1
|
Haque R, Alam K, Gow J, Neville C, Keramat SA. Age and Gender Differences in the Relationship Between Chronic Pain and Dementia Among Older Australians. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2025; 28:562-570. [PMID: 39127253 DOI: 10.1016/j.jval.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/11/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVES Chronic pain is a highly debilitating condition that affects older adults and has the potential to increase their odds of experiencing cognitive impairment. The primary objective of this study was to examine the correlation between chronic pain and dementia. Additionally, this research endeavors to ascertain whether the association between chronic pain and dementia differs by age and gender. METHODS Cross-sectional data were derived from the Survey of Disability, Ageing, and Carers. A total of 20 671 and 20 081 participants aged 65 years and older in 2015 and 2018, respectively, were included in this study. The pooled association between chronic pain and dementia was assessed using a multivariable logistic regression model. Furthermore, the study also examined the multiplicative interaction effects between chronic pain and age, as well as chronic pain and gender, with dementia. RESULTS The pooled analysis demonstrated that chronic pain was associated with a heightened odds of dementia (adjusted odds ratio 1.95; 95% CI 1.85-2.05) among older Australians compared with their counterparts without chronic pain. The interaction effect indicated that individuals with chronic pain across all age groups exhibited increased odds of living with dementia. Additionally, women with chronic pain had higher odds of dementia compared with their counterparts without chronic pain and being male. CONCLUSIONS A continuous, coordinated, and tailored healthcare strategy is necessary to determine the pain management goals and explore early treatment options for chronic pain in older adults, particularly in groups with the greatest need.
Collapse
Affiliation(s)
- Rezwanul Haque
- School of Business, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Khorshed Alam
- School of Business, University of Southern Queensland, Toowoomba, Queensland, Australia; Centre for Health Research, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Jeff Gow
- School of Business, University of Southern Queensland, Toowoomba, Queensland, Australia; Centre for Health Research, University of Southern Queensland, Toowoomba, Queensland, Australia; School of Accounting, Economics and Finance, University of KwaZulu-Natal, Durban, South Africa
| | - Christine Neville
- School of Nursing and Midwifery, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Syed Afroz Keramat
- Centre for Health Services Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Wang Y, Ortiz R, Chang A, Nasseef T, Rubalcaba N, Munson C, Ghaw A, Balaji S, Kwon Y, Athreya D, Kedharnath S, Kulkarni PP, Ferris CF. Following changes in brain structure and function with multimodal MRI in a year-long prospective study on the development of Type 2 diabetes. FRONTIERS IN RADIOLOGY 2025; 5:1510850. [PMID: 40018732 PMCID: PMC11865244 DOI: 10.3389/fradi.2025.1510850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
Aims To follow disease progression in a rat model of Type 2 diabetes using multimodal MRI to assess changes in brain structure and function. Material and methods Female rats (n = 20) were fed a high fat/high fructose diet or lab chow starting at 90 days of age. Diet fed rats were given streptozotocin to compromise pancreatic beta cells, while chow fed controls received vehicle. At intervals of 3, 6, 9, and 12 months, rats were tested for changes in behavior and sensitivity to pain. Brain structure and function were assessed using voxel based morphometry, diffusion weighted imaging and functional connectivity. Results Diet fed rats presented with elevated plasma glucose levels as early as 3 months and a significant gain in weight by 6 months as compared to controls. There were no significant changes in cognitive or motor behavior over the yearlong study but there was a significant increase in sensitivity to peripheral pain in diet fed rats. There were region specific decreases in brain volume e.g., basal ganglia, thalamus and brainstem in diet fed rats. These same regions showed elevated measures of water diffusivity evidence of putative vasogenic edema. By 6 months, widespread hyperconnectivity was observed across multiple brain regions. By 12 months, only the cerebellum and hippocampus showed increased connectivity, while the hypothalamus showed decreased connectivity in diet fed rats. Conclusions Noninvasive multimodal MRI identified site specific changes in brain structure and function in a yearlong longitudinal study of Type 2 diabetes in rats. The identified diabetic-induced neuropathological sites may serve as biomarkers for evaluating the efficacy of novel therapeutics.
Collapse
Affiliation(s)
- Yingjie Wang
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Richard Ortiz
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Arnold Chang
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Taufiq Nasseef
- Department of Mathematics, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Riyadh, Saudi
| | - Natalia Rubalcaba
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Chandler Munson
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Ashley Ghaw
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Shreyas Balaji
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Yeani Kwon
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Deepti Athreya
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Shruti Kedharnath
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Praveen P. Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
| | - Craig F. Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, United States
- Department of Psychology and Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| |
Collapse
|
3
|
Bennett EE, Liu C, Stapp EK, Gianattasio KZ, Zimmerman SC, Wei J, Griswold ME, Fitzpatrick AL, Gottesman RF, Launer LJ, Windham BG, Levine DA, Fohner AE, Glymour MM, Power MC. Target Trial Emulation Using Cohort Studies: Estimating the Effect of Antihypertensive Medication Initiation on Incident Dementia. Epidemiology 2025; 36:48-59. [PMID: 39352756 PMCID: PMC11598662 DOI: 10.1097/ede.0000000000001802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
BACKGROUND Observational studies link high midlife systolic blood pressure to increased dementia risk. However, the synthesis of evidence from randomized controlled trials has not definitively demonstrated that antihypertensive medication use reduces dementia risk. Here, we emulate target trials of antihypertensive medication initiation on incident dementia using three cohort studies, with attention to potential violations of necessary assumptions. METHODS We emulated trials of antihypertensive medication initiation on incident dementia using data from the Atherosclerosis Risk in Communities study, Cardiovascular Health Study, and Health and Retirement Study. We used data-driven methods to restrict participants to initiators and noninitiators with overlap in propensity scores and positive control outcomes to look for violations of positivity and exchangeability assumptions. RESULTS Analyses were limited by the small number of cohort participants who met eligibility criteria. Associations between antihypertensive medication initiation and incident dementia were inconsistent and imprecise (Atherosclerosis Risk in Communities: HR = 0.30 [0.05, 1.93]; Cardiovascular Health Study: HR = 0.66 [0.27, 1.64]; Health and Retirement Study: HR = 1.09 [0.75, 1.59]). More stringent propensity score restrictions had little effect on findings. Sensitivity analyses using a positive control outcome unexpectedly suggested antihypertensive medication initiation increased the risk of coronary heart disease in all three samples. CONCLUSIONS Positive control outcome analyses suggested substantial residual confounding in effect estimates from our target trials, precluding conclusions about the impact of antihypertensive medication initiation on dementia risk through target trial emulation. Formalized processes for identifying violations of necessary assumptions will strengthen confidence in target trial emulation and avoid inappropriate confidence in emulated trial results.
