1
|
Blom M, Soomann M, Soler-Palacín P, Šedivá A, Stray-Pedersen A, Zetterström R, Speckmann C, Gennery AR, van der Burg M. Newborn screening for SCID and severe T lymphocytopenia in Europe. J Allergy Clin Immunol 2025; 155:377-386. [PMID: 39510364 DOI: 10.1016/j.jaci.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Initiation of newborn screening (NBS) programs in Europe dates back to the 1960s. One of the most recent expansions of NBS programs was the addition of severe combined immunodeficiency (SCID) based on detection of T-cell receptor excision circles (TRECs). In this review, we present an overview of the current situation in Europe. To avoid a biased overview based on only published results, a 37-item survey on TREC-based NBS was sent to representatives of 46 European countries. With a response rate of 83%, we collected data of 38 countries. Seventeen of the 38 European countries that have completed the survey have nationally or regionally implemented TREC-based NBS. The survey results emphasize similarities and differences as well as common practices and challenges in TREC-based NBS. Because TRECs are a general surrogate marker for severe T lymphocytopenia, conditions other than SCID are also identified. Therefore, the initial definition of the target disease as "SCID" might need to be reconsidered and extended to "SCID and severe T lymphocytopenia." Even though complete harmonization of TREC-based NBS programs across Europe will remain challenging, collaboration and close partnerships will help in the move toward universal TREC-based screening for all newborns, resulting in more infants with SCID and severe T lymphocytopenia being detected each year.
Collapse
Affiliation(s)
- Maartje Blom
- Laboratory for Paediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarja Soomann
- Division of Immunology and the Children's Research Center, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Children's Hospital, Vall d'Hebron Barcelona Hospital, Barcelona, Spain
| | - Anna Šedivá
- Department of Immunology, 2nd Faculty of Medicine Charles University and Motol University Hospital, Prague, Czech Republic
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Rolf Zetterström
- Center for Inherited Metabolic Diseases, Karolinska University Hospital and Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, and Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Mirjam van der Burg
- Laboratory for Paediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
Blom M, Bredius RGM, van der Burg M. Efficient screening strategies for severe combined immunodeficiencies in newborns. Expert Rev Mol Diagn 2023; 23:815-825. [PMID: 37599592 DOI: 10.1080/14737159.2023.2244879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Severe combined immunodeficiency (SCID) is one of the most severe forms of inborn errors of immunity (IEI), affecting both cellular and humoral immunity. Without curative treatment such as hematopoietic stem cell transplantation or gene therapy, affected infants die within the first year of life. Due to the severity of the disease, asymptomatic status early in life, and improved survival in the absence of pretransplant infections, SCID was considered a suitable candidate for newborn screening (NBS). AREAS COVERED Many countries have introduced SCID screening based on T-cell receptor excision circle (TREC) detection in their NBS programs. Screening an entire population is a radical departure from previous paradigms in the field of immunology. Efficient screening strategies are cost-efficient and balance high sensitivity while preventing high numbers of referrals. NBS for SCID is accompanied by (actionable) secondary findings, but many NBS programs have optimized their screening strategy by adjusting algorithms or including second-tier tests. Harmonization of screening terminology is of great importance for international shared learning. EXPERT OPINION The expansion of NBS is driven by the development of new test modalities and treatment options. In the near future, other techniques such as next-generation sequencing will pave the way for NBS of other IEI. Exciting times await for population-based screening programs.
Collapse
Affiliation(s)
- Maartje Blom
- Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Robbert G M Bredius
- Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Miriam van der Burg
- Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Booth NA, Freeman CM, Wright BL, Rukasin C, Badia P, Daines M, Bauer CS, Miller H. Severe Combined Immunodeficiency (SCID) Screening in Arizona: Lessons Learned from the First 2 Years. J Clin Immunol 2022; 42:1321-1329. [PMID: 35729475 DOI: 10.1007/s10875-022-01307-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE The incidence of severe combined immunodeficiency (SCID) in the USA was reported as 1 in 58,000 live births. In Arizona, it was anticipated that newborn screening would identify two to four cases of SCID per year. This estimate did not consider ethnic nuances in Arizona, with higher percentages of Native American and Hispanic populations compared to national percentages. The true incidence of SCID and non-SCID T cell lymphopenia has not previously been reported in Arizona. METHODS A retrospective chart review was performed on all abnormal SCID newborn screening (NBS) tests in Arizona from January 1, 2018, to December 31, 2019, using data from the Arizona Department of Health Services and the Phoenix Children's Hospital's electronic medical record [IRB# 20-025]. RESULTS Seven infants were diagnosed with SCID, yielding an incidence of 1 in 22,819 live births. Four of these infants had Artemis-type SCID. Thirteen infants were identified with an abnormal initial NBS which ultimately did not lead to a diagnosis of SCID. Four of these infants were diagnosed with congenital syndromes associated with T cell lymphopenia. Infants of Hispanic ethnicity were over-represented in this cohort. CONCLUSION Over 2 years, NBS in Arizona confirmed an incidence more than 2.5 times that reported nationally. This increased incidence is likely reflective of Arizona's unique population profile, with a higher percentage of Native American population. The findings in our non-SCID cohort are in alignment with previously published data, except for an increased percentage of infants of Hispanic/Latino ethnicity, possibly reflecting Arizona's increased percentage of Hispanic/Latino population compared to the general US population.
