1
|
Liu Y, Li H, Zhao X. Sinomenine attenuates lipopolysaccharide-induced inflammation and apoptosis of WI-38 cells by reducing glutathione S-transferase M1 expression. Chem Biol Drug Des 2023; 102:434-443. [PMID: 36303295 DOI: 10.1111/cbdd.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/05/2022] [Accepted: 10/22/2022] [Indexed: 12/01/2022]
Abstract
Pediatric pneumonia is an infectious lung disease with high morbidity and mortality. Sinomenine, an alkaloid extracted from Caulis Sinomenii, exerts anti-inflammatory and anti-apoptotic activities. Lipopolysaccharide (LPS) is widely used for the establishment of an inflammatory model. This research aimed to explore the influences of sinomenine on LPS-caused inflammatory injuries in fetal lung WI-38 cells. WI-38 cells were treated with LPS to establish a cellular model of pediatric pneumonia. Cell viability was evaluated using CCK-8 assay. Apoptosis was evaluated using TUNEL staining and caspase-3 activity assays. Inflammatory cytokines and NF-κB p65 phosphorylation levels were measured by Enzyme-Linked Immunosorbent Assay. Glutathione S-transferase M1 (GSTM1) expression was detected by western blotting. Results showed that LPS reduced WI-38 cell viability, and sinomenine protected cells against LPS-induced viability reduction. Sinomenine concentration-dependently attenuated LPS-induced inflammation by reducing TNF-α, IL-1β and MCP-1, and increasing IL-10 levels. Sinomenine mitigated LPS-induced apoptosis. GSTM1 was screened by matching the targets of sinomenine and pediatric pneumonia. GSTM1 was upregulated in LPS-treated WI-38 cells, and this effect was attenuated after sinomenine treatment. GSTM1 was upstream of NF-κB pathway. Overexpression of GSTM1 reversed the suppressive functions of sinomenine on LPS-stimulated inflammation and apoptosis. Overall, sinomenine attenuates inflammation and apoptosis in WI-38 cells stimulated by LPS via inhibiting GSTM1 expression, indicating the therapeutic potential of sinomenine in pediatric pneumonia.
Collapse
Affiliation(s)
- Yan Liu
- Department of Paediatrics, The First Hospital of Yulin, Yulin, China
| | - Huilin Li
- Department of Nuclear Medicine, The First Hospital of Yulin, Yulin, China
| | - Xiao Zhao
- Outpatient Department of Pediatrics, Qingdao Municipal Hospital (Group), Qingdao, China
| |
Collapse
|
2
|
Bouma F, Nyberg F, Olin AC, Carlsen HK. Genetic susceptibility to airway inflammation and exposure to short-term outdoor air pollution. Environ Health 2023; 22:50. [PMID: 37386634 DOI: 10.1186/s12940-023-00996-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 06/02/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Air pollution is a large environmental health hazard whose exposure and health effects are unequally distributed among individuals. This is, at least in part, due to gene-environment interactions, but few studies exist. Thus, the current study aimed to explore genetic susceptibility to airway inflammation from short-term air pollution exposure through mechanisms of gene-environment interaction involving the SFTPA, GST and NOS genes. METHODS Five thousand seven hundred two adults were included. The outcome measure was fraction of exhaled nitric oxide (FeNO), at 50 and 270 ml/s. Exposures were ozone (O3), particulate matter < 10 µm (PM10), and nitrogen dioxide (NO2) 3, 24, or 120-h prior to FeNO measurement. In the SFTPA, GST and NOS genes, 24 single nucleotide polymorphisms (SNPs) were analyzed for interaction effects. The data were analyzed using quantile regression in both single-and multipollutant models. RESULTS Significant interactions between SNPs and air pollution were found for six SNPs (p < 0.05): rs4253527 (SFTPA1) with O3 and NOx, rs2266637 (GSTT1) with NO2, rs4795051 (NOS2) with PM10, NO2 and NOx, rs4796017 (NOS2) with PM10, rs2248814 (NOS2) with PM10 and rs7830 (NOS3) with NO2. The marginal effects on FeNO for three of these SNPs were significant (per increase of 10 µg/m3):rs4253527 (SFTPA1) with O3 (β: 0.155, 95%CI: 0.013-0.297), rs4795051 (NOS2) with PM10 (β: 0.073, 95%CI: 0.00-0.147 (single pollutant), β: 0.081, 95%CI: 0.004-0.159 (multipollutant)) and NO2 (β: -0.084, 95%CI: -0.147; -0.020 (3 h), β: -0.188, 95%CI: -0.359; -0.018 (120 h)) and rs4796017 (NOS2) with PM10 (β: 0.396, 95%CI: 0.003-0.790). CONCLUSIONS Increased inflammatory response from air pollution exposure was observed among subjects with polymorphisms in SFTPA1, GSTT1, and NOS genes, where O3 interacted with SFTPA1 and PM10 and NO2/NOx with the GSTT1 and NOS genes. This provides a basis for the further exploration of biological mechanisms as well as the identification of individuals susceptible to the effects of outdoor air pollution.
Collapse
Affiliation(s)
- Femke Bouma
- Department of Occupational and Environmental Health, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 16A, BOX 414, 40530, Gothenburg, Sweden
| | - Fredrik Nyberg
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg University, Gothenburg, Sweden
| | - Anna-Carin Olin
- Department of Occupational and Environmental Health, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 16A, BOX 414, 40530, Gothenburg, Sweden
| | - Hanne Krage Carlsen
- Department of Occupational and Environmental Health, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 16A, BOX 414, 40530, Gothenburg, Sweden.