Collapse
Affiliation(s)
- Erin E. Bennett
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Chelsea Liu
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Emma K. Stapp
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Kan Z. Gianattasio
- Department of Health Care Evaluation, NORC at the University of Chicago, Bethesda, MD, USA
| | - Scott C. Zimmerman
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, USA
| | - Jingkai Wei
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Michael E. Griswold
- Memory Impairment and Neurodegenerative Dementia Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Annette L. Fitzpatrick
- Department of Family Medicine, School of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | | | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute of Aging, Bethesda, MD, USA
| | - B. Gwen Windham
- Memory Impairment and Neurodegenerative Dementia Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Deborah A. Levine
- Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alison E. Fohner
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - M. Maria Glymour
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, USA
| | - Melinda C. Power
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| |
Collapse
|
4
|
Wang J, Lin P, Li D, Yang B, Wang J, Feng M, Cheng X. Analysis of the Correlation Between Toxoplasma gondii Seropositivity and Alzheimer's Disease. Pathogens 2024; 13:1021. [PMID: 39599575 PMCID: PMC11597115 DOI: 10.3390/pathogens13111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial brain disorder and infectious diseases are considered as one of the predisposing factors for AD. Toxoplasma gondii, an obligate intracellular parasitic protozoan, is suspected of being associated with AD. Serum samples were collected from 109 AD patients and 114 age-matched healthy controls. ELISA was performed using recombinant T. gondii cyst wall protein 1 (CST1) to detect T. gondii antibodies. A parallel experiment was performed with Toxoplasma gondii tachyzoites lysate protein. To analyze whether factors associated with the onset of AD included chronic T. gondii infection, a multivariate logistic regression model was applied, further validating the correlation between chronic T. gondii infection and AD. AD patients exhibited significantly higher levels of Toxoplasma-specific antibodies in their serum compared to the control group, with statistically significant differences (p < 0.05). Multivariate logistic regression analysis revealed that Toxoplasma infection is a risk factor for AD (p < 0.01), and the CST1 antigen can significantly improve the model's performance in predicting the occurrence of AD. The results indicate that chronic infection with Toxoplasma gondii could be one of the risk factors for the development of AD, potentially predisposing individuals with underlying health conditions to the disease. This further validates the correlation between Toxoplasma gondii and AD.
Collapse
Affiliation(s)
- Jianjun Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China;
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (P.L.); (B.Y.); (J.W.)
| | - Ping Lin
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (P.L.); (B.Y.); (J.W.)
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China;
| | - Dan Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China;
| | - Biyu Yang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (P.L.); (B.Y.); (J.W.)
| | - Jiaqi Wang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (P.L.); (B.Y.); (J.W.)
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (P.L.); (B.Y.); (J.W.)
| | - Xunjia Cheng
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China;
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; (P.L.); (B.Y.); (J.W.)
| |
Collapse
|
5
|
Chatterjee A, Lee S, Diaz V, Saloner R, Sanderson-Cimino M, deCarli C, Maillard P, Hinman J, Vossel K, Casaletto KB, Staffaroni AM, Paolillo EW, Kramer JH. Associations of cerebrovascular disease and Alzheimer's disease pathology with cognitive decline: Analysis of the National Alzheimer's Coordinating Center Uniform Data Set. Neurobiol Aging 2024; 142:1-7. [PMID: 39024720 PMCID: PMC12087374 DOI: 10.1016/j.neurobiolaging.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Cerebrovascular disease (CVD) and Alzheimer's disease (AD) often co-occur and may impact specific cognitive domains. This study's goal was to determine effects of CVD and AD burden on cross-sectional and longitudinal executive function (EF) and memory in older adults. Longitudinally followed participants from the National Alzheimer Coordinating Center database (n = 3342) were included. Cognitive outcomes were EF and memory composite scores. Baseline CVD presence was defined by moderate-to-severe white matter hyperintensities or lacunar infarct on MRI. Baseline AD pathology was defined by amyloid positivity via PET or CSF. Linear mixed models examined effects of CVD, AD, and time on cognitive outcomes, controlling for sex, education, baseline age, MoCA score, and total number of study visits. At baseline, CVD associated with lower EF (p < 0.001), while AD associated with lower EF and memory (ps < 0.001). Longitudinally only AD associated with faster declines in memory and EF (ps < 0.001). These results extend our understanding of CVD and AD pathology, highlighting that CVD does not necessarily indicate accelerated decline.
Collapse
Affiliation(s)
- Ankita Chatterjee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, USA.
