1
|
Li J, Zou C, Liu Y. Amelioration of Ovalbumin-Induced Food Allergy in Mice by Targeted Rectal and Colonic Delivery of Cyanidin-3-O-Glucoside. Foods 2022; 11:foods11111542. [PMID: 35681291 PMCID: PMC9180400 DOI: 10.3390/foods11111542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 02/04/2023] Open
Abstract
Targeted rectal and colonic delivery is an effective strategy to exploit the biological functions of polyphenols. This work investigated the anti-food allergy (FA) activity of cyanidin-3-O-glucoside (C3G) delivered by enteric sodium alginate in vivo. The results showed that through targeted rectal and colonic delivery, the C3G showed better results in ameliorating clinical allergic symptoms, diarrhea, and serological indicators including ovalbumin-specific IgE, histamine, and mast cell protease-1. The C3G was more efficient in enhancing the intestinal epithelial barrier by up-regulating the tight junction protein expression and promoting secretory IgA and β-defensin secretion. The improved bioactivity in regulating T helper (Th)1/Th2 immune balance in the intestinal mucosa was also observed. Compared with the intestinal microbiota structure of the model group, targeted rectal and colonic delivery of C3G was able to bring the abundance of Bacteroidota and Firmicutes close to the levels found in normal mice. Furthermore, there was an evident increase in beneficial bacteria in the intestinal flora, such as Lactobacillus and Odoribacter, and a decrease in pathogenic bacteria like Helicobacter and Turicibacter. Therefore, the anti-FA activity of C3G could be increased via targeted rectal and colonic delivery, while the mechanism might be attributed to the regulation of intestinal microecological homeostasis.
Collapse
Affiliation(s)
- Jie Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China;
| | - Chao Zou
- Gaoan Public Inspection and Testing Center, Gao’an 330800, China;
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China;
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
- Correspondence:
| |
Collapse
|
2
|
Miyachi M. Summary of the 9th Life Science Symposium: integration of nutrition and exercise sciences. Nutr Rev 2020; 78:40-45. [PMID: 33259611 DOI: 10.1093/nutrit/nuaa083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Life Science Symposium held by the Nutrition Research Committee of the International Life Sciences Institute (ILSI) Japan in 2018, "Fusion of Nutrition and Exercise Sciences Leading to Extension of Healthy Life Expectancy," covered current topics in the science of nutrition and exercise to address extending healthy life expectancy. Presentation topics included (1) lifestyle and gut microbiota; (2) how to use lipids in sports nutrition; (3) the effect and molecular mechanism of improvement of arteriosclerosis by exercise and nutrition; (4) physical activity and nutrition that support brain function; (5) skeletal muscles and food ingredients that support healthy longevity; (6) measures against sarcopenia by exercise and nutrient intake; (7) physical activity/exercise for disease prevention; (8) nutritional epidemiology research for the Japanese population; (9) new developments in health science in viewed from nutrition and intestinal flora; (10) why do Asians develop nonobese metabolic disease?; and (11) social implementation of the health promotion program by ILSI Japan. The speakers emphasized the promotion of research on exercise and nutrition interactions and encouraged social implementation of the research results in public and private sectors.