Collapse
Affiliation(s)
- Natalie A Booth
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, 1919 E. Thomas Road, Phoenix, AZ, 85016, USA.
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA.
| | - Catherine M Freeman
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Benjamin L Wright
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Christine Rukasin
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Priscila Badia
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, 1919 E. Thomas Road, Phoenix, AZ, 85016, USA
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Michael Daines
- Department of Pediatrics, University of Arizona College of Medicine - Tucson, Tucson, AZ, USA
| | - Cindy S Bauer
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, USA
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Holly Miller
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, 1919 E. Thomas Road, Phoenix, AZ, 85016, USA
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
4
|
|
5
|
Blom M, Pico-Knijnenburg I, Imholz S, Vissers L, Schulze J, Werner J, Bredius R, van der Burg M. Second Tier Testing to Reduce the Number of Non-actionable Secondary Findings and False-Positive Referrals in Newborn Screening for Severe Combined Immunodeficiency. J Clin Immunol 2021; 41:1762-1773. [PMID: 34370170 PMCID: PMC8604867 DOI: 10.1007/s10875-021-01107-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Newborn screening (NBS) for severe combined immunodeficiency (SCID) is based on the detection of T-cell receptor excision circles (TRECs). TRECs are a sensitive biomarker for T-cell lymphopenia, but not specific for SCID. This creates a palette of secondary findings associated with low T-cells that require follow-up and treatment or are non-actionable. The high rate of (non-actionable) secondary findings and false-positive referrals raises questions about the harm-benefit-ratio of SCID screening, as referrals are associated with high emotional impact and anxiety for parents. METHODS An alternative quantitative TREC PCR with different primers was performed on NBS cards of referred newborns (N = 56) and epigenetic immune cell counting was used as for relative quantification of CD3 + T-cells (N = 59). Retrospective data was used to determine the reduction in referrals with a lower TREC cutoff value or an adjusted screening algorithm. RESULTS When analyzed with a second PCR with different primers, 45% of the referrals (25/56) had TREC levels above cutoff, including four false-positive cases in which two SNPs were identified. With epigenetic qPCR, 41% (24/59) of the referrals were within the range of the relative CD3 + T-cell counts of the healthy controls. Lowering the TREC cutoff value or adjusting the screening algorithm led to lower referral rates but did not prevent all false-positive referrals. CONCLUSIONS Second tier tests and adjustments of cutoff values or screening algorithms all have the potential to reduce the number of non-actionable secondary findings in NBS for SCID, although second tier tests are more effective in preventing false-positive referrals.
Collapse
Affiliation(s)
- Maartje Blom
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Ingrid Pico-Knijnenburg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Sandra Imholz
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Lotte Vissers
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Janika Schulze
- Department of Research and Development, Epimune GmbH, Belin, Germany
| | - Jeannette Werner
- Department of Research and Development, Epimune GmbH, Belin, Germany
| | - Robbert Bredius
- Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| |
Collapse
|
6
|
Primary immunodeficiency diseases in the newborn. North Clin Istanb 2021; 8:405-413. [PMID: 34585079 PMCID: PMC8430363 DOI: 10.14744/nci.2020.43420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/11/2020] [Indexed: 11/20/2022] Open
Abstract
The normal neonate’s immune system is anatomically completed but antigenically inexperienced and shows somewhat decreased role of a number of immunological pathways. Aside from anatomic characteristics (e.g., thin skin and mucosal barriers) of newborn, weakened pro-inflammatory and T-helper cell type 1 cytokine release and lessened cell-mediated immunity predispose the neonate more susceptible to all types of infections. Furthermore, many types of primary immunodeficiency diseases (PIDs) that present in neonatal period are potentially life threatening. However, most of the newborns stand this period without sickness due to complete innate immunity with other adaptive immune system mechanisms and transferred maternal immunoglobulin G. Besides unique immunity of the preterm and normal newborns; risk factors, clinical features, and laboratory evaluation of most common PIDs in newborn are told in this article. The range of PIDs is growing, and the diagnosis and management of these disorders continues to increase in complexity. The most common PID types of the newborn including antibody deficiencies, cellular/combined immunodeficiencies, phagocytic diseases, complement deficiencies, and innate immune system and other disorders are briefly mentioned here as well.