| | - Shannon Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Valentina Diaz
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Rowan Saloner
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Mark Sanderson-Cimino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Charles deCarli
- Department of Neurology, University of California, Davis, USA
| | | | - Jason Hinman
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Keith Vossel
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Kaitlin B Casaletto
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Adam M Staffaroni
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Emily W Paolillo
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, USA
| |
Collapse
|
6
|
Yang Y, Tong M, de la Monte SM. Early-Stage Moderate Alcohol Feeding Dysregulates Insulin-Related Metabolic Hormone Expression in the Brain: Potential Links to Neurodegeneration Including Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:1211-1228. [PMID: 39247872 PMCID: PMC11380283 DOI: 10.3233/adr-240026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Background Alzheimer's disease (AD), one of the most prevalent causes of dementia, is mainly sporadic in occurrence but driven by aging and other cofactors. Studies suggest that excessive alcohol consumption may increase AD risk. Objective Our study examined the degree to which short-term moderate ethanol exposure leads to molecular pathological changes of AD-type neurodegeneration. Methods Long Evans male and female rats were fed for 2 weeks with isocaloric liquid diets containing 24% or 0% caloric ethanol (n = 8/group). The frontal lobes were used to measure immunoreactivity to AD biomarkers, insulin-related endocrine metabolic molecules, and proinflammatory cytokines/chemokines by duplex or multiplex enzyme-linked immunosorbent assays (ELISAs). Results Ethanol significantly increased frontal lobe levels of phospho-tau, but reduced Aβ, ghrelin, glucagon, leptin, PAI, IL-2, and IFN-γ. Conclusions Short-term effects of chronic ethanol feeding produced neuroendocrine molecular pathologic changes reflective of metabolic dysregulation, together with abnormalities that likely contribute to impairments in neuroplasticity. The findings suggest that chronic alcohol consumption rapidly establishes a platform for impairments in energy metabolism that occur in both the early stages of AD and alcohol-related brain degeneration.
Collapse
Affiliation(s)
- Yiwen Yang
- Molecular Pharmacology, Physiology and Biotechnology Graduate Program, Brown University, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Suzanne M. de la Monte
- Department of Medicine, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Lifespan Academic Institutions, the Providence VA Medical Center, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Neurology and Neurosurgery, Rhode Island Hospital, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
7
|
Liao K, Lou Q. Alzheimer's disease increases the risk of erectile dysfunction independent of cardiovascular diseases: A mendelian randomization study. PLoS One 2024; 19:e0303338. [PMID: 38870203 PMCID: PMC11175418 DOI: 10.1371/journal.pone.0303338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/23/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Previous research has underscored the correlation between Alzheimer's disease (AD) and erectile dysfunction (ED). However, due to inherent limitations of observational studies, the causative relationship remains inconclusive. METHODS Utilizing publicly available data from genome-wide association studies (GWAS) summary statistics, this study probed the potential causal association between AD and ED using univariate Mendelian randomization (MR). Further, the multivariable MR assessed the confounding effects of six cardiovascular diseases (CVDs). The primary approach employed was inverse variance weighted (IVW), supplemented by three additional methods. A series of sensitivity analyses were conducted to ensure the robustness of the results. RESULTS In the forward MR analysis, the IVW method revealed causal evidence of genetically predicted AD being a risk factor for ED (OR = 1.077, 95% CI 1.007∼1.152, P = 0.031). Reverse analysis did not demonstrate any causal evidence linking ED to AD (OR = 1.018, 95% CI 0.974∼1.063, P = 0.430). Multivariable MR analysis showed that after adjusting for coronary heart disease (OR = 1.082, 95% CI 0.009∼1.160, P = 0.027), myocardial infarction (OR = 1.085, 95% CI 1.012∼1.163, P = 0.022), atrial fibrillation (OR = 1.076, 95% CI 1.002∼1.154, P = 0.043), heart failure (OR = 1.103, 95% CI 1.024∼1.188, P = 0.010), ischemic stroke (OR = 1.079, 95% CI 1.009∼1.154, P = 0.027), hypertension (OR = 1.092, 95% CI 1.011∼1.180, P = 0.025), and all models (OR = 1.115, 95% CI 1.024∼1.214, P = 0.012), the causal association between AD and ED persisted. Sensitivity analyses confirmed the absence of pleiotropy, heterogeneity, and outliers, validating the robustness of our results (P > 0.05). CONCLUSIONS This MR study consistently evidences a causal effect of genetically predicted AD on the risk of ED, independent of certain CVDs, yet offers no evidence for a reverse effect from ED.
Collapse
Affiliation(s)
- Kaisen Liao
- Department of Urology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qiang Lou
- Department of Andrology, the Second Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
8
|
Nashiro K, Yoo HJ, Cho C, Kim AJ, Nasseri P, Min J, Dahl MJ, Mercer N, Choupan J, Choi P, Lee HRJ, Choi D, Alemu K, Herrera AY, Ng NF, Thayer JF, Mather M. Heart rate and breathing effects on attention and memory (HeartBEAM): study protocol for a randomized controlled trial in older adults. Trials 2024; 25:190. [PMID: 38491546 PMCID: PMC10941428 DOI: 10.1186/s13063-024-07943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/18/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND In healthy people, the "fight-or-flight" sympathetic system is counterbalanced by the "rest-and-digest" parasympathetic system. As we grow older, the parasympathetic system declines as the sympathetic system becomes hyperactive. In our prior heart rate variability biofeedback and emotion regulation (HRV-ER) clinical trial, we found that increasing parasympathetic activity through daily practice of slow-paced breathing significantly decreased plasma amyloid-β (Aβ) in healthy younger and older adults. In healthy adults, higher plasma Aβ is associated with greater risk of Alzheimer's disease (AD). Our primary goal of this trial is to reproduce and extend our initial findings regarding effects of slow-paced breathing on Aβ. Our secondary objectives are to examine the effects of daily slow-paced breathing on brain structure and the rate of learning. METHODS Adults aged 50-70 have been randomized to practice one of two breathing protocols twice daily for 9 weeks: (1) "slow-paced breathing condition" involving daily cognitive training followed by slow-paced breathing designed to maximize heart rate oscillations or (2) "random-paced breathing condition" involving daily cognitive training followed by random-paced breathing to avoid increasing heart rate oscillations. The primary outcomes are plasma Aβ40 and Aβ42 levels and plasma Aβ42/40 ratio. The secondary outcomes are brain perivascular space volume, hippocampal volume, and learning rates measured by cognitive training performance. Other pre-registered outcomes include plasma pTau-181/tTau ratio and urine Aβ42. Recruitment began in January 2023. Interventions are ongoing and will be completed by the end of 2023. DISCUSSION Our HRV-ER trial was groundbreaking in demonstrating that a behavioral intervention can reduce plasma Aβ levels relative to a randomized control group. We aim to reproduce these findings while testing effects on brain clearance pathways and cognition. TRIAL REGISTRATION ClinicalTrials.gov NCT05602220. Registered on January 12, 2023.
