1
|
Ijaz MK, Sattar SA, Nims RW, Boone SA, McKinney J, Gerba CP. Environmental dissemination of respiratory viruses: dynamic interdependencies of respiratory droplets, aerosols, aerial particulates, environmental surfaces, and contribution of viral re-aerosolization. PeerJ 2023; 11:e16420. [PMID: 38025703 PMCID: PMC10680453 DOI: 10.7717/peerj.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
During the recent pandemic of COVID-19 (SARS-CoV-2), influential public health agencies such as the World Health Organization (WHO) and the U.S. Centers for Disease Control and Prevention (CDC) have favored the view that SARS CoV-2 spreads predominantly via droplets. Many experts in aerobiology have openly opposed that stance, forcing a vigorous debate on the topic. In this review, we discuss the various proposed modes of viral transmission, stressing the interdependencies between droplet, aerosol, and fomite spread. Relative humidity and temperature prevailing determine the rates at which respiratory aerosols and droplets emitted from an expiratory event (sneezing, coughing, etc.) evaporate to form smaller droplets or aerosols, or experience hygroscopic growth. Gravitational settling of droplets may result in contamination of environmental surfaces (fomites). Depending upon human, animal and mechanical activities in the occupied space indoors, viruses deposited on environmental surfaces may be re-aerosolized (re-suspended) to contribute to aerosols, and can be conveyed on aerial particulate matter such as dust and allergens. The transmission of respiratory viruses may then best be viewed as resulting from dynamic virus spread from infected individuals to susceptible individuals by various physical states of active respiratory emissions, instead of the current paradigm that emphasizes separate dissemination by respiratory droplets, aerosols or by contaminated fomites. To achieve the optimum outcome in terms of risk mitigation and infection prevention and control (IPAC) during seasonal infection peaks, outbreaks, and pandemics, this holistic view emphasizes the importance of dealing with all interdependent transmission modalities, rather than focusing on one modality.
Collapse
Affiliation(s)
- M. Khalid Ijaz
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, United States of America
| | - Syed A. Sattar
- Department of Biochemistry, Microbiology & Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Stephanie A. Boone
- Water & Energy Sustainable Technology Center, University of Arizona, Tucson, AZ, United States of America
| | - Julie McKinney
- Global Research & Development for Lysol and Dettol, Reckitt Benckiser LLC, Montvale, NJ, United States of America
| | - Charles P. Gerba
- Water & Energy Sustainable Technology Center, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
2
|
Popescu IM, Baditoiu LM, Reddy SR, Nalla A, Popovici ED, Margan MM, Anghel M, Laitin SMD, Toma AO, Herlo A, Fericean RM, Baghina N, Anghel A. Environmental Factors Influencing the Dynamics and Evolution of COVID-19: A Systematic Review on the Study of Short-Term Ozone Exposure. Healthcare (Basel) 2023; 11:2670. [PMID: 37830707 PMCID: PMC10572520 DOI: 10.3390/healthcare11192670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023] Open
Abstract
The potential influence of environmental factors, particularly air pollutants such as ozone (O3), on the dynamics and progression of COVID-19 remains a significant concern. This study aimed to systematically review and analyze the current body of literature to assess the impact of short-term ozone exposure on COVID-19 transmission dynamics and disease evolution. A rigorous systematic review was conducted in March 2023, covering studies from January 2020 to January 2023 found in PubMed, Web of Science, and Scopus. We followed the PRISMA guidelines and PROSPERO criteria, focusing exclusively on the effects of short-term ozone exposure on COVID-19. The literature search was restricted to English-language journal articles, with the inclusion and exclusion criteria strictly adhered to. Out of 4674 identified studies, 18 fulfilled the inclusion criteria, conducted across eight countries. The findings showed a varied association between short-term ozone exposure and COVID-19 incidence, severity, and mortality. Some studies reported a higher association between ozone exposure and incidence in institutional settings (OR: 1.06, 95% CI: 1.00-1.13) compared to the general population (OR: 1.00, 95% CI: 0.98-1.03). The present research identified a positive association between ozone exposure and both total and active COVID-19 cases as well as related deaths (coefficient for cases: 0.214; for recoveries: 0.216; for active cases: 0.467; for deaths: 0.215). Other studies also found positive associations between ozone levels and COVID-19 cases and deaths, while fewer reports identified a negative association between ozone exposure and COVID-19 incidence (coefficient: -0.187) and mortality (coefficient: -0.215). Conversely, some studies found no significant association between ozone exposure and COVID-19, suggesting a complex and potentially region-specific relationship. The relationship between short-term ozone exposure and COVID-19 dynamics is complex and multifaceted, indicating both positive and negative associations. These variations are possibly due to demographic and regional factors. Further research is necessary to bridge current knowledge gaps, especially considering the potential influence of short-term O3 exposure on COVID-19 outcomes and the broader implications on public health policy and preventive strategies during pandemics.