| |
Collapse
|
3
|
Auto repair workers exposed to PM2.5 particulate matter in Barranquilla, Colombia: telomere length and hematological parameters. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 887:503597. [PMID: 37003649 DOI: 10.1016/j.mrgentox.2023.503597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Exposure to 2.5 µm particulate matter (PM2.5) in automotive repair shops is associated with risks to health. We evaluated the effects of occupational exposure to PM2.5 among auto repair-shop workers. Blood and urine samples were collected from 110 volunteers from Barranquilla, Colombia: 55 active workers and 55 controls. PM2.5 concentrations were assessed at each of the sampling sites and chemical content was analyzed by SEM-EDS electron microscopy. The biological samples obtained were peripheral blood (hematological profiling, DNA extraction) and urine (malondialdehyde concentration). Telomere length was assessed by qPCR and polymorphisms in the glutathione transferase genes GSTT1 and GSTM1 by PCR-RFLP, with confirmation by allelic exclusion. White blood cell (WBC), lymphocyte (LYM%) and platelet (PLT) counts and the malondialdehyde concentration were higher (4.10 ± 0.93) in the exposed group compared to the control group (1.56 ± 0.96). TL was shorter (5071 ± 891) in the exposed individuals compared to the control group (6271 ± 805). White blood cell (WBC) and platelet counts were positively associated with exposure. Age and TBARS were correlated with TL in exposed individuals. The GSTT1 gene alleles were not in Hardy-Weinberg (H-W) equilibrium. The GSTM1 gene alleles were in H-W equilibrium and allelic exclusion analysis confirmed the presence of heterozygous GSTM1 genotypes. SEM-EDS analysis showed the presence of potentially toxic elements, including Mg, Al, Fe, Mn, Rh, Zn, and Cu. Auto repair shop workers showed effects that may be associated with exposure to mixtures of pollutants present in PM2.5. The GSTM1 and GSTT1 genes had independent modulatory effects.
Collapse
|
4
|
Zeng X, Tian G, Zhu J, Yang F, Zhang R, Li H, An Z, Li J, Song J, Jiang J, Liu D, Wu W. Air pollution associated acute respiratory inflammation and modification by GSTM1 and GSTT1 gene polymorphisms: a panel study of healthy undergraduates. Environ Health 2023; 22:14. [PMID: 36703205 PMCID: PMC9881318 DOI: 10.1186/s12940-022-00954-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Epidemiological evidence has linked air pollution with adverse respiratory outcomes, but the mechanisms underlying susceptibility to air pollution remain unclear. This study aimed to investigate the role of glutathione S-transferase (GST) polymorphism in the association between air pollution and lung function levels. A total of 75 healthy young volunteers aged 18-20 years old were recruited for six follow-up visits and examinations. Spirometry was conducted to obtain lung function parameters such as forced vital capacity (FVC), and forced expiratory volume in 1 s (FEV1). Nasal fluid concentrations of interleukin-6 (IL-6), interleukin-8 (IL-8), tumor necrosis factor-α (TNF-α), and 8-epi-prostaglandin F2α (8-epi-PGF2a) were measured using ELISA kits. Linear mixed-effect models were used to evaluate the association of air pollutants with respiratory outcomes. Additionally, polymorphisms of glutathione S-transferase mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1) were estimated to explore its role in the association between air pollutants and lung function. We found that short-term exposure to atmospheric particulates such as PM2.5 and PM10 can cause an increase in nasal biomarkers of inflammation, oxidative stress, and lung function, while air gaseous pollutant exposure is linked with decreased lung function, except for CO. Stratification analyses showed that an increase in nasal inflammatory cytokines caused by exposure to atmospheric particulates is more obvious in subjects with GSTM1-sufficient (GSTM1+) than GSTM1-null (GSTM1-), while elevated lung function levels due to air particles are more significant in subjects with the genotype of GSTM1- when compared to GSTM1+. As for air gaseous pollutants, decreased lung function levels caused by O3, SO2, and NO2 exposure is more manifest in subjects with the genotype of GSTM1- compared to GSTM1+. Taken together, short-term exposure to air pollutants is associated with alterations in nasal biomarkers and lung function levels in young healthy adults, and susceptible genotypes play an important mediation role in the association between exposure to air pollutants and inflammation, oxidative stress, and lung function levels.
Collapse
Affiliation(s)
- Xiang Zeng
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
- School of Public Health, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang Province, China
| | - Ge Tian
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Jingfang Zhu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Fuyun Yang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Rui Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Juan Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China
| | - Dongling Liu
- School of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310053, Zhejiang Province, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan, 453003, China.
| |
Collapse
|
5
|
Syrkasheva A, Frankevich V, Kindysheva S, Starodubtseva N, Donnikov A, Dolgushina N. The Effect of Bisphenol A on the IVF Outcomes Depending on the Polymorphism of the Detoxification System Genes. J Pers Med 2021; 11:jpm11111091. [PMID: 34834443 PMCID: PMC8624790 DOI: 10.3390/jpm11111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/03/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
The aim of the study was to analyze the relationship between the level of bisphenol A (BPA) in the blood and follicular fluid, the polymorphism of the detoxification system genes, and the outcomes of IVF cycles. The data of 300 infertile patients with fresh IVF-ET cycles were analyzed. The level of BPA in the blood and follicular fluid was determined by HPLC-MRM-MS/MS. Determination of genotypes of the detoxification system genes was carried out by the real-time PCR. The threshold level for determining BPA was 0.1 ng/mL. BPA was detected in 92.3% (277/300) blood and in 16.8% (49/292) follicular fluid (FF) samples. There was no correlation between BPA level in the blood and FF. In patients with the absence of the A allele of the SULT1A1 gene, BPA was detected in FF significantly more often (22.6% vs. 13.5%, p = 0.0341). There was an association (not statistically significant) between the level of BPA in the blood and the presence of the G allele of the GSTP1 gene (rs1695) and the C allele in the GSTP1 gene (rs1138272). Our data suggests the role of detoxification system genes in the metabolism of BPA in the human body. The influence of BPA and detoxification system genes on the IVF outcomes requires further research.
Collapse
Affiliation(s)
- Anastasiya Syrkasheva
- V.I. Kulakov National Medical Research Center for Obstetrics, ART Department, Gynecology and Perinatology Ministry of Healthcare of Russian Federation, 4 Oparin Str., 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-(926)363-17-20
| | - Vladimir Frankevich
- V.I. Kulakov National Medical Research Center for Obstetrics, Department of Systems Biology in Reproduction, Gynecology and Perinatology Ministry of Healthcare of Russian Federation, 4 Oparin Str., 117997 Moscow, Russia; (V.F.); (S.K.)
| | - Svetlana Kindysheva
- V.I. Kulakov National Medical Research Center for Obstetrics, Department of Systems Biology in Reproduction, Gynecology and Perinatology Ministry of Healthcare of Russian Federation, 4 Oparin Str., 117997 Moscow, Russia; (V.F.); (S.K.)