Collapse
Affiliation(s)
- Kaoru Nashiro
- University of Southern California, Los Angeles, USA.
| | - Hyun Joo Yoo
- University of Southern California, Los Angeles, USA
| | | | | | | | - Jungwon Min
- University of Southern California, Los Angeles, USA
| | - Martin J Dahl
- University of Southern California, Los Angeles, USA
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Noah Mercer
- University of Southern California, Los Angeles, USA
| | - Jeiran Choupan
- University of Southern California, Los Angeles, USA
- NeuroScope Inc., New York, USA
| | - Paul Choi
- University of Southern California, Los Angeles, USA
| | | | - David Choi
- University of Southern California, Los Angeles, USA
| | | | | | | | | | - Mara Mather
- University of Southern California, Los Angeles, USA
| |
Collapse
|
9
|
Nouraeinejad A. The bidirectional links between coronavirus disease 2019 and Alzheimer's disease. Int J Neurosci 2024:1-15. [PMID: 38451045 DOI: 10.1080/00207454.2024.2327403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Coronavirus disease 2019 (COVID-19) can be a critical disease, particularly in the elderly and those with comorbidities. Patients with Alzheimer's disease are more vulnerable to COVID-19 consequences. The latest results have indicated some common risk factors for both diseases. An understanding of the pathological link between COVID-19 and Alzheimer's disease will help develop timely strategies to treat both diseases. This review explores the bidirectional links between COVID-19 and Alzheimer's disease.
Collapse
Affiliation(s)
- Ali Nouraeinejad
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London (UCL), London, United Kingdom
| |
Collapse
|
10
|
Papp KV, Jutten RJ, Soberanes D, Weizenbaum E, Hsieh S, Molinare C, Buckley R, Betensky RA, Marshall GA, Johnson KA, Rentz DM, Sperling R, Amariglio RE. Early Detection of Amyloid-Related Changes in Memory among Cognitively Unimpaired Older Adults with Daily Digital Testing. Ann Neurol 2024; 95:507-517. [PMID: 37991080 PMCID: PMC10922126 DOI: 10.1002/ana.26833] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE This study was undertaken to determine whether assessing learning over days reveals Alzheimer disease (AD) biomarker-related declines in memory consolidation that are otherwise undetectable with single time point assessments. METHODS Thirty-six (21.9%) cognitively unimpaired older adults (aged 60-91 years) were classified with elevated β-amyloid (Aβ+) and 128 (78%) were Aβ- using positron emission tomography with 11C Pittsburgh compound B. Participants completed the multiday Boston Remote Assessment for Neurocognitive Health (BRANCH) for 12 min/day on personal devices (ie, smartphones, laptops), which captures the trajectory of daily learning of the same content on 3 repeated tests (Digit Signs, Groceries-Prices, Face-Name). Learning is computed as a composite of accuracy across all 3 measures. Participants also completed standard in-clinic cognitive tests as part of the Preclinical Alzheimer's Cognitive Composite (PACC-5), with 123 participants undergoing PACC-5 follow-up after 1.07 (standard deviation = 0.25) years. RESULTS At the cross-section, there were no statistically significant differences in performance between Aβ+/- participants on any standard in-clinic cognitive tests (eg, PACC-5) or on day 1 of multiday BRANCH. Aβ+ participants exhibited diminished 7-day learning curves on multiday BRANCH after 4 days of testing relative to Aβ- participants (Cohen d = 0.49, 95% confidence interval = 0.10-0.87). Diminished learning curves were associated with greater annual PACC-5 decline (r = 0.54, p < 0.001). INTERPRETATION Very early Aβ-related memory declines can be revealed by assessing learning over days, suggesting that failures in memory consolidation predate other conventional amnestic deficits in AD. Repeated digital memory assessments, increasingly feasible and uniquely able to assess memory consolidation over short time periods, have the potential to be transformative for detecting the earliest cognitive changes in preclinical AD. ANN NEUROL 2024;95:507-517.
Collapse
Affiliation(s)
- Kathryn V. Papp
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Roos J. Jutten
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Daniel Soberanes
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Emma Weizenbaum
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129
| | - Stephanie Hsieh
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Cassidy Molinare
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Rachel Buckley
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Rebecca A. Betensky
- Department of Biostatistics, New York University School of Global Public Health, New York, NY, 10003
| | - Gad A. Marshall
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Keith A Johnson
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
- Department of Radiology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Dorene M. Rentz
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Reisa Sperling
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Rebecca E. Amariglio
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Neurology, Massachusetts General Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
11
|
Chib S, Devi S, Chalotra R, Mittal N, Singh TG, Kumar P, Singh R. Cross Talks between CNS and CVS Diseases: An Alliance to Annihilate. Curr Cardiol Rev 2024; 20:63-76. [PMID: 38441007 PMCID: PMC11284694 DOI: 10.2174/011573403x278550240221112636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 03/06/2024] Open
Abstract
Cardiovascular and neurological diseases cause substantial morbidity and mortality globally. Moreover, cardiovascular diseases are the leading cause of death globally. About 17.9 million people are affected by cardiovascular diseases and 6.8 million people die every year due to neurological diseases. The common neurologic manifestations of cardiovascular illness include stroke syndrome which is responsible for unconsciousness and several other morbidities significantly diminished the quality of life of patients. Therefore, it is prudent need to explore the mechanistic and molecular connection between cardiovascular disorders and neurological disorders. The present review emphasizes the association between cardiovascular and neurological diseases specifically Parkinson's disease, Alzheimer's disease, and Huntington's disease.