Collapse
Affiliation(s)
- Irina-Maria Popescu
- Department of Infectious Diseases, Discipline of Epidemiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (I.-M.P.); (L.M.B.); (E.D.P.); (M.A.); (S.M.D.L.)
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Luminita Mirela Baditoiu
- Department of Infectious Diseases, Discipline of Epidemiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (I.-M.P.); (L.M.B.); (E.D.P.); (M.A.); (S.M.D.L.)
| | - Sandhya Rani Reddy
- Department of General Medicine, Prathima Institute of Medical Sciences, Nagunur 505417, Telangana, India;
| | - Akhila Nalla
- Department of General Medicine, MNR Medical College, Sangareddy 502294, Telangana, India;
| | - Emilian Damian Popovici
- Department of Infectious Diseases, Discipline of Epidemiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (I.-M.P.); (L.M.B.); (E.D.P.); (M.A.); (S.M.D.L.)
| | - Madalin-Marius Margan
- Department of Functional Sciences, Discipline of Public Health, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Mariana Anghel
- Department of Infectious Diseases, Discipline of Epidemiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (I.-M.P.); (L.M.B.); (E.D.P.); (M.A.); (S.M.D.L.)
| | - Sorina Maria Denisa Laitin
- Department of Infectious Diseases, Discipline of Epidemiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (I.-M.P.); (L.M.B.); (E.D.P.); (M.A.); (S.M.D.L.)
| | - Ana-Olivia Toma
- Department of Dermatology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Alexandra Herlo
- Department of Infectious Diseases, Discipline of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Roxana Manuela Fericean
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| | - Nina Baghina
- National Meteorological Administration of Romania, Soseaua Bucuresti-Ploiesti 97, 013686 Bucuresti, Romania;
| | - Andrei Anghel
- Department of Biochemistry and Pharmacology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania;
| |
Collapse
|
3
|
Endaryanto A, Darma A, Sundjaya T, Masita BM, Basrowi RW. The Notorious Triumvirate in Pediatric Health: Air Pollution, Respiratory Allergy, and Infection. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1067. [PMID: 37371298 DOI: 10.3390/children10061067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
A plausible association is suspected among air pollution, respiratory allergic disorder, and infection. These three factors could cause uncontrollable chronic inflammation in the airway tract, creating a negative impact on the physiology of the respiratory system. This review aims to understand the underlying pathophysiology in explaining the association among air pollution, respiratory allergy, and infection in the pediatric population and to capture the public's attention regarding the interaction among these three factors, as they synergistically reduce the health status of children living in polluted countries globally, including Indonesia.