| | - Nataliia Starodubtseva
- V.I. Kulakov National Medical Research Center for Obstetrics, Laboratory of Proteomics of Human Reproduction, Gynecology and Perinatology Ministry of Healthcare of Russian Federation, 4 Oparin Str., 117997 Moscow, Russia;
| | - Andrey Donnikov
- V.I. Kulakov National Medical Research Center for Obstetrics, Department of Molecular Genetic Methods, Gynecology and Perinatology Ministry of Healthcare of Russian Federation, 4 Oparin Str., 117997 Moscow, Russia;
| | - Nataliya Dolgushina
- V.I. Kulakov National Medical Research Center for Obstetrics, R&D Department, Gynecology and Perinatology Ministry of Healthcare of Russian Federation, 4 Oparin Str., 117997 Moscow, Russia;
| |
Collapse
|
6
|
Sun B, Song J, Wang Y, Jiang J, An Z, Li J, Zhang Y, Wang G, Li H, Alexis NE, Jaspers I, Wu W. Associations of short-term PM 2.5 exposures with nasal oxidative stress, inflammation and lung function impairment and modification by GSTT1-null genotype: A panel study of the retired adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117215. [PMID: 33932759 DOI: 10.1016/j.envpol.2021.117215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
PM2.5 (particulate matter ≤2.5 μm in aerodynamic diameter) is a major urban air pollutant worldwide. Its effects on the respiratory system of the susceptible population have been less characterized. This study aimed to estimate the association of short-term PM2.5 exposure with respiratory outcomes of the retired adults, and to examine whether these associations were stronger among the subjects with GSTT-null genotype. 32 healthy subjects (55-77 years) were recruited for five follow-up examinations. Ambient concentrations of PM2.5 were monitored consecutively for 7 days prior to physical examination. Pulmonary outcomes including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), peak expiratory flow (PEF), and fractional exhaled nitric oxide (FeNO), and nasal fluid concentrations of 8-epi-prostaglandin F2 alpha (8-epi-PGF2α), tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8) and IL-1β were measured. A linear mixed-effect model was introduced to evaluate the associations of PM2.5 concentrations with respiratory outcomes. Additionally, GSTT1 genotype-based stratification was performed to characterize modification on PM2.5-related respiratory outcomes. We found that a 10 μg/m3 increase in PM2.5 was associated with decreases of 0.52 L (95% confidence interval [CI]: -1.04, -0.002), 0.64 L (95% CI: -1.13, -0.16), 0.1 (95% CI: -0.23, 0.04) and 2.87 L/s (95% CI: -5.09, -0.64) in FVC, FEV1, FEV1/FVC ratio and PEF at lag 2, respectively. Meanwhile, marked increases of 80.82% (95% CI: 5.13%, 156.50%) in IL-8, 77.14% (95% CI: 1.88%, 152.40%) in IL-1β and 67.87% (95% CI: 14.85%, 120.88%) in 8-epi-PGF2α were observed as PM2.5 concentration increased by 10 μg/m3 at lag 2. Notably, PM2.5-associated decreases in FVC and PEF and increase in FeNO were stronger among the subjects with GSTT1-null genotype. In summary, short-term exposure to PM2.5 is associated with nasal inflammation, oxidative stress and lung function reduction in the retired subjects. Lung function reduction and inflammation are stronger among the subjects with GSTT1-null genotype.
Collapse
Affiliation(s)
- Beibei Sun
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Ya Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Jing Jiang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Yange Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Gui Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Huijun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, NC, 27599, United States
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina at Chapel Hill, NC, 27599, United States
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, China.
| |
Collapse
|
7
|
Abbas M, Verma S, Verma S, Siddiqui S, Khan FH, Raza ST, Siddiqi Z, Eba A, Mahdi F. Association of GSTM1 and GSTT1 gene polymorphisms with COVID-19 susceptibility and its outcome. J Med Virol 2021; 93:5446-5451. [PMID: 33990973 PMCID: PMC8242761 DOI: 10.1002/jmv.27076] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 01/02/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has become a global health issue and develops into a broad range of illnesses from asymptomatic to fatal respiratory diseases. SARS-CoV-2 infection is associated with oxidative stress that triggers cytokine production, inflammation, and other pathophysiological processes. Glutathione-S-transferase (GST) is an important enzyme that catalyzes the conjugation of glutathione (GSH) with electrophiles to protect the cell from oxidative damage and participates in the antioxidant defense mechanism in the lungs. Thus, in this study, we investigated the role of GSTM1 and GSTT1 gene polymorphism with COVID-19 susceptibility, as well as its outcome. The study included 269 RT-PCR confirmed COVID-19 patients with mild (n = 149) and severe (n = 120) conditions. All subjects were genotyped for GSTM1 and GSTT1 by multiplex polymerase chain reaction (mPCR) followed by statistical analysis. The frequency of GSTM1-/- , GSTT1-/- and GSTM1-/- /GSTT1-/- was higher in severe COVID-19 patients as compared to mild patients but we did not observe a significant association. In the Cox hazard model, death was significantly 2.28-fold higher in patients with the GSTT1-/- genotype (p = 0.047). In combination, patients having GSTM1+/+ and GSTT1-/- genotypes showed a poor survival rate (p = 0.02). Our results suggested that COVID-19 patients with the GSTT1-/- genotype showed higher mortality.
