for nail apparatus melanoma than for palm and sole melanoma.
Collapse
Affiliation(s)
- Tatsuhiko Mori
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Kenjiro Namikawa
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Naoya Yamazaki
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yukiko Kiniwa
- Department of Dermatology, Shinshu University, Matsumoto, Japan
| | - Osamu Yamasaki
- Department of Dermatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | - Hiroshi Kato
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuo Nakai
- Department of Dermatology, Mie University, Mie, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuya Takenouchi
- Department of Dermatology, Niigata Cancer Center Hospital, Niigata, Japan
| | - Takeo Maekawa
- Department of Dermatology, Jichi Medical University, Tochigi, Japan
| | - Shigeto Matsushita
- Department of Dermato-Oncology/Dermatology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University, Kyoto, Japan
- Department of Dermatology, Kindai University Hospital, Osaka, Japan
| | - Motoo Nomura
- Department of Clinical Oncology, Kyoto University, Kyoto, Japan
| | - Natsuki Baba
- Department of Dermatology, University of Fukui, Fukui, Japan
| | - Taiki Isei
- Department of Dermatologic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Shintaro Saito
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Noriki Fujimoto
- Department of Dermatology, Shiga University of Medical Science, Otsu, Japan
| | - Ryo Tanaka
- Department of Dermatology, Kawasaki Medical School, Kurashiki, Japan
| | - Takahide Kaneko
- Department of Dermatology, Juntendo University Urayasu Hospital, Chiba, Japan
| | | | - Taisuke Matsuya
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan
| | - Kotaro Nagase
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Masazumi Onishi
- Department of Dermatology, Iwate Medical University, Iwate, Japan
| | - Takehiro Onuma
- Department of Dermatology, University of Yamanashi, Yamanashi, Japan
| | - Yasuhiro Nakamura
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama, Japan
| |
Collapse
|
14
|
Ionita I, Malita D, Dehelean C, Olteanu E, Marcovici I, Geamantan A, Chiriac S, Roman A, Radu D. Experimental Models for Rare Melanoma Research-The Niche That Needs to Be Addressed. Bioengineering (Basel) 2023; 10:673. [PMID: 37370604 DOI: 10.3390/bioengineering10060673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Melanoma, the tumor arising from the malignant transformation of pigment-producing cells-the melanocytes-represents one of the most severe cancer types. Despite their rarity compared to cutaneous melanoma, the extracutaneous subtypes such as uveal melanoma (UM), acral lentiginous melanoma (ALM), and mucosal melanoma (MM) stand out due to their increased aggressiveness and mortality rate, demanding continuous research to elucidate their specific pathological features and develop efficient therapies. Driven by the emerging progresses made in the preclinical modeling of melanoma, the current paper covers the most relevant in vitro, in vivo, and in ovo systems, providing a deeper understanding of these rare melanoma subtypes. However, the preclinical models for UM, ALM, and MM that were developed so far remain scarce, and none of them is able to completely simulate the complexity that is characteristic to these melanomas; thus, a continuous expansion of the existing library of experimental models is pivotal for driving advancements in this research field. An overview of the applicability of precision medicine in the management of rare melanoma subtypes is also provided.
Collapse
Affiliation(s)
- Ioana Ionita
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Daniel Malita
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Emilian Olteanu
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Center for Research and Innovation in Personalized Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Iasmina Marcovici
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Andreea Geamantan
- Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Sorin Chiriac
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Andrea Roman
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Daniela Radu
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|
15
|
Jęśkowiak-Kossakowska I, Jawień P, Krzyżak E, Mączyński M, Szafran R, Szeląg A, Janeczek M, Wiatrak B. Search for immunomodulatory compounds with antiproliferative activity against melanoma. Biomed Pharmacother 2023; 160:114374. [PMID: 36774726 DOI: 10.1016/j.biopha.2023.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Melanoma is a highly aggressive neoplasm with a high degree of malignancy and rapid acquisition of resistance by cancer cells. METHODS Biological studies of a series of isoxazole compounds with immunomodulatory properties were preceded by in silico analysis. The assay evaluated the viability of NHDF and A375 cell cultures after the administration of isoxazole compounds after a 24-hour incubation period in the MTT test. Analyzes of ROS and NO scavenging, P-glycoprotein activity, and properties were performed. The levels of Caspase 3 and Caspase 9 were measured using ELISA to assess which pathways induced apoptosis by the tested compounds. On the chip, the synergistic effect of doxorubicin and the most active compound from the MM9 series on cells of the A375 melanoma line was determined. RESULTS All tested N'-substituted derivatives of 5-amino-N,3-dimethyl-1,2-oxazole-4-carbohydrazide with immunomodulatory activity show multidirectional antitumor activity on A375 melanoma lines with an affinity for P-glycoprotein, induction of free radical formation and generation of DNA damage leading to the death of cancer cells, as well as formation of complexes with DNA Topoisomerase II. Most of the tested compounds show pro-apoptotic activity. The most active compound in the series induces apoptosis in three distinct pathways and acts synergistically with doxorubicin. CONCLUSIONS The most active compound with immunomodulatory properties showed multidirectional antitumor activity against cells of the A375 melanoma line and also had a synergistic pro-apoptotic effect with doxorubicin, which may result in a reduction of this cytostatic dose with increased effectiveness.
Collapse
Affiliation(s)
- Izabela Jęśkowiak-Kossakowska
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland.