Collapse
|
7
|
Blom M, Zetterström RH, Stray-Pedersen A, Gilmour K, Gennery AR, Puck JM, van der Burg M. Recommendations for uniform definitions used in newborn screening for severe combined immunodeficiency. J Allergy Clin Immunol 2021; 149:1428-1436. [PMID: 34537207 DOI: 10.1016/j.jaci.2021.08.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Public health newborn screening (NBS) programs continuously evolve, taking advantage of international shared learning. NBS for severe combined immunodeficiency (SCID) has recently been introduced in many countries. However, comparison of screening outcomes has been hampered by use of disparate terminology and imprecise or variable case definitions for non-SCID conditions with T-cell lymphopenia. OBJECTIVES This study sought to determine whether standardized screening terminology could overcome a Babylonian confusion and whether improved case definitions would promote international exchange of knowledge. METHODS A systematic literature review highlighted the diverse terminology in SCID NBS programs internationally. While, as expected, individual screening strategies and tests were tailored to each program, we found uniform terminology to be lacking in definitions of disease targets, sensitivity, and specificity required for comparisons across programs. RESULTS The study's recommendations reflect current evidence from literature and existing guidelines coupled with opinion of experts in public health screening and immunology. Terminologies were aligned. The distinction between actionable and nonactionable T-cell lymphopenia among non-SCID cases was clarified, the former being infants with T-cell lymphopenia who could benefit from interventions such as protection from infections, antibiotic prophylaxis, and live-attenuated vaccine avoidance. CONCLUSIONS By bringing together the previously unconnected public health screening community and clinical immunology community, these SCID NBS deliberations bridged the gaps in language and perspective between these disciplines. This study proposes that international specialists in each disorder for which NBS is performed join forces to hone their definitions and recommend uniform registration of outcomes of NBS. Standardization of terminology will promote international exchange of knowledge and optimize each phase of NBS and follow-up care, advancing health outcomes for children worldwide.
Collapse
Affiliation(s)
- Maartje Blom
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rolf H Zetterström
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway; Department of Pediatrics, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Kimberly Gilmour
- University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, United Kingdom; National Institute for Health Research-Great Ormond Street Hospital Biomedical Research Center, London, United Kingdom
| | - Andrew R Gennery
- Children's Bone Marrow Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom; Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jennifer M Puck
- Division of Allergy, Immunology, and Blood and Marrow Transplantation, Department of Pediatrics, University of California, San Francisco School of Medicine, San Francisco, Calif; University of California, San Francisco Benioff Children's Hospital San Francisco, San Francisco, Calif
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
8
|
Parents' Perspectives and Societal Acceptance of Implementation of Newborn Screening for SCID in the Netherlands. J Clin Immunol 2020; 41:99-108. [PMID: 33070266 PMCID: PMC7846522 DOI: 10.1007/s10875-020-00886-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/04/2020] [Indexed: 12/23/2022]
Abstract
Purpose While neonatal bloodspot screening (NBS) for severe combined immunodeficiency (SCID) has been introduced more than a decade ago, implementation in NBS programs remains challenging in many countries. Even if high-quality test methods and follow-up care are available, public uptake and parental acceptance are not guaranteed. The aim of this study was to describe the parental perspective on NBS for SCID in the context of an implementation pilot. Psychosocial aspects have never been studied before for NBS for SCID and are important for societal acceptance, a major criterion when introducing new disorders in NBS programs. Methods To evaluate the perspective of parents, interviews were conducted with parents of newborns with abnormal SCID screening results (N = 17). In addition, questionnaires about NBS for SCID were sent to 2000 parents of healthy newborns who either participated or declined participation in the SONNET-study that screened 140,593 newborns for SCID. Results Support for NBS for SCID was expressed by the majority of parents in questionnaires from both a public health perspective and a personal perspective. Parents emphasized the emotional impact of an abnormal screening result in interviews. (Long-term) stress and anxiety can be experienced during and after referral indicating the