Collapse
Affiliation(s)
- Mohammad Abbas
- Department of Personalized and Molecular MedicineEra UniversityLucknowUttar PradeshIndia
- Department of MicrobiologyEra UniversityLucknowUttar PradeshIndia
| | - Sushma Verma
- Department of Personalized and Molecular MedicineEra UniversityLucknowUttar PradeshIndia
| | - Shrikant Verma
- Department of Personalized and Molecular MedicineEra UniversityLucknowUttar PradeshIndia
| | - Sahabjada Siddiqui
- Department of Biochemistry, Eras Lucknow Medical College and HospitalEra UniversityLucknowUttar PradeshIndia
| | - Faizan H. Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of MedicineNational University of Ireland GalwayGalwayIreland
| | - Syed T. Raza
- Department of Biochemistry, Eras Lucknow Medical College and HospitalEra UniversityLucknowUttar PradeshIndia
| | - Zeba Siddiqi
- Department of Medicine, Eras Lucknow Medical College and HospitalEra UniversityLucknowUttar PradeshIndia
| | - Ale Eba
- Department of Biochemistry, Eras Lucknow Medical College and HospitalEra UniversityLucknowUttar PradeshIndia
| | - Farzana Mahdi
- Department of Personalized and Molecular MedicineEra UniversityLucknowUttar PradeshIndia
| |
Collapse
|
8
|
Dai X, Bui DS, Lodge C. Glutathione S-Transferase Gene Associations and Gene-Environment Interactions for Asthma. Curr Allergy Asthma Rep 2021; 21:31. [PMID: 33970355 DOI: 10.1007/s11882-021-01005-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW Asthma is one of the most common chronic inflammatory airway diseases. Airway oxidative stress is defined as an imbalance between oxidative and antioxidative processes in the airways. There is evidence that chronic damage caused by oxidative stress may be involved in asthmatic inflammation and reduced lung function. Given their biological antioxidant function, the antioxidant genes in the glutathione S-transferase (GST) family are believed to be associated with development and progression of asthma. This review aims to summarize evidence on the relationship between GST gene polymorphisms and asthma and interactions with environmental exposures. RECENT FINDINGS The current evidence on the association between GST genes and asthma is still weak or inconsistent. Failure to account for environmental exposures may explain the lack of consistency. It is highly likely that environmental exposures interact with GST genes involved in the antioxidant pathway. According to current knowledge, carriers of GSTM1(rs366631)/T1(rs17856199) null genotypes and GSTP1 Val105 (rs1695) genotypes are more susceptible to environmental oxidative exposures and have a higher risk of asthma. Some doubt remains regarding the presence or absence of interactions with different environmental exposures in different study scenarios. The GST-environment interaction may depend on exposure type, asthma phenotype or endotype, ethnics, and other complex gene-gene interaction. Future studies could be improved by defining precise asthma endotypes, involving multiple gene-gene interactions, and increasing sample size and power. Although there is evidence for an interaction between GST genes, and environmental exposures in relation to asthma, results are not concordant. Further investigations are needed to explore the reasons behind the inconsistency.
Collapse
Affiliation(s)
- Xin Dai
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3 207 Bouverie Street, Parkville, VIC, 3010, Australia
| | - Dinh S Bui
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3 207 Bouverie Street, Parkville, VIC, 3010, Australia
| | - Caroline Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3 207 Bouverie Street, Parkville, VIC, 3010, Australia.
| |
Collapse
|
9
|
Pagnotta PA, Melito VA, Lavandera JV, Parera VE, Rossetti MV, Zuccoli JR, Buzaleh AM. Role of ABCB1 and glutathione S-transferase gene variants in the association of porphyria cutanea tarda and human immunodeficiency virus infection. Biomed Rep 2020; 14:22. [PMID: 33335728 PMCID: PMC7739863 DOI: 10.3892/br.2020.1398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
In Argentina, porphyria cutanea tarda (PCT) is strongly associated with infection with human immunodeficiency virus (HIV); however, whether the onset of this disease is associated with HIV infection and/or the antiretroviral therapy has not been determined. The ABCB1 gene variants c.1236C>T, c.2677G>T/A and c.3435C>T affect drug efflux. The GSTT1 null, GSTM1 null and GSTP1 (c.313A>G) gene variants alter Glutathione S-transferase (GST) activity, modifying the levels of xenobiotics. The aim of the present study was to evaluate the role of genetic variants in initiation of PCT and to analyze the genetic basis of the PCT-HIV association. Control individuals, and HIV, PCT and PCT-HIV patients were recruited, PCR-restriction fragment length polymorphism was used to genotype the ABCB1 and GSTP1 variants, and multiplex PCR was used to study the GSTM1 and GSTT1 variants. The high frequency of c.3435C>T (PCT and PCT-HIV) and c.1236C>T (PCT) suggested that the onset of PCT were not specifically related to HIV infection or antiretroviral therapy for these variants. c.2677G>T/A frequencies in the PCT-HIV patients were higher compared with the other groups, suggesting that a mechanism involving antiretroviral therapy served a role in this association. PCT-HIV patients also had a high frequency of GSTT1 null and low frequency for GSTM1 null variants; thus, the genetic basis for PCT onset may involve a combination between the absence of GSTT1 and the presence of GSTM1. In conclusion, genes encoding for proteins involved in the flow and metabolism of xenobiotics may influence the PCT-HIV association. The present study is the first to investigate the possible role of GST and ABCB1 gene variants in the triggering of PCT in HIV-infected individuals, to the best of our knowledge, and may provide novel insights into the molecular basis of the association between PCT and HIV.
Collapse
Affiliation(s)
- Priscila Ayelén Pagnotta
- Centro de Investigaciones sobre Porfirinas y Porfirias, Universidad de Buenos Aires, Argentina-National Scientific and Technical Research Council, Hospital de Clínicas José de San Martín, Buenos Aires 1120, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Viviana Alicia Melito
- Centro de Investigaciones sobre Porfirinas y Porfirias, Universidad de Buenos Aires, Argentina-National Scientific and Technical Research Council, Hospital de Clínicas José de San Martín, Buenos Aires 1120, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Jimena Verónica Lavandera
- Cátedra de Bromatología y Nutrición, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina
| | - Victoria Estela Parera
- Centro de Investigaciones sobre Porfirinas y Porfirias, Universidad de Buenos Aires, Argentina-National Scientific and Technical Research Council, Hospital de Clínicas José de San Martín, Buenos Aires 1120, Argentina
| | - María Victoria Rossetti
- Centro de Investigaciones sobre Porfirinas y Porfirias, Universidad de Buenos Aires, Argentina-National Scientific and Technical Research Council, Hospital de Clínicas José de San Martín, Buenos Aires 1120, Argentina
| | - Johanna Romina Zuccoli
- Centro de Investigaciones sobre Porfirinas y Porfirias, Universidad de Buenos Aires, Argentina-National Scientific and Technical Research Council, Hospital de Clínicas José de San Martín, Buenos Aires 1120, Argentina
| | - Ana Maria Buzaleh
- Centro de Investigaciones sobre Porfirinas y Porfirias, Universidad de Buenos Aires, Argentina-National Scientific and Technical Research Council, Hospital de Clínicas José de San Martín, Buenos Aires 1120, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| |
Collapse
|
10
|
Löfgren M, Larsson P, Lindberg R, Hörnaeus K, Tydén E. Expression of xenobiotic metabolising enzymes in lungs of horses with or without histological evidence of lower airway inflammation. Vet Med Sci 2020; 7:16-24. [PMID: 32791560 PMCID: PMC7840205 DOI: 10.1002/vms3.331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/03/2020] [Accepted: 07/13/2020] [Indexed: 01/11/2023] Open
Abstract
Mild, moderate and severe equine asthma is a problem for equine welfare. The aetiology of the disease is not known in detail but is likely multi‐factorial. One important factor may be inhaled dust which carries harmful substances which may be bioactivated and thus can lead to local inflammation in the airways. The aim of this study was to investigate gene expression and protein localisation of cytochrome P450 (CYP) enzymes, superoxide dismutase and glutathione‐S‐transferases (GST) involved in bioactivation and detoxification of harmful substances in lungs of horses with or without histological evidence of lower airway inflammation. Significantly lower gene expression of CYP2A13 and GSTM1 was observed in lungs from horses with histological evidence of lower airway inflammation compared with horses without. A higher expression, although not significant, was found for CYP1A1 in horses with histological evidence of lower airway inflammation. There were no differences in gene expression of GSTP1 and SOD3. The proteins were localised in the respiratory epithelium which is of relevance as a defence to local exposure of inhaled harmful substances. In conclusion, our study reports differential gene expression of enzymes involved in bioactivation and detoxification of foreign substances in the lungs of horses with histological evidence of lower airway inflammation compared with horses without.