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland.
| | - Edward Krzyżak
- Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland.
| | - Marcin Mączyński
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska Street, 50-556 Wroclaw, Poland.
| | - Roman Szafran
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, ul. Norwida 4/6, 50-373 Wroclaw, Poland.
| | - Adam Szeląg
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland.
| | - Maciej Janeczek
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland.
| |
Collapse
|
16
|
Conway J, Bellet JS, Rubin AI, Lipner SR. Adult and Pediatric Nail Unit Melanoma: Epidemiology, Diagnosis, and Treatment. Cells 2023; 12:cells12060964. [PMID: 36980308 PMCID: PMC10047828 DOI: 10.3390/cells12060964] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Nail unit melanoma (NUM) is an uncommon form of melanoma and is often diagnosed at later stages. Approximately two-thirds of NUMs are present clinically as longitudinal melanonychia, but longitudinal melanonychia has a broad differential diagnosis. Clinical examination and dermoscopy are valuable for identifying nail findings concerning malignancy, but a biopsy with histopathology is necessary to confirm a diagnosis of NUM. Surgical treatment options for NUM include en bloc excision, digit amputation, and Mohs micrographic surgery. Newer treatments for advanced NUM include targeted and immune systemic therapies. NUM in pediatric patients is extremely rare and diagnosis is challenging since both qualitative and quantitative parameters have only been studied in adults. There is currently no consensus on management in children; for less concerning melanonychia, some physicians recommend close follow-up. However, some dermatologists argue that the "wait and see" approach can cause delayed diagnosis. This article serves to enhance the familiarity of NUM by highlighting its etiology, clinical presentations, diagnosis, and treatment options in both adults and children.
Collapse
Affiliation(s)
- Jade Conway
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Jane S Bellet
- Department of Dermatology and Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Adam I Rubin
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shari R Lipner
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
17
|
Ito T, Hashimoto H, Kaku-Ito Y, Tanaka Y, Nakahara T. Nail Apparatus Melanoma: Current Management and Future Perspectives. J Clin Med 2023; 12:jcm12062203. [PMID: 36983205 PMCID: PMC10057171 DOI: 10.3390/jcm12062203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Nail apparatus melanoma (NAM) is a rare type of cutaneous melanoma that belongs to the acral melanoma subtype. NAM is managed principally in accordance with the general treatment for cutaneous melanoma, but there is scarce evidence in support of this in the literature. Acral melanoma is genetically different from non-acral cutaneous melanoma, while recently accumulated data suggest that NAM also has a different genetic background from acral melanoma. In this review, we focus on recent advances in the management of NAM. Localized NAM should be surgically removed; amputation of the digit and digit-preserving surgery have been reported. Sentinel lymph node biopsy can be considered for invasive NAM for the purpose of accurate staging. However, it is yet to be clarified whether patients with metastatic sentinel lymph nodes can be safely spared completion lymph node dissection. Similar to cutaneous melanoma, immune checkpoint inhibitors and BRAF/MEK inhibitors are used as the first-line treatment for metastatic NAM, but data on the efficacy of these therapies remain scarce. The therapeutic effects of immune checkpoint inhibitors could be lower for NAM than for cutaneous melanoma. This review highlights the urgent need to accumulate data to better define the optimal management of this rare melanoma.
Collapse
Affiliation(s)
- Takamichi Ito
- Correspondence: ; Tel.: +81-92-642-5585; Fax: +81-92-642-5600
| | | | | | | | | |
Collapse
|
18
|
Sun Y, Lei S, Luo X, Jiang C, Li Z. The value of cuproptosis-related differential genes in guiding prognosis and immune status in patients with skin cutaneous melanoma. Front Pharmacol 2023; 14:1129544. [PMID: 37138850 PMCID: PMC10149708 DOI: 10.3389/fphar.2023.1129544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Background: Skin cutaneous melanoma (SKCM) is one of the most common cutaneous malignancies, which incidence is increasing. Cuproptosis is a new type of programming cell death recently reported, which may affect the progression of SKCM. Method: The mRNA expression data of melanoma were obtained from the Gene Expression Omnibus and the Cancer Genome Atlas databases. We constructed a prognostic model according to the cuproptosis-related differential genes in SKCM. Finally, real-time quantitative PCR was performed to verify the expression of cuproptosis-related differential genes in patients with different stages of cutaneous melanoma. Results: We detected 767 cuproptosis-related differential genes based on 19 cuproptosis-related genes, and screened out 7 differential genes to construct a prognostic model, which including three high-risk differential genes (SNAI2, RAP1GAP, BCHE), and four low-risk differential genes (JSRP1, HAPLN3, HHEX, ERAP2). Kaplan-Meier analysis indicated that SKCM patients with low-risk differential genes signals had better prognosis. The Encyclopedia of Genomes results manifested that cuproptosis-related differential genes are not only involved in T cell receptor signaling channel, natural killer cell mediated cytotoxicity, but also chemokine signaling pathway and B cell receptor signaling pathway. In our risk scoring model, the receiver operating characteristic (ROC) values of the three-time nodes are 0.669 (1-year), 0.669 (3-year) and 0.685 (5-year), respectively. Moreover, the tumor burden mutational and immunology function, cell stemness characteristics and drug sensitivity have significant differences between low-risk group and high-risk group. The mRNA level of SNAI2, RAP1GAP and BCHE in stage Ⅲ+Ⅳ SKCM patients was significantly higher than that in stage Ⅰ+Ⅱ patients, while the level of JSRP1, HAPLN3, HHEX and ERAP2 in stage Ⅰ+Ⅱ SKCM patients was more remarkable higher than that in stage Ⅲ+Ⅳ SKCM patients. Conclusion: In summary, we suggest that cuproptosis can not only regulate the tumor immune microenvironment but also affect the prognosis of SKCM patients, and may offer a basic theory for SKCM patients survival studies and clinical decision-making with potentially therapeutic drugs.
Collapse
|