importance of uniform follow-up protocols and adequate information provision. Conclusion The perspective of parents has led to several recommendations for NBS programs that are considering screening for SCID or other disorders. A close partnership of NBS programs’ stakeholders, immunologists, geneticists, and pediatricians-immunologists in different countries is required for moving towards universal SCID screening for all infants. Electronic supplementary material The online version of this article (10.1007/s10875-020-00886-4) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Shinwari K, Bolkov M, Tuzankina IA, Chereshnev VA. Newborn Screening through TREC, TREC/KREC System for Primary Immunodeficiency with limitation of TREC/KREC. Comprehensive Review. Antiinflamm Antiallergy Agents Med Chem 2020; 20:132-149. [PMID: 32748762 DOI: 10.2174/1871523019999200730171600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/11/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Newborn screening (NBS) by quantifying T cell receptor excision circles (TRECs) and Kappa receptor excision circles in neonatal dried blood spots (DBS) enables early diagnosis of different types of primary immune deficiencies. Global newborn screening for PID, using an assay to detect T-cell receptor excision circles (TREC) in dried blood spots (DBS), is now being performed in all states in the United States. In this review, we discuss the development and outcomes of TREC, TREC/KREC combines screening, and continued challenges to implementation. OBJECTIVE To review the diagnostic performance of published articles for TREC and TREC/ KREC based NBS for PID and its different types. METHODS Different research resources were used to get an approach for the published data of TREС and KREC based NBS for PID like PubMed, Scopus, Google Scholar, Research gate EMBASE. We extracted TREC and KREC screening Publisher with years of publication, content and cut-off values, and a number of retests, repeat DBS, and referrals from the different published pilot, pilot cohort, Case series, and cohort studies. RESULTS We included the results of TREC, combined TREC/KREC system based NBS screening from different research articles, and divided these results between the Pilot studies, case series, and cohort. For each of these studies, different parameter data are excluded from different articles. Thirteen studies were included, re-confirming 89 known SCID cases in case series and reporting 53 new SCID cases in 3.15 million newborns. Individual TREC contents in all SCID patients were <25 TRECs/μl (except in those evaluated with the New York State assay). CONCLUSION TREC and KREC sensitivity for typical SCID and other types of PID was 100 %. It shows its importance and anticipating the significance of implementation in different undeveloped and developed countries in the NBS program in upcoming years. Data adapting the screening algorithm for pre-term/ill infants reduce the amount of false-positive test results.
Collapse
Affiliation(s)
- Khyber Shinwari
- Department of Immunochemistry, Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Mikhail Bolkov
- Department of Immunochemistry, Institute of Chemical Engineering, Ural Federal University, Yekaterinburg, Russian Federation
| | - Irina A Tuzankina
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Valery A Chereshnev
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| |
Collapse
|
10
|
Nonsevere combined immunodeficiency T-cell lymphopenia identified through newborn screening. Curr Opin Allergy Clin Immunol 2020; 19:586-593. [PMID: 31490207 DOI: 10.1097/aci.0000000000000586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Although severe combined immunodeficiency (SCID) is the primary target condition for newborn screening (NBS), over 25 secondary targets, conditions other than SCID, have been identified. There is no standard method for evaluating neonates with non-SCID T-cell lymphopenia (TCL) and no standard approaches to treatment. We will describe these conditions and discuss recommendations for evaluating and follow-up of non-SCID TCL detected by NBS. RECENT FINDINGS The birth prevalence of non-SCID TCL detected through SCID NBS is higher than SCID and can be a burden on NBS programs. We will present some publications discussing outcomes and comorbidities in these patients. SUMMARY NBS for SCID has been very successful in identifying infants with SCID at birth to institute early life saving therapies. TCL due to other conditions can cause significant immune deficiency and treatment is dependent on the cause of the defect, as well as the magnitude of the immunodeficiency. Data collection from NBS programs should include assessment of various therapies and clinical outcomes. Better systems for recording long-term outcomes of SCID NBS including both SCID and non-SCID conditions should become a priority for NBS programs. This will help to advance the goal of NBS programs: improve outcomes in the most cost-effective manner.