Collapse
Affiliation(s)
- Shivani Chib
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Sushma Devi
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Neeraj Mittal
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Thakur Gurjeet Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Puneet Kumar
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
12
|
Morris EP, Turney IC, Palms JD, Zaheed AB, Sol K, Amarante E, Beato J, Chesebro AG, Morales CD, Manly JJ, Brickman AM, Zahodne LB. Racial and ethnic differences in the relationship between financial worry and white matter hyperintensities in Latinx, non-Latinx Black, and non-Latinx White older adults. Neurobiol Aging 2023; 129:149-156. [PMID: 37331245 PMCID: PMC10878173 DOI: 10.1016/j.neurobiolaging.2023.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Socioeconomic status (SES) is associated with white matter hyperintensities (WMHs) and contributes to racial and ethnic health disparities. However, traditional measures of SES may not accurately represent individual financial circumstances among non-Latinx Black and Latinx older adults due to longstanding structural inequities. This study examined associations between multiple SES indicators (education, income, subjective financial worry) and WMHs across non-Latinx Black, Latinx, and non-Latinx White older adults in the Washington Heights-Inwood Columbia Aging Project (N = 662). Latinx participants reported the lowest SES and greatest financial worry, while Black participants evidenced the most WMHs. Greater financial worry was associated with higher WMHs volume above and beyond education and income, which were not associated with WMHs. However, this association was only evident among Latinx older adults. These results provide evidence for the minority poverty hypothesis and highlight the need for systemic socioeconomic interventions to alleviate brain health disparities in older adulthood.
Collapse
Affiliation(s)
- Emily P Morris
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
| | - Indira C Turney
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jordan D Palms
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Afsara B Zaheed
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Ketlyne Sol
- Social Environment and Health Program, Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Erica Amarante
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Juliet Beato
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Anthony G Chesebro
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Clarissa D Morales
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jennifer J Manly
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Laura B Zahodne
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
Rashid B, Glasser MF, Nichols T, Van Essen D, Juttukonda MR, Schwab NA, Greve DN, Yacoub E, Lovely A, Terpstra M, Harms MP, Bookheimer SY, Ances BM, Salat DH, Arnold SE. Cardiovascular and metabolic health is associated with functional brain connectivity in middle-aged and older adults: Results from the Human Connectome Project-Aging study. Neuroimage 2023; 276:120192. [PMID: 37247763 PMCID: PMC10330931 DOI: 10.1016/j.neuroimage.2023.120192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023] Open
Abstract
Several cardiovascular and metabolic indicators, such as cholesterol and blood pressure have been associated with altered neural and cognitive health as well as increased risk of dementia and Alzheimer's disease in later life. In this cross-sectional study, we examined how an aggregate index of cardiovascular and metabolic risk factor measures was associated with correlation-based estimates of resting-state functional connectivity (FC) across a broad adult age-span (36-90+ years) from 930 volunteers in the Human Connectome Project Aging (HCP-A). Increased (i.e., worse) aggregate cardiometabolic scores were associated with reduced FC globally, with especially strong effects in insular, medial frontal, medial parietal, and superior temporal regions. Additionally, at the network-level, FC between core brain networks, such as default-mode and cingulo-opercular, as well as dorsal attention networks, showed strong effects of cardiometabolic risk. These findings highlight the lifespan impact of cardiovascular and metabolic health on whole-brain functional integrity and how these conditions may disrupt higher-order network integrity.
Collapse
Affiliation(s)
- Barnaly Rashid
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129, United States; Harvard Medical School, Boston, MA, United States.
| | - Matthew F Glasser
- Washington University School of Medicine, St. Louis, MO, United States
| | | | - David Van Essen
- Washington University School of Medicine, St. Louis, MO, United States
| | - Meher R Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129, United States; Harvard Medical School, Boston, MA, United States
| | - Nadine A Schwab
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129, United States; Harvard Medical School, Boston, MA, United States
| | - Douglas N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129, United States; Harvard Medical School, Boston, MA, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Allison Lovely
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129, United States; Harvard Medical School, Boston, MA, United States
| | | | - Michael P Harms
- Washington University in St. Louis, St. Louis, MO, United States
| | | | - Beau M Ances
- Washington University School of Medicine, St. Louis, MO, United States; Washington University in St. Louis, St. Louis, MO, United States
| | - David H Salat
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129, United States; Harvard Medical School, Boston, MA, United States.
| | - Steven E Arnold
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th St., Charlestown, MA 02129, United States; Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
14
|
Lee AJ, Sanchez D, Reyes-Dumeyer D, Brickman AM, Lantigua RA, Vardarajan BN, Mayeux R. Reliability and Validity of self-reported Vascular Risk Factors in a Multi-Ethnic Community Based Study of Aging and Dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.12.23288492. [PMID: 37131736 PMCID: PMC10153321 DOI: 10.1101/2023.04.12.23288492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
INTRODUCTION The reliability and validity of self-reported cardiovascular and cerebrovascular risk factors remains inconsistent in aging research. METHODS We assessed the reliability, validity, sensitivity, specificity, and percent agreement of self-reported hypertension, diabetes, and heart disease, in comparison with direct measures of blood pressure, hemoglobin A1c (HbA1c), and medication use in 1870 participants in a multiethic study of aging and dementia. RESULTS Reliability of self-reported for hypertension, diabetes, and heart disease was excellent. Agreement between self-reports and clinical measures was moderate for hypertension (kappa: 0.58), good for diabetes (kappa: 0.76-0.79), and moderate for heart disease (kappa: 0.45) differing slightly by age, sex, education, and race/ethnic group. Sensitivity and specificity for hypertension was 88.6%-78.1%, for diabetes was 87.7%-92.0% (HbA1c > 6.5%) or 92.7%-92.8% (HbA1c > 7%), and for heart disease was 85.8%-75.5%. DISCUSSION Self-reported history of hypertension, diabetes, and heart disease are reliable and valid compared to direct measurements or medication use.