Collapse
Affiliation(s)
- Motohiko Miyachi
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| |
Collapse
|
3
|
Wang X, Wang Y, Xu J, Xue C. Sphingolipids in food and their critical roles in human health. Crit Rev Food Sci Nutr 2020; 61:462-491. [PMID: 32208869 DOI: 10.1080/10408398.2020.1736510] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sphingolipids (SLs) are ubiquitous structural components of cell membranes and are essential for cell functions under physiological conditions or during disease progression. Abundant evidence supports that SLs and their metabolites, including ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine (So), sphingosine-1-phosphate (S1P), are signaling molecules that regulate a diverse range of cellular processes and human health. However, there are limited reviews on the emerging roles of exogenous dietary SLs in human health. In this review, we discuss the ubiquitous presence of dietary SLs, highlighting their structures and contents in foodstuffs, particularly in sea foods. The digestion and metabolism of dietary SLs is also discussed. Focus is given to the roles of SLs in both the etiology and prevention of diseases, including bacterial infection, cancers, neurogenesis and neurodegenerative diseases, skin integrity, and metabolic syndrome (MetS). We propose that dietary SLs represent a "functional" constituent as emerging strategies for improving human health. Gaps in research that could be of future interest are also discussed.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
4
|
Kunisawa J, Kiyono H. Sphingolipids and Epoxidized Lipid Metabolites in the Control of Gut Immunosurveillance and Allergy. Front Nutr 2016; 3:3. [PMID: 26858949 PMCID: PMC4728802 DOI: 10.3389/fnut.2016.00003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022] Open
Abstract
The intestinal immune system ingeniously balances the distinct responses of elimination and tolerance of non-self-substances for the creation and maintenance of homeostatic environments. Accumulating evidence has recently shown that various lipids, including dietary one, are involved in the regulation of intestinal immunity and are associated with biophylaxis and immune disorders. Recent advances in the lipidomics allow the identification of novel pathways of lipid metabolism and lipid metabolites for the control of intestinal immunity. In this paper, we describe the effects and functions of lipids, especially sphingolipids and new lipid metabolites originated from dietary oil on the immunomodulation and on the development and pathogenesis of allergic diseases in the intestine.
Collapse
Affiliation(s)
- Jun Kunisawa
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Medicine, Osaka University, Suita, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan; Graduate School of Dentistry, Osaka University, Suita, Japan; Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Mucosal Immunology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Shen N, Clemente JC. Engineering the Microbiome: a Novel Approach to Immunotherapy for Allergic and Immune Diseases. Curr Allergy Asthma Rep 2015; 15:39. [PMID: 26143390 DOI: 10.1007/s11882-015-0538-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The incidence of immune disorders is growing parallel with practices associated with westernization, such as dietary changes, increased use of antibiotics, or elevated rates of Cesarean section. These practices can significantly impact the gut microbiota, the collection of bacteria residing in the human gastrointestinal tract, and subsequently disrupt the delicate balance existing between commensal flora and host immune responses. Restoring this balance by modifying the microbiota has thus emerged as a promising therapeutic approach. Here, we discuss the interaction between gut commensals and immunity, along with the potential of different interventions on the microbiota as treatment for inflammatory and allergic diseases.
Collapse
Affiliation(s)
- Nan Shen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | |
Collapse
|
6
|
Kamemura N, Takashima M, Morita H, Matsumoto K, Saito H, Kido H. Measurement of allergen-specific secretory IgA in stool of neonates, infants and toddlers by protection against degradation of immunoglobulins and allergens. THE JOURNAL OF MEDICAL INVESTIGATION 2015; 62:137-44. [DOI: 10.2152/jmi.62.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Norio Kamemura
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University
| | - Miwa Takashima
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University
| | - Hideaki Morita
- Department of Allergy and Immunology, National Research Institute for Child Health and Development
| | - Kenji Matsumoto
- Department of Allergy and Immunology, National Research Institute for Child Health and Development
| | - Hirohisa Saito
- Department of Allergy and Immunology, National Research Institute for Child Health and Development
| | - Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University
| |
Collapse
|
7
|
Nahrungsmittelallergie und atopische Dermatitis. Monatsschr Kinderheilkd 2014. [DOI: 10.1007/s00112-014-3116-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Abstract
Horses develop many skin and respiratory disorders that have been attributed to allergy. These disorders include pruritic skin diseases, recurrent urticaria, allergic rhinoconjunctivitis, and reactive airway disease. Allergen-specific IgE has been detected in these horses, and allergen-specific immunotherapy is used to ameliorate clinical signs. The best understood atopic disease in horses is insect hypersensitivity, but the goal of effective treatment with allergen-specific immunotherapy remains elusive. In this review, updates in pathogenesis of allergic states and a brief mention of the new data on what is known in humans and dogs and how that relates to equine allergic disorders are discussed.