Collapse
|
11
|
Abstract
Primary immunodeficiency disorders (PIDs) are genetic diseases that lead to increased susceptibility to infection. Hundreds of PIDs have now been described, but a select subset commonly presents in the neonatal period. Neonates, especially premature newborns, have relative immune immaturity that makes it challenging to differentiate PIDs from intrinsic immaturity. Nonetheless, early identification and appropriate management of PIDs are critical, and the neonatal clinician should be familiar with a range of PIDs and their presentations. The neonatal clinician should also be aware of the importance of consulting with an immunologist when a PID is suspected. The role of newborn screening for severe combined immunodeficiency, as well as the initial steps of laboratory evaluation for a PID should be familiar to those caring for neonates. Finally, it is important for providers to be familiar with the initial management steps that can be taken to reduce the risk of infection in affected patients.
Collapse
Affiliation(s)
- Amy E O'Connell
- Division of Newborn Medicine, Boston Children's Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Abstract
Severe combined immunodeficiency (SCID) encompasses a group of genetic defects. T cell development is universally affected and has alteration of B and/or NK cells. We present the case of a 5-day-old boy with combined heterozygous frame shift (c.256_257del, p.(Lys86Valfs*33)) and missense (c.1186C>T, p.(Arg396Cys)) variations in the RAG1 gene. He was admitted to our institution because of 0 TREC on Newborn Screen and worsening rash. Initially thought to have Omenn syndrome versus maternal engraftment with graft versus host disease, DNA analysis identified the noted mutations and he subsequently received a bone marrow transplant from a matched sibling.
Collapse
Affiliation(s)
- Matthew Tallar
- Pediatrics, Medical College of Wisconsin, 9000 West Wisconsin Avenue Suite 440, Milwaukee, WI 53226, USA.
| | - John Routes
- Pediatrics, Medical College of Wisconsin, 9000 West Wisconsin Avenue Suite 440, Milwaukee, WI 53226, USA
| |
Collapse
|
13
|
Remaschi G, Ricci S, Cortimiglia M, De Vitis E, Iannuzzi L, Boni L, Azzari C, Dani C. TREC and KREC in very preterm infants: reference values and effects of maternal and neonatal factors. J Matern Fetal Neonatal Med 2019; 34:3946-3951. [PMID: 31885296 DOI: 10.1080/14767058.2019.1702951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: T-cell receptor excision circles (TREC) and kappa-deleting recombination excision circles (KREC) assays have been used for severe combined immunodeficiencies newborn screening (NBS). We assessed TREC and KREC NBS values in preterm infants and investigated if perinatal characteristics affect their values.Methods: We performed a retrospective study collecting data from TREC and KREC NBS database and from mothers' and infants' medical charts.Results: TREC and KREC values were lower in preterm infants born at 23-31 or 32-36 weeks of gestation than in term infants. Gestational age <28 weeks of gestation, leukopenia, and hypertensive disorders of pregnancy lowered TREC. Hypertensive disorders of pregnancy lowered KREC and intrapartum fever >38 °C increased it. Low TREC and KREC values were not associated to the risk of developing early-onset sepsis and late-onset sepsis.Conclusion: TREC and KREC levels are lower in preterm than term infants, but this did not increase the risk of neonatal sepsis.