Collapse
|
15
|
The Role of Diet as a Modulator of the Inflammatory Process in the Neurological Diseases. Nutrients 2023; 15:nu15061436. [PMID: 36986165 PMCID: PMC10057655 DOI: 10.3390/nu15061436] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Neurological diseases are recognized as major causes of disability and mortality worldwide. Due to the dynamic progress of diseases such as Alzheimer’s disease (AD), Parkinson’s Disease (PD), Schizophrenia, Depression, and Multiple Sclerosis (MD), scientists are mobilized to look for new and more effective methods of interventions. A growing body of evidence suggests that inflammatory processes and an imbalance in the composition and function of the gut microbiome, which play a critical role in the pathogenesis of various neurological diseases and dietary interventions, such as the Mediterranean diet the DASH diet, or the ketogenic diet can have beneficial effects on their course. The aim of this review was to take a closer look at the role of diet and its ingredients in modulating inflammation associated with the development and/or progression of central nervous system diseases. Presented data shows that consuming a diet abundant in fruits, vegetables, nuts, herbs, spices, and legumes that are sources of anti-inflammatory elements such as omega-3 fatty acids, polyphenols, vitamins, essential minerals, and probiotics while avoiding foods that promote inflammation, create a positive brain environment and is associated with a reduced risk of neurological diseases. Personalized nutritional interventions may constitute a non-invasive and effective strategy in combating neurological disorders.
Collapse
|
16
|
Golzari-Sorkheh M, Weaver DF, Reed MA. COVID-19 as a Risk Factor for Alzheimer's Disease. J Alzheimers Dis 2023; 91:1-23. [PMID: 36314211 DOI: 10.3233/jad-220800] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Severe acute respiratory disease coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although a primarily respiratory disease, recent reports indicate that it also affects the central nervous system (CNS). Over 25% of COVID-19 patients report neurological symptoms such as memory loss, anosmia, hyposmia, confusion, and headaches. The neurological outcomes may be a result of viral entry into the CNS and/or resulting neuroinflammation, both of which underlie an elevated risk for Alzheimer's disease (AD). Herein, we ask: Is COVID-19 a risk factor for AD? To answer, we identify the literature and review mechanisms by which COVID-19-mediated neuroinflammation can contribute to the development of AD, evaluate the effects of acute versus chronic phases of infection, and lastly, discuss potential therapeutics to address the rising rates of COVID-19 neurological sequelae.
Collapse
Affiliation(s)
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Chemistry, University of Toronto, Toronto, ON, Canada.,Department of Pharmaceutical Chemistry, University of Toronto, Toronto, ON, Canada
| | - Mark A Reed
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Panyard DJ, Deming YK, Darst BF, Van Hulle CA, Zetterberg H, Blennow K, Kollmorgen G, Suridjan I, Carlsson CM, Johnson SC, Asthana S, Engelman CD, Lu Q. Liver-Specific Polygenic Risk Score Is Associated with Alzheimer's Disease Diagnosis. J Alzheimers Dis 2023; 92:395-409. [PMID: 36744333 PMCID: PMC10050104 DOI: 10.3233/jad-220599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Our understanding of the pathophysiology underlying Alzheimer's disease (AD) has benefited from genomic analyses, including those that leverage polygenic risk score (PRS) models of disease. The use of functional annotation has been able to improve the power of genomic models. OBJECTIVE We sought to leverage genomic functional annotations to build tissue-specific AD PRS models and study their relationship with AD and its biomarkers. METHODS We built 13 tissue-specific AD PRS and studied the scores' relationships with AD diagnosis, cerebrospinal fluid (CSF) amyloid, CSF tau, and other CSF biomarkers in two longitudinal cohort studies of AD. RESULTS The AD PRS model that was most predictive of AD diagnosis (even without APOE) was the liver AD PRS: n = 1,115; odds ratio = 2.15 (1.67-2.78), p = 3.62×10-9. The liver AD PRS was also statistically significantly associated with cerebrospinal fluid biomarker evidence of amyloid-β (Aβ42:Aβ40 ratio, p = 3.53×10-6) and the phosphorylated tau:amyloid-β ratio (p = 1.45×10-5). CONCLUSION These findings provide further evidence of the role of the liver-functional genome in AD and the benefits of incorporating functional annotation into genomic research.
Collapse
Affiliation(s)
- Daniel J. Panyard
- Department of Population Health Sciences, University of Wisconsin-Madison, 610 Walnut Street, 707 WARF Building, Madison, WI 53726, United States of America
| | - Yuetiva K. Deming
- Department of Population Health Sciences, University of Wisconsin-Madison, 610 Walnut Street, 707 WARF Building, Madison, WI 53726, United States of America
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
| | - Burcu F. Darst
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, 1450 Biggy Street, Los Angeles, CA 90033, United States of America
| | - Carol A. Van Hulle
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | | | - Cynthia M. Carlsson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison, 610 Walnut Street, 9 Floor, Madison, WI 53726, United States of America
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, United States of America
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
- Wisconsin Alzheimer’s Institute, University of Wisconsin-Madison, 610 Walnut Street, 9 Floor, Madison, WI 53726, United States of America
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, United States of America
| | - Sanjay Asthana
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin-Madison, 600 Highland Avenue, J5/1 Mezzanine, Madison, WI 53792, United States of America
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, United States of America
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, United States of America
| | - Corinne D. Engelman
- Department of Population Health Sciences, University of Wisconsin-Madison, 610 Walnut Street, 707 WARF Building, Madison, WI 53726, United States of America
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WARF Room 201, 610 Walnut Street, Madison, WI 53726, United States of America
- Department of Statistics, University of Wisconsin-Madison, 1300 University Avenue, Madison, WI 53706, United States of America
| |
Collapse
|
18
|
Zhang F, Petersen M, Johnson L, Hall J, O'Bryant SE. Comorbidities Incorporated to Improve Prediction for Prevalent Mild Cognitive Impairment and Alzheimer's Disease in the HABS-HD Study. J Alzheimers Dis 2023; 96:1529-1546. [PMID: 38007662 DOI: 10.3233/jad-230755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Blood biomarkers have the potential to transform Alzheimer's disease (AD) diagnosis and monitoring, yet their integration with common medical comorbidities remains insufficiently explored. OBJECTIVE This study aims to enhance blood biomarkers' sensitivity, specificity, and predictive performance by incorporating comorbidities. We assess this integration's efficacy in diagnostic classification using machine learning, hypothesizing that it can identify a confident set of predictive features. METHODS We analyzed data from 1,705 participants in the Health and Aging Brain Study-Health Disparities, including 116 AD patients, 261 with mild cognitive impairment, and 1,328 cognitively normal controls. Blood samples were assayed using electrochemiluminescence and single molecule array technology, alongside comorbidity data gathered through clinical interviews and medical records. We visually explored blood biomarker and comorbidity characteristics, developed a Feature Importance and SVM-based Leave-One-Out Recursive Feature Elimination (FI-SVM-RFE-LOO) method to optimize feature selection, and compared four models: Biomarker Only, Comorbidity Only, Biomarker and Comorbidity, and Feature-Selected Biomarker and Comorbidity. RESULTS The combination model incorporating 17 blood biomarkers and 12 comorbidity variables outperformed single-modal models, with NPV12 at 92.78%, AUC at 67.59%, and Sensitivity at 65.70%. Feature selection led to 22 chosen features, resulting in the highest performance, with NPV12 at 93.76%, AUC at 69.22%, and Sensitivity at 70.69%. Additionally, interpretative machine learning highlighted factors contributing to improved prediction performance. CONCLUSIONS In conclusion, combining feature-selected biomarkers and comorbidities enhances prediction performance, while feature selection optimizes their integration. These findings hold promise for understanding AD pathophysiology and advancing preventive treatments.