Collapse
Affiliation(s)
- Anang Endaryanto
- Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Andy Darma
- Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Tonny Sundjaya
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12940, Indonesia
| | - Bertri Maulidya Masita
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12940, Indonesia
| | - Ray Wagiu Basrowi
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12940, Indonesia
| |
Collapse
|
4
|
Mathys T, Souza FTD, Barcellos DDS, Molderez I. The relationship among air pollution, meteorological factors and COVID-19 in the Brussels Capital Region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:158933. [PMID: 36179850 PMCID: PMC9514957 DOI: 10.1016/j.scitotenv.2022.158933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/06/2022] [Accepted: 09/18/2022] [Indexed: 06/01/2023]
Abstract
In great metropoles, there is a need for a better understanding of the spread of COVID-19 in an outdoor context with environmental parameters. Many studies on this topic have been carried out worldwide. However, there is conflicting evidence regarding the influence of environmental variables on the transmission, hospitalizations and deaths from COVID-19, even though there are plausible scientific explanations that support this, especially air quality and meteorological factors. Different urban contexts, methodological approaches and even the limitations of ecological studies are some possible explanations for this issue. That is why methodological experimentations in different regions of the world are important so that scientific knowledge can advance in this aspect. This research analyses the relationship between air pollution, meteorological factors and COVID-19 in the Brussels Capital Region. We use a data mining approach that is capable of extracting patterns in large databases with diverse taxonomies. Data on air pollution, meteorological, and epidemiological variables were processed in time series for the multivariate analysis and the classification based on association. The environmental variables associated with COVID-19-related deaths, cases and hospitalization were PM2.5, O3, NO2, black carbon, radiation, air pressure, wind speed, dew point, temperature and precipitation. These environmental variables combined with epidemiological factors were able to predict intervals of hospitalization, cases and deaths from COVID-19. These findings confirm the influence of meteorological and air quality variables in the Brussels region on deaths and cases of COVID-19 and can guide public policies and provide useful insights for high-level governmental decision-making concerning COVID-19. However, it is necessary to consider intrinsic elements of this study that may have influenced our results, such as the use of air quality aggregated data, ecological fallacy, focus on acute effects in the time-series study, the underreporting of COVID-19, and the lack of behavioral factors.
Collapse
Affiliation(s)
- Timo Mathys
- Centre for Economics and Corporate Sustainability (CEDON), KU Leuven, Warmoesberg 26, Brussels, Belgium.
| | - Fábio Teodoro de Souza
- Centre for Economics and Corporate Sustainability (CEDON), KU Leuven, Warmoesberg 26, Brussels, Belgium; Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Parana, Brazil.
| | - Demian da Silveira Barcellos
- Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Parana, Brazil.
| | - Ingrid Molderez
- Centre for Economics and Corporate Sustainability (CEDON), KU Leuven, Warmoesberg 26, Brussels, Belgium.
| |
Collapse
|
5
|
Hoskovec L, Martenies S, Burket TL, Magzamen S, Wilson A. Association between air pollution and COVID-19 disease severity via Bayesian multinomial logistic regression with partially missing outcomes. ENVIRONMETRICS 2022; 33:e2751. [PMID: 35945947 PMCID: PMC9353392 DOI: 10.1002/env.2751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 05/14/2023]
Abstract
Recent ecological analyses suggest air pollution exposure may increase susceptibility to and severity of coronavirus disease 2019 (COVID-19). Individual-level studies are needed to clarify the relationship between air pollution exposure and COVID-19 outcomes. We conduct an individual-level analysis of long-term exposure to air pollution and weather on peak COVID-19 severity. We develop a Bayesian multinomial logistic regression model with a multiple imputation approach to impute partially missing health outcomes. Our approach is based on the stick-breaking representation of the multinomial distribution, which offers computational advantages, but presents challenges in interpreting regression coefficients. We propose a novel inferential approach to address these challenges. In a simulation study, we demonstrate our method's ability to impute missing outcome data and improve estimation of regression coefficients compared to a complete case analysis. In our analysis of 55,273 COVID-19 cases in Denver, Colorado, increased annual exposure to fine particulate matter in the year prior to the pandemic was associated with increased risk of severe COVID-19 outcomes. We also found COVID-19 disease severity to be associated with interactions between exposures. Our individual-level analysis fills a gap in the literature and helps to elucidate the association between long-term exposure to air pollution and COVID-19 outcomes.