Collapse
Affiliation(s)
- Giulia Remaschi
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Silvia Ricci
- Division of Pediatric Immunology, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy.,Department of Health Sciences, Meyer University Hospital, University of Florence, Florence, Italy
| | - Martina Cortimiglia
- Division of Pediatric Immunology, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Elisa De Vitis
- Division of Pediatric Immunology, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Laura Iannuzzi
- Margherita Birth Center, Careggi University Hospital of Florence, Florence, Italy
| | - Luca Boni
- Clinical Trials Coordinating Center, Careggi University Teaching Hospital of Florence, Florence, Italy
| | - Chiara Azzari
- Division of Pediatric Immunology, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy.,Department of Health Sciences, Meyer University Hospital, University of Florence, Florence, Italy
| | - Carlo Dani
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Italy Florence
| |
Collapse
|
14
|
Argudo-Ramírez A, Martín-Nalda A, Marín-Soria JL, López-Galera RM, Pajares-García S, González de Aledo-Castillo JM, Martínez-Gallo M, García-Prat M, Colobran R, Riviere JG, Quintero Y, Collado T, García-Villoria J, Ribes A, Soler-Palacín P. First Universal Newborn Screening Program for Severe Combined Immunodeficiency in Europe. Two-Years' Experience in Catalonia (Spain). Front Immunol 2019; 10:2406. [PMID: 31695692 PMCID: PMC6818460 DOI: 10.3389/fimmu.2019.02406] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022] Open
Abstract
Severe combined immunodeficiency (SCID), the most severe form of T-cell immunodeficiency, can be screened at birth by quantifying T-cell receptor excision circles (TRECs) in dried blood spot (DBS) samples. Early detection of this condition speeds up the establishment of appropriate treatment and increases the patient's life expectancy. Newborn screening for SCID started in January 2017 in Catalonia, the first Spanish and European region to universally include this testing. The results obtained in the first 2 years of experience are evaluated here. All babies born between January 2017 and December 2018 were screened. TREC quantification in DBS (1.5 mm diameter) was performed with the Enlite Neonatal TREC kit from PerkinElmer (Turku, Finland). In 2018, the retest cutoff in the detection algorithm was updated based on the experience gained in the first year, and changed from 34 to 24 copies/μL. This decreased the retest rate from 3.34 to 1.4% (global retest rate, 2.4%), with a requested second sample rate of 0.23% and a positive detection rate of 0.02%. Lymphocyte phenotype (T, B, NK populations), expression of CD45RA/RO isoforms, percentage and intensity of TCR αβ and TCR γδ, presence of HLA-DR+ T lymphocytes, and in vitro lymphocyte proliferation were studied in all patients by flow cytometry. Of 130,903 newborns screened, 30 tested positive, 15 of which were male. During the study period, one patient was diagnosed with SCID: incidence, 1 in 130,903 births in Catalonia. Thirteen patients had clinically significant T-cell lymphopenia (non-SCID) with an incidence of 1 in 10,069 newborns (43% of positive detections). Nine patients were considered false-positive cases because of an initially normal lymphocyte count with normalization of TRECs between 3 and 6 months of life, four infants had transient lymphopenia due to an initially low lymphocyte count with recovery in the following months, and three patients are still under study. The results obtained provide further evidence of the benefits of including this disease in newborn screening programs. Longer follow-up is needed to define the exact incidence of SCID in Catalonia.
Collapse
Affiliation(s)
- Ana Argudo-Ramírez
- Newborn Screening Laboratory, Inborn Errors of Metabolism Division, Biochemistry and Molecular Genetics Department, Hospital Clínic, Barcelona, Spain
| | - Andrea Martín-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose L Marín-Soria
- Newborn Screening Laboratory, Inborn Errors of Metabolism Division, Biochemistry and Molecular Genetics Department, Hospital Clínic, Barcelona, Spain
| | - Rosa M López-Galera
- Newborn Screening Laboratory, Inborn Errors of Metabolism Division, Biochemistry and Molecular Genetics Department, Hospital Clínic, Barcelona, Spain
| | - Sonia Pajares-García
- Newborn Screening Laboratory, Inborn Errors of Metabolism Division, Biochemistry and Molecular Genetics Department, Hospital Clínic, Barcelona, Spain
| | - Jose M González de Aledo-Castillo
- Newborn Screening Laboratory, Inborn Errors of Metabolism Division, Biochemistry and Molecular Genetics Department, Hospital Clínic, Barcelona, Spain
| | - Mónica Martínez-Gallo
- Immunology Division, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marina García-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roger Colobran
- Immunology Division, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Clinical and Molecular Genetics, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jacques G Riviere
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yania Quintero
- Newborn Screening Laboratory, Inborn Errors of Metabolism Division, Biochemistry and Molecular Genetics Department, Hospital Clínic, Barcelona, Spain
| | - Tatiana Collado
- Newborn Screening Laboratory, Inborn Errors of Metabolism Division, Biochemistry and Molecular Genetics Department, Hospital Clínic, Barcelona, Spain
| | - Judit García-Villoria
- Newborn Screening Laboratory, Inborn Errors of Metabolism Division, Biochemistry and Molecular Genetics Department, Hospital Clínic, Barcelona, Spain