Collapse
Affiliation(s)
- Fan Zhang
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Melissa Petersen
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Leigh Johnson
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - James Hall
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Sid E O'Bryant
- Institute for Translational Research, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Family Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
19
|
Lee AJ, Sanchez D, Reyes-Dumeyer D, Brickman AM, Lantigua RA, Vardarajan BN, Mayeux R. Reliability and Validity of Self-Reported Vascular Risk Factors: Hypertension, Diabetes, and Heart Disease, in a Multi-Ethnic Community Based Study of Aging and Dementia. J Alzheimers Dis 2023; 95:275-285. [PMID: 37483004 PMCID: PMC10578288 DOI: 10.3233/jad-230374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Queries for the presence of cardiovascular and cerebrovascular risk factors are typically assessed through self-report. However, the reliability and validity of self-reported cardiovascular and cerebrovascular risk factors remain inconsistent in aging research. OBJECTIVE To determine the reliability and validity of the most frequently self-reported vascular risk factors: hypertension, diabetes, and heart disease. METHODS 1,870 individuals aged 65 years or older among African Americans, Caribbean Hispanics, and white non-Hispanic individuals were recruited as part of a community study of aging and dementia. We assessed the reliability, validity, sensitivity, specificity, and percent agreement of self-reported hypertension, diabetes, and heart disease, in comparison with direct measures of blood pressure, hemoglobin A1c (HbA1c), and medication use. The analyses were subsequently stratified by age, sex, education, and ethnic group. RESULTS Reliability of self-reported hypertension, diabetes, and heart disease was excellent. Agreement between self-reports and clinical measures was moderate for hypertension (kappa: 0.58), good for diabetes (kappa: 0.76-0.79), and moderate for heart disease (kappa: 0.45) differing slightly by age, sex, education, and ethnic group. Sensitivity and specificity for hypertension was 88.6% -78.1%, for diabetes was 87.7% -92.0% (HbA1c ≥6.5%) or 92.7% -92.8% (HbA1c ≥7%), and for heart disease was 85.8% -75.5%. Percent agreement of self-reported was 87.0% for hypertension, 91.6% -92.6% for diabetes, and 77.4% for heart disease. CONCLUSION Ascertainment of self-reported histories of hypertension, diabetes, and heart disease are reliable and valid compared to direct measurements or medication use.
Collapse
Affiliation(s)
- Annie J. Lee
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY, USA
| | - Didi Sanchez
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY, USA
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY, USA
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY, USA
| | - Rafael A. Lantigua
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY, USA
| | - Badri N. Vardarajan
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY, USA
- Department of Medicine, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
20
|
Fabiani M, Asnakew BA, Bowie DC, Chism SM, Clements GM, Gardner JC, Islam SS, Rubenstein SL, Gratton G. A healthy mind in a healthy body: Effects of arteriosclerosis and other risk factors on cognitive aging and dementia. THE PSYCHOLOGY OF LEARNING AND MOTIVATION 2022; 77:69-123. [PMID: 37139101 PMCID: PMC10153623 DOI: 10.1016/bs.plm.2022.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this review we start from the assumption that, to fully understand cognitive aging, it is important to embrace a holistic view, integrating changes in bodily, brain, and cognitive functions. This broad view can help explain individual differences in aging trajectories and could ultimately enable prevention and remediation strategies. As the title of this review suggests, we claim that there are not only indirect but also direct effects of various organ systems on the brain, creating cascades of phenomena that strongly contribute to age-related cognitive decline. Here we focus primarily on the cerebrovascular system, because of its direct effects on brain health and close connections with the development and progression of Alzheimer's Disease and other types of dementia. We start by reviewing the main cognitive changes that are often observed in normally aging older adults, as well as the brain systems that support them. Second, we provide a brief overview of the cerebrovascular system and its known effects on brain anatomy and function, with a focus on aging. Third, we review genetic and lifestyle risk factors that may affect the cerebrovascular system and ultimately contribute to cognitive decline. Lastly, we discuss this evidence, review limitations, and point out avenues for additional research and clinical intervention.