Collapse
Affiliation(s)
- Maria Löfgren
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pia Larsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ronny Lindberg
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Katarina Hörnaeus
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Eva Tydén
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
11
|
Huff RD, Carlsten C, Hirota JA. An update on immunologic mechanisms in the respiratory mucosa in response to air pollutants. J Allergy Clin Immunol 2020; 143:1989-2001. [PMID: 31176381 DOI: 10.1016/j.jaci.2019.04.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022]
Abstract
Every day, we breathe in more than 10,000 L of air that contains a variety of air pollutants that can pose negative consequences to lung health. The respiratory mucosa formed by the airway epithelium is the first point of contact for air pollution in the lung, functioning as a mechanical and immunologic barrier. Under normal circumstances, airway epithelial cells connected by tight junctions secrete mucus, airway surface lining fluid, host defense peptides, and antioxidants and express innate immune pattern recognition receptors to respond to inhaled foreign substances and pathogens. Under conditions of air pollution exposure, the defenses of the airway epithelium are compromised by reductions in barrier function, impaired host defense to pathogens, and exaggerated inflammatory responses. Central to the mechanical and immunologic changes induced by air pollution are activation of redox-sensitive pathways and a role for antioxidants in normalizing these negative effects. Genetic variants in genes important in epithelial cell function and phenotype contribute to a diversity of responses to air pollution in the population at the individual and group levels and suggest a need for personalized approaches to attenuate the respiratory mucosal immune responses to air pollution.
Collapse
Affiliation(s)
- Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris Carlsten
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeremy A Hirota
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Firestone Institute for Respiratory Health, Division of Respirology, Department of Medicine, Hamilton, Ontario, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
12
|
Fuertes E, van der Plaat DA, Minelli C. Antioxidant genes and susceptibility to air pollution for respiratory and cardiovascular health. Free Radic Biol Med 2020; 151:88-98. [PMID: 32007521 DOI: 10.1016/j.freeradbiomed.2020.01.181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/25/2022]
Abstract
Oxidative stress occurs when antioxidant defences, which are regulated by a complex network of genes, are insufficient to maintain the level of reactive oxygen species below a toxic threshold. Outdoor air pollution has long been known to adversely affect health and one prominent mechanism of action common to all pollutants is the induction of oxidative stress. An individual's susceptibility to the effects of air pollution partly depends on variation in their antioxidant genes. Thus, understanding antioxidant gene-pollution interactions has significant potential clinical and public health impacts, including the development of targeted and cost-effective preventive measures, such as setting appropriate standards which protect all members of the population. In this review, we aimed to summarize the latest epidemiological evidence on interactions between antioxidant genes and outdoor air pollution, in the context of respiratory and cardiovascular health. The evidence supporting the existence of interactions between antioxidant genes and outdoor air pollution is strongest for childhood asthma and wheeze, especially for interactions with GSTT1, GSTM1 and GSTP1, for lung function in both children and adults for several antioxidant genes (GSTT1, GSTM1, GSTP1, HMOX1, NQO1, and SOD2) and, to a more limited extent, for heart rate variability in adults for GSTM1 and HMOX1. Methodological challenges hampering a clear interpretation of these findings and understanding of true potential heterogeneity are discussed.
Collapse
Affiliation(s)
- Elaine Fuertes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | | | - Cosetta Minelli
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Song J, Zhu J, Tian G, Li H, Li H, An Z, Jiang J, Fan W, Wang G, Zhang Y, Wu W. Short time exposure to ambient ozone and associated cardiovascular effects: A panel study of healthy young adults. ENVIRONMENT INTERNATIONAL 2020; 137:105579. [PMID: 32086080 DOI: 10.1016/j.envint.2020.105579] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
The evidence that exposure to ambient ozone (O3) causes acute cardiovascular effects appears inconsistent. A repeated-measure study with 61 healthy young volunteers was conducted in Xinxiang, Central China. Real-time concentrations of O3 were monitored. Cardiovascular outcomes including blood pressure (BP), heart rate (HR), serum levels of high sensitivity C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), tissue-type plasminogen activator (t-PA), and platelet-monocyte aggregation (PMA) were repeated measured. Linear mixed-effect models were used to analyze the association of ambient O3 with these cardiovascular outcomes. Additionally, the modifying effects of glutathione S-transferase mu 1 (GSTM1) and glutathione S-transferase theta 1 (GSTT1) polymorphisms were estimated to explore the potential mechanisms and role of the association between O3 exposure and the above cardiovascular outcomes. A 10 μg/m3 increase in O3 was associated with increases of 9.2 mmHg (95% confidence interval [CI]: 2.5, 15.9), 7.2 mmHg (95% CI: 0.8, 13.6), and 21.2 bpm (95% CI: 5.8, 36.6) in diastolic BP (DBP, lag1), mean arterial BP (MABP, lag1), and HR (lag01), respectively. Meanwhile, the serum concentrations of hs-CRP, 8-OHdG, and t-PA were all increased by O3 exposure, but the PMA level was decreased. Stratification analyses showed that the estimated effects of O3 on DBP, MABP, and HR in GSTM1-sufficient subjects were significantly higher than in GSTM1-null subjects. Moreover, GSTM1-null genotype enhanced O3-induced increases, albeit insignificant, in levels of serum hs-CRP, 8-OHdG, and t-PA compared with GSTM1-sufficient genotype. Insignificant increases in hs-CRP and t-PA were also detected in GSTT1-null subjects. Taken together, our findings indicate that acute exposure to ambient O3 induces autonomic alterations, systemic inflammation, oxidative stress, and fibrinolysis in healthy young subjects. GSTM1 genotype presents the trend of modifying O3-induced cardiovascular effects.