| | - Antonia Ribes
- Newborn Screening Laboratory, Inborn Errors of Metabolism Division, Biochemistry and Molecular Genetics Department, Hospital Clínic, Barcelona, Spain
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Davey BT, Elder RW, Cloutier MM, Bennett N, Lee JH, Wang Z, Manning A, Doan T, Griffiths M, Perez M, Ahluwalia N, Toro-Salazar OH. T-Cell Receptor Excision Circles in Newborns with Congenital Heart Disease. J Pediatr 2019; 213:96-102.e2. [PMID: 31277900 DOI: 10.1016/j.jpeds.2019.05.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 01/27/2023]
Abstract
OBJECTIVES To determine if children with congenital heart disease (CHD) have lower newborn T-cell receptor excision circles (TREC) levels than the general population and to evaluate if low TREC levels in newborns with CHD are associated with clinical complications such as hospitalization for infection. STUDY DESIGN The Connecticut Newborn Screening Program reported TREC levels for newborns with CHD delivered between October 2011 and September 2016 at 2 major Connecticut children's hospitals. TREC levels for children with CHD were compared with the general population. TREC levels and outcome measures, including hospitalization for infection, were compared. RESULTS We enrolled 575 participants with CHD in the study. The median TREC level for newborns with CHD was lower than the general population (180.1 copies/μL vs 312.5 copies/μL; P < .01). patients with CHD requiring hospitalization for infection had lower median TREC levels than their counterparts (143.0 copies/μL vs 186.7 copies/μL; P < .01). The combination of prematurity and low TREC level had a strong relationship to hospitalization for infection (area under the receiver operative characteristic curve of 0.89). There was no association between TREC level and CHD severity. CONCLUSIONS Newborns with CHD demonstrated lower TREC levels than the general population. Low TREC levels were associated with hospitalization for infection in preterm children with CHD. Study limitations include that this was a retrospective chart review. These findings may help to identify newborns with CHD at highest risk for infection, allowing for potential opportunities for intervention.
Collapse
Affiliation(s)
- Brooke T Davey
- Department of Pediatrics at Connecticut Children's Medical Center, Hartford, CT.
| | - Robert W Elder
- Department of Pediatrics at Yale-New Haven Children's Hospital, New Haven, CT
| | - Michelle M Cloutier
- Department of Pediatrics at Connecticut Children's Medical Center, Hartford, CT
| | - Nicholas Bennett
- Department of Pediatrics at Connecticut Children's Medical Center, Hartford, CT
| | - Ji Hyun Lee
- Department of Pediatrics at Connecticut Children's Medical Center, Hartford, CT
| | - Zhu Wang
- Department of Pediatrics at Connecticut Children's Medical Center, Hartford, CT
| | - Adrienne Manning
- Connecticut Department of Public Health Newborn Screening Program, Rocky Hill, CT
| | - Tam Doan
- Department of Pediatrics at Connecticut Children's Medical Center, Hartford, CT
| | - Megan Griffiths
- Department of Pediatrics at Connecticut Children's Medical Center, Hartford, CT
| | - Maria Perez
- Department of Pediatrics at Yale-New Haven Children's Hospital, New Haven, CT
| | - Neha Ahluwalia
- Department of Pediatrics at Yale-New Haven Children's Hospital, New Haven, CT
| | - Olga H Toro-Salazar
- Department of Pediatrics at Connecticut Children's Medical Center, Hartford, CT
| |
Collapse
|
16
|
Chong HJ, Maurer S, Heimall J. What to Do with an Abnormal Newborn Screen for Severe Combined Immune Deficiency. Immunol Allergy Clin North Am 2019; 39:535-546. [PMID: 31563187 DOI: 10.1016/j.iac.2019.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Newborn screening for severe combined immunodeficiency has been implemented in all 50 states. This screening identifies newborns with T-cell lymphopenia. After an abnormal screening, additional testing is needed to determine if the child has severe combined immunodeficiency. Because screening programs vary, it is imperative for the clinical immunologist to understand how screening is done in their state and to prepare an effective assessment protocol for the management of these patients. Part of this assessment should include training and helping to ensure the effective delivery of this news to the family, a skill neither intuitive nor classically taught to immunologists.
Collapse
Affiliation(s)
- Hey J Chong
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| | - Scott Maurer
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Jennifer Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Wood 3301, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
van der Burg M, Mahlaoui N, Gaspar HB, Pai SY. Universal Newborn Screening for Severe Combined Immunodeficiency (SCID). Front Pediatr 2019; 7:373. [PMID: 31620409 PMCID: PMC6759820 DOI: 10.3389/fped.2019.00373] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 08/30/2019] [Indexed: 11/22/2022] Open
Abstract
Patients with severe combined immunodeficiency (SCID) are born with profound deficiency of functional T-lymphocytes. Early detection and diagnosis would allow for prompt institution of isolation from infection and referral for definitive treatment with allogeneic hematopoietic stem cell transplantation. Universal newborn screening for SCID, using an assay to detect T-cell receptor excision circles (TREC) in dried blood spots (DBS), is now being performed in all states in the United States. In this review, we discuss the development and outcomes of TREC screening, and continued challenges to implementation.