Collapse
Affiliation(s)
- Lauren Hoskovec
- Department of StatisticsColorado State UniversityFort CollinsColoradoUSA
| | - Sheena Martenies
- Department of Kinesiology and Community HealthUniversity of Illinois at Urbana‐ChampaignUrbana‐ChampaignIllinoisUSA
| | - Tori L. Burket
- Denver Department of Public Health and EnvironmentDenverColoradoUSA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Ander Wilson
- Department of StatisticsColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
6
|
Vonk JM, Roukema J. Air pollution susceptibility in children with asthma and obesity: tidal volume as key player? Eur Respir J 2022; 59:59/3/2102505. [PMID: 35241459 DOI: 10.1183/13993003.02505-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Judith M Vonk
- University of Groningen, University Medical Center Groningen, Dept of Epidemiology, Groningen, The Netherlands .,University of Groningen, University Medical Center Groningen, Groningen Research Center for Asthma and COPD (GRIAC), Groningen, The Netherlands.,Both authors contributed equally
| | - Jolt Roukema
- Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands.,Both authors contributed equally
| |
Collapse
|
7
|
La Verde G, Artiola V, La Commara M, D’Avino V, Angrisani L, Sabatino G, Pugliese M. COVID-19 and the Additional Radiological Risk during the Lockdown Period in the Province of Naples City (South Italy). Life (Basel) 2022; 12:246. [PMID: 35207532 PMCID: PMC8874998 DOI: 10.3390/life12020246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
The lockdown restrictions, as a first solution to contain the spread of the COVID-19 pandemic, have affected everyone's life and habits, including the time spent at home. The latter factor has drawn attention to indoor air quality and the impact on human health, particularly for chemical pollutants. This study investigated how the increasing time indoor influenced exposure to natural radioactive substances, such as radon gas. To calculate the radiological risk, we considered the most consolidated indices used for radiation protection: annual effective dose, excess lifetime cancer risk, and the lung cancer case. Furthermore, two different exposure times were considered: pre-lockdown and post-lockdown. The lockdown increased the indoor exposure time by 4% and, consequently, the radiological risk factors by 9%. Furthermore, the reference value of 300 Bq/m3, considered acceptable for human radiation protection, may need to be lowered further in the case of conditions similar to those of the lockdown period.
Collapse
Affiliation(s)
- Giuseppe La Verde
- National Institute for Nuclear Physics (INFN), Via Cinthia ed. 6, 80126 Naples, Italy; (M.L.C.); (V.D.); (M.P.)
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cinthia ed. 6, 80126 Naples, Italy
| | - Valeria Artiola
- Centre for Advanced Metrology and Technological Services (CeSMA), University of Naples Federico II, Corso Nicolangelo Protopisani, 80146 Naples, Italy; (V.A.); (G.S.)
| | - Marco La Commara
- National Institute for Nuclear Physics (INFN), Via Cinthia ed. 6, 80126 Naples, Italy; (M.L.C.); (V.D.); (M.P.)
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Naples, Italy
| | - Vittoria D’Avino
- National Institute for Nuclear Physics (INFN), Via Cinthia ed. 6, 80126 Naples, Italy; (M.L.C.); (V.D.); (M.P.)
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cinthia ed. 6, 80126 Naples, Italy
| | - Leopoldo Angrisani
- Department of Information Technology and Electrical Engineering, University of Naples Federico II, Via Claudio, 21, 80125 Naples, Italy;
| | - Giuseppe Sabatino
- Centre for Advanced Metrology and Technological Services (CeSMA), University of Naples Federico II, Corso Nicolangelo Protopisani, 80146 Naples, Italy; (V.A.); (G.S.)
| | - Mariagabriella Pugliese
- National Institute for Nuclear Physics (INFN), Via Cinthia ed. 6, 80126 Naples, Italy; (M.L.C.); (V.D.); (M.P.)