Collapse
Affiliation(s)
- Jie Song
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jingfang Zhu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Ge Tian
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Haibin Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Huijun Li
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Wei Fan
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Gui Wang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Yange Zhang
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
14
|
Brucker N, do Nascimento SN, Bernardini L, Charão MF, Garcia SC. Biomarkers of exposure, effect, and susceptibility in occupational exposure to traffic-related air pollution: A review. J Appl Toxicol 2020; 40:722-736. [PMID: 31960485 DOI: 10.1002/jat.3940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 01/05/2023]
Abstract
There is a well-recognized association between environmental air pollution exposure and several human diseases. However, the relationship between diseases related to occupational air pollution exposure on roads and high levels of traffic-related air pollutants (TRAPs) is less substantiated. Biomarkers are essential tools in environmental and occupational toxicology, and studies on new biomarkers are increasingly relevant due to the need to determine early biomarkers to be assessed in exposure conditions. This review aimed to investigate the main advances in the biomonitoring of subjects occupationally exposed to air pollution, as well as to summarize the biomarkers of exposure, effect, and susceptibility. Furthermore, we discuss how biomarkers could be used to complement the current application of methods used to assess occupational exposures to xenobiotics present in air pollution. The databases used in the preparation of this review were PubMed, Scopus, and Science Direct. Considering the significant deleterious effects on health associated with chronic occupational exposure to xenobiotics, this topic deserves attention. As it is difficult to avoid occupational exposure to TRAPs, biomonitoring should be applied as a strategy to reduce the toxic effects of workplace exposure.
Collapse
Affiliation(s)
- Natália Brucker
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil.,Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sabrina Nunes do Nascimento
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia Bernardini
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Mariele Feiffer Charão
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, RS, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.,Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Yang SI, Kim HB, Kim HC, Lee SY, Kang MJ, Cho HJ, Yoon J, Jung S, Lee E, Yang HJ, Ahn K, Kim KW, Shin YH, Suh DI, Hong SJ. Particulate matter at third trimester and respiratory infection in infants, modified by GSTM1. Pediatr Pulmonol 2020; 55:245-253. [PMID: 31746563 DOI: 10.1002/ppul.24575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To investigate the association between particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5 ) exposure during each trimester of pregnancy and development of lower respiratory tract infections (LRTIs) during the first 3 years of life and whether GSTM1 gene polymorphisms modify these effects. METHODS This study included 1,180 mother-child pairs from the Cohort for Childhood Origin of Asthma and allergic diseases. The PM2.5 levels during pregnancy were estimated by residential address using land-use regression models based on a national monitoring system. A diagnosis of LRTIs was based on a parental report of a physician's diagnosis. Real-time polymerase chain reaction was used for GSTM1 genotyping. RESULTS Higher PM2.5 exposure during the third trimester was associated with LRTIs at 1 year of age (aRR, 1.06; 95% CI, 1.00-1.13). This result did not change after adjusting for PM2.5 exposures during the first and second trimesters (aRR, 1.06; 95% CI, 0.99-1.13). This association was significant after adjusting for PM2.5 exposures during first year of age (aRR, 1.08; 95% CI, 1.02-1.15) and exposures to NO2 and ozone at the third trimester (aRR, 1.07; 95% CI, 1.00-1.16). In addition, PM2.5 exposure during the third trimester increased the risk of LRTIs at 1 year of age in cases with the GSTM1 null genotype (aRR, 1.26; 95% CI, 1.01-1.57; P for interaction .20). CONCLUSION Higher PM2.5 exposure during the third trimester of pregnancy may increase the susceptibility to LRTIs at 1 year of age. This effect is modified by GSTM1 gene polymorphisms.
Collapse
Affiliation(s)
- Song-I Yang
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Hyo-Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Hwan-Cheol Kim
- Department of Occupational and Environmental Medicine, Inha University School of Medicine, Incheon, South Korea
| | - So-Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Mi-Jin Kang
- Department of Pediatrics, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun-Ju Cho
- Department of Pediatrics, International St Mary's Hospital, Catholic Kwandong University, Incheon, South Korea
| | - Jisun Yoon
- Department of Pediatrics, Mediplex Sejong Hospital, Incheon, South Korea
| | - Sungsu Jung
- Department of Pediatrics, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Hyeon-Jong Yang
- Department of Pediatrics, Soonchunhyang University School of Medicine, Seoul, South Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyung Won Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Youn Ho Shin
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, South Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
Johansson H, Mersha TB, Brandt EB, Khurana Hershey GK. Interactions between environmental pollutants and genetic susceptibility in asthma risk. Curr Opin Immunol 2019; 60:156-162. [PMID: 31470287 DOI: 10.1016/j.coi.2019.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022]
Abstract
Exposure to air pollution is associated with enhanced risk of developing asthma, notably in the presence of genetic risk factors. Interaction analyses have shown that both outdoor and indoor air pollution interact with genetic variability to increase the incidence of asthma. In this review, we summarize recent progress in candidate gene-based studies, as well as genome-wide gene-air pollution interaction studies. Advances in epigenetics have provided evidence for DNA methylation as a mediator in gene-air pollution interactions. Emerging strategies for study design and statistical analyses may improve power in future studies. Improved air pollution exposure assessment methods and asthma endo-typing can also be expected to increase the ability to detect biologically driven gene-air pollution interaction effects.