Collapse
Affiliation(s)
- Mirjam van der Burg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Nizar Mahlaoui
- Centre de Référence Déficits Immunitaires Héréditaires, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Hubert Bobby Gaspar
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Verstegen RHJ, Aui PM, Watson E, De Jong S, Bartol SJW, Bosco JJ, Cameron PU, Stirling RG, de Vries E, van Dongen JJM, van Zelm MC. Quantification of T-Cell and B-Cell Replication History in Aging, Immunodeficiency, and Newborn Screening. Front Immunol 2019; 10:2084. [PMID: 31543882 PMCID: PMC6730487 DOI: 10.3389/fimmu.2019.02084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/19/2019] [Indexed: 11/23/2022] Open
Abstract
Quantification of T-cell receptor excision circles (TRECs) has impacted on human T-cell research, but interpretations on T-cell replication have been limited due to the lack of a genomic coding joint. We here overcome this limitation with multiplex TRG rearrangement quantification (detecting ~0.98 alleles per TCRαβ+ T cell) and the HSB-2 cell line with a retrovirally introduced TREC construct. We uncovered <5 cell divisions in naive and >10 cell divisions in effector memory T-cell subsets. Furthermore, we show that TREC dilution with age in healthy adults results mainly from increased T cell replication history. This proliferation was significantly increased in patients with predominantly antibody deficiency. Finally, Guthrie cards of neonates with Down syndrome have fewer T and B cells than controls, with similar T-cell and slightly higher B-cell replication. Thus, combined analysis of TRG coding joints and TREC signal joints can be utilized to quantify in vivo T-cell replication, and has direct applications for research into aging, immunodeficiency, and newborn screening.
Collapse
Affiliation(s)
- Ruud H J Verstegen
- Department of Immunology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands.,Division of Rheumatology, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Pei M Aui
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Eliza Watson
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia
| | - Samuel De Jong
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Sophinus J W Bartol
- Department of Immunology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
| | - Julian J Bosco
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.,Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Paul U Cameron
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.,Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Robert G Stirling
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.,Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Esther de Vries
- Tranzo, Scientific Center for Care and Welfare, Tilburg University, Tilburg, Netherlands.,Laboratory for Medical Microbiology and Immunology, Elisabeth-TweeSteden Hospital, Tilburg, Netherlands
| | - Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, Netherlands
| | - Menno C van Zelm
- Department of Immunology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, Melbourne, VIC, Australia.,Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Wraight CL. Newborn Screening Programs. Pediatr Ann 2018; 47:e472-e473. [PMID: 30543373 DOI: 10.3928/19382359-20181121-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Abstract
PURPOSE OF REVIEW Primary immunodeficiency diseases (PIDs) are genetic disorders classically characterized by impaired host defense and an increased susceptibility to infections. It is now appreciated that these conditions broadly include variations in the genetic code that cause dysregulated immune function. This review highlights the newly defined PIDs in the 2017 International Union of Immunologic Societies (IUIS) report, current approaches to diagnosing PIDs, and the implications for the future management of PIDs. RECENT FINDINGS With the advances in and increased commercial availability of genetic testing and the adoption of the TREC assay into the US Newborn Screening program, the number of identified PIDs has exponentially risen in the past few decades, reaching over 350 disorders. The IUIS Inborn Errors of Immunity committee acknowledged at least 50 new disorders between 2015 and 2017. Furthermore, given the greater recognition of disorders with primarily immune dysregulation, the committee proposed a more inclusive term of 'inborn errors of immunity' to encompass primary immunodeficiencies and immune dysregulation disorders. SUMMARY This latest IUIS report underscores the rapid expansion in the PID field with technologic advancements in immunogenetics and clinical screening discovering new genetic diseases, and therefore, paving the way to novel therapeutics and precision medicine.
Collapse
Affiliation(s)
- Joyce E Yu
- Division of Allergy, Immunology, and Rheumatology
| | - Jordan S Orange
- Division of Immunogenetics, Department of Pediatrics, Morgan Stanley Children's Hospital of New York Presbyterian, Columbia University Irving Medical Center, New York, USA
| | | |
Collapse
|