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cinthia ed. 6, 80126 Naples, Italy
| |
Collapse
|
8
|
Parra-Lucares A, Segura P, Rojas V, Pumarino C, Saint-Pierre G, Toro L. Emergence of SARS-CoV-2 Variants in the World: How Could This Happen? Life (Basel) 2022; 12:194. [PMID: 35207482 PMCID: PMC8879166 DOI: 10.3390/life12020194] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has had a significant global impact, with more than 280,000,000 people infected and 5,400,000 deaths. The use of personal protective equipment and the anti-SARS-CoV-2 vaccination campaigns have reduced infection and death rates worldwide. However, a recent increase in infection rates has been observed associated with the appearance of SARS-CoV-2 variants, including the more recently described lineage B.1.617.2 (Delta variant) and lineage B.1.1.529/BA.1 (Omicron variant). These new variants put the effectiveness of international vaccination at risk, with the appearance of new outbreaks of COVID-19 throughout the world. This emergence of new variants has been due to multiple predisposing factors, including molecular characteristics of the virus, geographic and environmental conditions, and the impact of social determinants of health that favor the genetic diversification of SARS-CoV-2. We present a literature review on the most recent information available on the emergence of new variants of SARS-CoV-2 in the world. We analyzed the biological, geographical, and sociocultural factors that favor the development of these variants. Finally, we evaluate the surveillance strategies for the early detection of new variants and prevent their distribution outside these regions.
Collapse
Affiliation(s)
- Alfredo Parra-Lucares
- Division of Critical Care Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile; (A.P.-L.); (V.R.)
| | - Paula Segura
- Department of Anatomic Pathology, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile;
| | - Verónica Rojas
- Division of Critical Care Medicine, Department of Medicine, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile; (A.P.-L.); (V.R.)
- Centro de Investigación Clínica Avanzada, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile
| | - Catalina Pumarino
- School of Medicine, Faculty of Medicine, Universidad de Chile, 8380456 Santiago, Chile;
| | - Gustavo Saint-Pierre
- Microbiology Unit, Clinical Laboratory, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile;
| | - Luis Toro
- Centro de Investigación Clínica Avanzada, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile
- Division of Nephrology, Department of Medicine, Hospital Clínico Universidad de Chile, 8380456 Santiago, Chile
- Critical Care Unit, Clínica Las Condes, 7591047 Santiago, Chile
| |
Collapse
|
9
|
Curtis L. PM 2.5, NO 2, wildfires, and other environmental exposures are linked to higher Covid 19 incidence, severity, and death rates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54429-54447. [PMID: 34410599 PMCID: PMC8374108 DOI: 10.1007/s11356-021-15556-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/17/2021] [Indexed: 05/09/2023]
Abstract
Numerous studies have linked outdoor levels of PM2.5, PM10, NO2, O3, SO2, and other air pollutants to significantly higher rates of Covid 19 morbidity and mortality, although the rate in which specific concentrations of pollutants increase Covid 19 morbidity and mortality varies widely by specific country and study. As little as a 1-μg/m3 increase in outdoor PM2.5 is estimated to increase rates of Covid 19 by as much as 0.22 to 8%. Two California studies have strongly linked heavy wildfire burning periods with significantly higher outdoor levels of PM2.5 and CO as well as significantly higher rates of Covid 19 cases and deaths. Active smoking has also been strongly linked significantly increased risk of Covid 19 severity and death. Other exposures possibly related to greater risk of Covid 19 morbidity and mortality include incense, pesticides, heavy metals, dust/sand, toxic waste sites, and volcanic emissions. The exact mechanisms in which air pollutants increase Covid 19 infections are not fully understood, but are probably related to pollutant-related oxidation and inflammation of the lungs and other tissues and to the pollutant-driven alternation of the angiotensin-converting enzyme 2 in respiratory and other cells.
Collapse
Affiliation(s)
- Luke Curtis
- East Carolina University, Greenville, NC, 5371 Knollwood Parkway Court #F, Hazelwood, MO, 63042, USA.
| |
Collapse
|