Collapse
Affiliation(s)
- Valerie A Fadok
- Dermatology Department, North Houston Veterinary Specialists, 1646 Spring Cypress Road #100, Spring, TX 77388, USA.
| |
Collapse
|
9
|
Wichmann K, Heratizadeh A, Werfel T. Nahrungsmittelallergie bei atopischer Dermatitis. Hautarzt 2012; 63:315-24. [DOI: 10.1007/s00105-011-2263-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Gigante G, Tortora A, Ianiro G, Ojetti V, Purchiaroni F, Campanale M, Cesario V, Scarpellini E, Gasbarrini A. Role of gut microbiota in food tolerance and allergies. Dig Dis 2011; 29:540-9. [PMID: 22179209 DOI: 10.1159/000332977] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alterations of commensal flora may cause various gastrointestinal and extraintestinal diseases, including food intolerances and food allergies. According to the 'microflora hypothesis', alterations in the composition of gut microbiota in industrialized countries have disturbed the mechanisms of mucosal immune tolerance. Over the past few years several studies have looked for a role for probiotics in the treatment of food allergies with promising results.
Collapse
Affiliation(s)
- Giovanni Gigante
- Internal Medicine Department, Catholic University of Sacred Heart, Gemelli Hospital, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Food allergy predominantly affects children rather than adults with atopic dermatitis (AD). Early food sensitization has been found to be significantly associated with AD. Three different patterns of clinical reactions to food allergens in AD patients have been identified: 1) immediate-type symptoms, 2) isolated eczematous late-type reactions, and 3) combined reactions. Whereas in children, allergens from cow's milk, hen's egg, soy, wheat, fish, peanut, or tree nuts are primarily responsible for allergic reactions, birch pollen-related food allergens seem to play a major role in adolescent and adults with AD in Central and Northern Europe. Defects in the epidermal barrier function seem to facilitate the development of sensitization to allergens following epicutaneous exposure. The relevance of defects in the gut barrier as well as genetic characteristics associated with an increased risk of food allergy remain to be further investigated. Many studies focus on sufficient strategies of prevention, which actually include breastfeeding or feeding with hydrolyzed formula during the first 4 months of life.
Collapse
|
12
|
Moon Y. Mucosal injuries due to ribosome-inactivating stress and the compensatory responses of the intestinal epithelial barrier. Toxins (Basel) 2011; 3:1263-77. [PMID: 22069695 PMCID: PMC3210458 DOI: 10.3390/toxins3101263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/10/2011] [Accepted: 10/12/2011] [Indexed: 12/14/2022] Open
Abstract
Ribosome-inactivating (ribotoxic) xenobiotics are capable of using cleavage and modification to damage 28S ribosomal RNA, which leads to translational arrest. The blockage of global protein synthesis predisposes rapidly dividing tissues, including gut epithelia, to damage from various pathogenic processes, including epithelial inflammation and carcinogenesis. In particular, mucosal exposure to ribotoxic stress triggers integrated processes that are important for barrier regulation and re-constitution to maintain gut homeostasis. In the present study, various experimental models of the mucosal barrier were evaluated for their response to acute and chronic exposure to ribotoxic agents. Specifically, this review focuses on the regulation of epithelial junctions, epithelial transporting systems, epithelial cytotoxicity, and compensatory responses to mucosal insults. The primary aim is to characterize the mechanisms associated with the intestinal epithelial responses induced by ribotoxic stress and to discuss the implications of ribotoxic stressors as chemical modulators of mucosa-associated diseases such as ulcerative colitis and epithelial cancers.
Collapse
Affiliation(s)
- Yuseok Moon
- Laboratory of Systems Mucosal Biomodulation, Department of Microbiology and Immunology, Medical Research Institute, Pusan National University School of Medicine, Yangsan 626-870, Korea.
| |
Collapse
|