Collapse
Affiliation(s)
- Hanna Johansson
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Tesfaye B Mersha
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Eric B Brandt
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
17
|
Ierodiakonou D, Coull BA, Zanobetti A, Postma DS, Boezen HM, Vonk JM, McKone EF, Schildcrout JS, Koppelman GH, Croteau-Chonka DC, Lumley T, Koutrakis P, Schwartz J, Gold DR, Weiss ST. Pathway analysis of a genome-wide gene by air pollution interaction study in asthmatic children. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:539-547. [PMID: 31028280 PMCID: PMC10730425 DOI: 10.1038/s41370-019-0136-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/23/2018] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
OBJECTIVES We aimed to investigate the role of genetics in the respiratory response of asthmatic children to air pollution, with a genome-wide level analysis of gene by nitrogen dioxide (NO2) and carbon monoxide (CO) interaction on lung function and to identify biological pathways involved. METHODS We used a two-step method for fast linear mixed model computations for genome-wide association studies, exploring whether variants modify the longitudinal relationship between 4-month average pollution and post-bronchodilator FEV1 in 522 Caucasian and 88 African-American asthmatic children. Top hits were confirmed with classic linear mixed-effect models. We used the improved gene set enrichment analysis for GWAS (i-GSEA4GWAS) to identify plausible pathways. RESULTS Two SNPs near the EPHA3 (rs13090972 and rs958144) and one in TXNDC8 (rs7041938) showed significant interactions with NO2 in Caucasians but we did not replicate this locus in African-Americans. SNP-CO interactions did not reach genome-wide significance. The i-GSEA4GWAS showed a pathway linked to the HO-1/CO system to be associated with CO-related FEV1 changes. For NO2-related FEV1 responses, we identified pathways involved in cellular adhesion, oxidative stress, inflammation, and metabolic responses. CONCLUSION The host lung function response to long-term exposure to pollution is linked to genes involved in cellular adhesion, oxidative stress, inflammatory, and metabolic pathways.
Collapse
Affiliation(s)
- Despo Ierodiakonou
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Antonella Zanobetti
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Dirkje S Postma
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H Marike Boezen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Edward F McKone
- Department of Respiratory Medicine, St. Vincent University Hospital, Dublin, Ireland
| | - Jonathan S Schildcrout
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Gerard H Koppelman
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pediatric Pulmonology and Pediatric Allergology-Beatrix Children Hospital, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Damien C Croteau-Chonka
- Channing Division of Network Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Thomas Lumley
- Department of Biostatistics, University of Auckland, Auckland, New Zealand
| | - Petros Koutrakis
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Joel Schwartz
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Diane R Gold
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Channing Division of Network Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Hüls A, Klümper C, MacIntyre EA, Brauer M, Melén E, Bauer M, Berdel D, Bergström A, Brunekreef B, Chan-Yeung M, Fuertes E, Gehring U, Gref A, Heinrich J, Standl M, Lehmann I, Kerkhof M, Koppelman GH, Kozyrskyj AL, Pershagen G, Carlsten C, Krämer U, Schikowski T. Atopic dermatitis: Interaction between genetic variants of GSTP1, TNF, TLR2, and TLR4 and air pollution in early life. Pediatr Allergy Immunol 2018; 29:596-605. [PMID: 29624745 DOI: 10.1111/pai.12903] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Associations between traffic-related air pollution (TRAP) and childhood atopic dermatitis (AD) remain inconsistent, possibly due to unexplored gene-environment interactions. The aim of this study was to examine whether a potential effect of TRAP on AD prevalence in children is modified by selected single nucleotide polymorphisms (SNPs) related to oxidative stress and inflammation. METHODS Doctor-diagnosed AD up to age 2 years and at 7-8 years, as well as AD symptoms up to age 2 years, was assessed using parental-reported questionnaires in six birth cohorts (N = 5685). Associations of nitrogen dioxide (NO2 ) estimated at the home address of each child at birth and nine SNPs within the GSTP1, TNF, TLR2, or TLR4 genes with AD were examined. Weighted genetic risk scores (GRS) were calculated from the above SNPs and used to estimate combined marginal genetic effects of oxidative stress and inflammation on AD and its interaction with TRAP. RESULTS GRS was associated with childhood AD and modified the association between NO2 and doctor-diagnosed AD up to the age of 2 years (P(interaction) = .029). This interaction was mainly driven by a higher susceptibility to air pollution in TNF rs1800629 minor allele (A) carriers. TRAP was not associated with the prevalence of AD in the general population. CONCLUSIONS The marginal genetic association of a weighted GRS from GSTP1, TNF, TLR2, and TLR4SNPs and its interaction with air pollution supports the role of oxidative stress and inflammation in AD.
Collapse
Affiliation(s)
- Anke Hüls
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Claudia Klümper
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Hochschule Hamm-Lippstadt, Hamm, Germany
| | - Elaina A MacIntyre
- Environmental and Occupational Health, Public Health Ontario, Toronto, ON, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Michael Brauer
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden.,Sachs Children's Hospital, Stockholm, Sweden
| | - Mario Bauer
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Dietrich Berdel
- Department of Pediatrics, Marien-Hospital Wesel, Research Institute, Wesel, Germany
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Moira Chan-Yeung
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Elaine Fuertes
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anna Gref
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joachim Heinrich
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Inner City Clinic, University Hospital of Munich (LMU), Munich, Germany
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Irina Lehmann
- Department for Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Marjan Kerkhof
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Observational and Pragmatic Research Institute, Singapore
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anita L Kozyrskyj
- Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada.,School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Christopher Carlsten
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Institute for Heart and Lung Health, Vancouver, BC, Canada
| | - Ursula Krämer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tamara Schikowski
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | |
Collapse
|
19
|
Kim HJ, Park JH, Seo YS, Holsen TM, Hopke PK, Sung J, Son HY, Yun JM, Kwon H, Cho B, Kim JI. CYP1A1 gene polymorphisms modify the association between PM 10 exposure and lung function. CHEMOSPHERE 2018; 203:353-359. [PMID: 29627601 DOI: 10.1016/j.chemosphere.2018.03.196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Genetic epidemiological studies have provided evidence that several genes modify the link between air pollution and lung function. We assessed whether the adverse impacts of particulate matter with an aerodynamic diameter ≤10 μm (PM10) on lung function are modified by CYP1A1 gene polymorphisms in Korean adults. We used health check-up data from 1817 men, and the annual mean concentrations of ambient PM10 estimated from the ambient data. Three single nucleotide polymorphisms (SNPs) of CYP1A1 were selected for our study. We identified significant CYP1A1 SNPs-by-PM10 interactions for forced expiratory volume 1 s (FEV1) and forced vital capacity (FVC) (all pint < 0.05). Minor allele carriers of the SNPs were more susceptible to PM10-induced FEV1 and FVC reduction. The subgroup analysis of SNP genotypes showed that no significant association between PM10 and FEV1 or FVC was observed in homozygous reference genotype groups of all SNPs (all passoc > 0.05), whereas in heterozygous or homozygous alternate genotype groups, PM10 was significantly associated with decreased FEV1 (all passoc for FEV1 < 0.05). The association between persistent exposure to PM10 and lung function decline in Korean men may be determined in part by several functional variants of the CYP1A1 gene.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- National Cancer Control Institute, National Cancer Center, Goyang, South Korea
| | - Jin-Ho Park
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea; Department of Family Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yong-Seok Seo
- Institute of Environmental Research, Kangwon National University, Chuncheon, Gangwon-do, South Korea
| | - Thomas M Holsen
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, USA
| | - Philip K Hopke
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Joohon Sung
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Ho-Young Son
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jae Moon Yun
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hyuktae Kwon
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Belong Cho
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea; Department of Family Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| | - Jong-Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea.
| |
Collapse
|
20
|
Dai X, Bowatte G, Lowe AJ, Matheson MC, Gurrin LC, Burgess JA, Dharmage SC, Lodge CJ. Do Glutathione S-Transferase Genes Modify the Link between Indoor Air Pollution and Asthma, Allergies, and Lung Function? A Systematic Review. Curr Allergy Asthma Rep 2018; 18:20. [PMID: 29557517 DOI: 10.1007/s11882-018-0771-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Glutathione S-transferase (GST) genes are involved in oxidative stress management and may modify the impact of indoor air pollution. We aimed to assess the influence of GST genes on the relationship between indoor air pollution and allergy/lung function. RECENT FINDINGS Our systematic review identified 22 eligible studies, with 15 supporting a gene-environment interaction. Carriers of GSTM1/T1 null and GSTP1 val genotypes were more susceptible to indoor air pollution exposures, having a higher risk of asthma and lung function deficits. However, findings differed in terms of risk alleles and specific exposures. High-exposure heterogeneity precluded meta-analysis. We found evidence that respiratory effects of indoor air pollution depend on the individual's GST profile. This may help explain the inconsistent associations found when gene-environment interactions are not considered. Future studies should aim to improve the accuracy of pollution assessment and investigate this finding in different populations.
Collapse
Affiliation(s)
- Xin Dai
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia
| | - Gayan Bowatte
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia
| | - Adrian J Lowe
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia.,Murdoch Childrens Research Institute, Melbourne, Australia
| | - Melanie C Matheson
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia
| | - Lyle C Gurrin
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia
| | - John A Burgess
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia.,Murdoch Childrens Research Institute, Melbourne, Australia
| | - Caroline J Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia. .,Murdoch Childrens Research Institute, Melbourne, Australia.
| |
Collapse
|
21
|
Perperopoulou F, Pouliou F, Labrou NE. Recent advances in protein engineering and biotechnological applications of glutathione transferases. Crit Rev Biotechnol 2017; 38:511-528. [PMID: 28936894 DOI: 10.1080/07388551.2017.1375890] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutathione transferases (GSTs, EC 2.5.1.18) are a widespread family of enzymes that play a central role in the detoxification, metabolism, and transport or sequestration of endogenous or xenobiotic compounds. During the last two decades, delineation of the important structural and catalytic features of GSTs has laid the groundwork for engineering GSTs, involving both rational and random approaches, aiming to create new variants with new or altered properties. These approaches have expanded the usefulness of native GSTs, not only for understanding the fundamentals of molecular detoxification mechanisms, but also for the development medical, analytical, environmental, and agricultural applications. This review article attempts to summarize successful examples and current developments on GST engineering, highlighting in parallel the recent knowledge gained on their phylogenetic relationships, structural/catalytic features, and biotechnological applications.
Collapse
Affiliation(s)
- Fereniki Perperopoulou
- a Department of Biotechnology, Laboratory of Enzyme Technology , School of Food, Biotechnology and Development, Agricultural University of Athens , Athens , Greece
| | - Fotini Pouliou
- a Department of Biotechnology, Laboratory of Enzyme Technology , School of Food, Biotechnology and Development, Agricultural University of Athens , Athens , Greece
| | - Nikolaos E Labrou
- a Department of Biotechnology, Laboratory of Enzyme Technology , School of Food, Biotechnology and Development, Agricultural University of Athens , Athens , Greece
| |
Collapse
|
22
|
Loxham M, Davies DE. Phenotypic and genetic aspects of epithelial barrier function in asthmatic patients. J Allergy Clin Immunol 2017; 139:1736-1751. [PMID: 28583446 PMCID: PMC5457128 DOI: 10.1016/j.jaci.2017.04.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
The bronchial epithelium is continuously exposed to a multitude of noxious challenges in inhaled air. Cellular contact with most damaging agents is reduced by the action of the mucociliary apparatus and by formation of a physical barrier that controls passage of ions and macromolecules. In conjunction with these defensive barrier functions, immunomodulatory cross-talk between the bronchial epithelium and tissue-resident immune cells controls the tissue microenvironment and barrier homeostasis. This is achieved by expression of an array of sensors that detect a wide variety of viral, bacterial, and nonmicrobial (toxins and irritants) agents, resulting in production of many different soluble and cell-surface molecules that signal to cells of the immune system. The ability of the bronchial epithelium to control the balance of inhibitory and activating signals is essential for orchestrating appropriate inflammatory and immune responses and for temporally modulating these responses to limit tissue injury and control the resolution of inflammation during tissue repair. In asthmatic patients abnormalities in many aspects of epithelial barrier function have been identified. We postulate that such abnormalities play a causal role in immune dysregulation in the airways by translating gene-environment interactions that underpin disease pathogenesis and exacerbation.
Collapse
Affiliation(s)
- Matthew Loxham
- Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton, United Kingdom
| | - Donna E Davies
- Clinical and Experimental Sciences and the Southampton NIHR Respiratory Biomedical Research Unit, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, University Hospital Southampton, Southampton, United Kingdom.
| |
Collapse
|
23
|
Traffic-related air pollution and allergic disease: an update in the context of global urbanization. Curr Opin Allergy Clin Immunol 2017; 17:85-89. [DOI: 10.1097/aci.0000000000000351] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|