Collapse
Affiliation(s)
- Monica Fabiani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Bethlehem A. Asnakew
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Daniel C. Bowie
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Sydney M. Chism
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Grace M. Clements
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Jennie C. Gardner
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Samia S. Islam
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Samantha L. Rubenstein
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Gabriele Gratton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
21
|
Validation of Neuroimaging-based Brain Age Gap as a Mediator between Modifiable Risk Factors and Cognition. Neurobiol Aging 2022; 114:61-72. [DOI: 10.1016/j.neurobiolaging.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
|
22
|
Kalecký K, German DC, Montillo AA, Bottiglieri T. Targeted Metabolomic Analysis in Alzheimer's Disease Plasma and Brain Tissue in Non-Hispanic Whites. J Alzheimers Dis 2022; 86:1875-1895. [PMID: 35253754 PMCID: PMC9108583 DOI: 10.3233/jad-215448] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Metabolites are biological compounds reflecting the functional activity of organs and tissues. Understanding metabolic changes in Alzheimer's disease (AD) can provide insight into potential risk factors in this multifactorial disease and suggest new intervention strategies or improve non-invasive diagnosis. OBJECTIVE In this study, we searched for changes in AD metabolism in plasma and frontal brain cortex tissue samples and evaluated the performance of plasma measurements as biomarkers. METHODS This is a case-control study with two tissue cohorts: 158 plasma samples (94 AD, 64 controls; Texas Alzheimer's Research and Care Consortium - TARCC) and 71 postmortem cortex samples (35 AD, 36 controls; Banner Sun Health Research Institute brain bank). We performed targeted mass spectrometry analysis of 630 compounds (106 small molecules: UHPLC-MS/MS, 524 lipids: FIA-MS/MS) and 232 calculated metabolic indicators with a metabolomic kit (Biocrates MxP® Quant 500). RESULTS We discovered disturbances (FDR≤0.05) in multiple metabolic pathways in AD in both cohorts including microbiome-related metabolites with pro-toxic changes, methylhistidine metabolism, polyamines, corticosteroids, omega-3 fatty acids, acylcarnitines, ceramides, and diglycerides. In AD, plasma reveals elevated triglycerides, and cortex shows altered amino acid metabolism. A cross-validated diagnostic prediction model from plasma achieves AUC = 82% (CI95 = 75-88%); for females specifically, AUC = 88% (CI95 = 80-95%). A reduced model using 20 features achieves AUC = 79% (CI95 = 71-85%); for females AUC = 84% (CI95 = 74-92%). CONCLUSION Our findings support the involvement of gut environment in AD and encourage targeting multiple metabolic areas in the design of intervention strategies, including microbiome composition, hormonal balance, nutrients, and muscle homeostasis.
Collapse
Affiliation(s)
- Karel Kalecký
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Dwight C. German
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Albert A. Montillo
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Institute of Biomedical Studies, Baylor University, Waco, TX, USA
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX, USA
| |
Collapse
|
23
|
García-Morales V, González-Acedo A, Melguizo-Rodríguez L, Pardo-Moreno T, Costela-Ruiz VJ, Montiel-Troya M, Ramos-Rodríguez JJ. Current Understanding of the Physiopathology, Diagnosis and Therapeutic Approach to Alzheimer's Disease. Biomedicines 2021; 9:1910. [PMID: 34944723 PMCID: PMC8698840 DOI: 10.3390/biomedicines9121910] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. It is characterized by cognitive decline and progressive memory loss. The aim of this review was to update the state of knowledge on the pathophysiological mechanisms, diagnostic methods and therapeutic approach to AD. Currently, the amyloid cascade hypothesis remains the leading theory in the pathophysiology of AD. This hypothesis states that amyloid-β (Aβ) deposition triggers a chemical cascade of events leading to the development of AD dementia. The antemortem diagnosis of AD is still based on clinical parameters. Diagnostic procedures in AD include fluid-based biomarkers such as those present in cerebrospinal fluid and plasma or diagnostic imaging methods. Currently, the therapeutic armory available focuses on symptom control and is based on four pillars: pharmacological treatment where acetylcholinesterase inhibitors stand out; pharmacological treatment under investigation which includes drugs focused on the control of Aβ pathology and tau hyperphosphorylation; treatment focusing on risk factors such as diabetes; or nonpharmacological treatments aimed at preventing development of the disease or treating symptoms through occupational therapy or psychological help. AD remains a largely unknown disease. Further research is needed to identify new biomarkers and therapies that can prevent progression of the pathology.
Collapse
Affiliation(s)
- Victoria García-Morales
- Department of Biomedicine, Biotechnology and Public Health, Physiology Area, Faculty of Medicine, University of Cádiz, 11003 Cádiz, Spain;
| | - Anabel González-Acedo
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain; (A.G.-A.); (V.J.C.-R.)
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain; (A.G.-A.); (V.J.C.-R.)
- Instituto de Investigación Biosanitaria, Ibs Granada, 18012 Granada, Spain
| | - Teresa Pardo-Moreno
- Instituto Nacional de Gestión Sanitaria (INGESA), Primary Health Care, 51003 Ceuta, Spain;
| | - Víctor Javier Costela-Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain; (A.G.-A.); (V.J.C.-R.)
- Instituto de Investigación Biosanitaria, Ibs Granada, 18012 Granada, Spain
| | - María Montiel-Troya
- Department of Nursing, Faculty of Health Sciences (Ceuta), University of Granada, 51001 Ceuta, Spain;
| | - Juan José Ramos-Rodríguez
- Department of Physiology, Faculty of Health Sciences (Ceuta), University of Granada, 51001 Ceuta, Spain;
| |
Collapse
|
24
|
Fox M, Siddarth P, Oughli HA, Nguyen SA, Milillo MM, Aguilar Y, Ercoli L, Lavretsky H. Women who breastfeed exhibit cognitive benefits after age 50. EVOLUTION MEDICINE AND PUBLIC HEALTH 2021; 9:322-331. [PMID: 34754453 PMCID: PMC8573189 DOI: 10.1093/emph/eoab027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022]
Abstract
Background and objectives Women who breastfeed may experience long-term benefits for their health in addition to the more widely appreciated effects on the breastfed child. Breastfeeding may induce long-term effects on biopsychosocial systems implicated in brain health. Also, due to diminished breastfeeding in the postindustrial era, it is important to understand the lifespan implications of breastfeeding for surmising maternal phenotypes in our species’ collective past. Here, we assess how women’s breastfeeding history relates to postmenopausal cognitive performance. Methodology A convenience sample of Southern California women age 50+ was recruited via two clinical trials, completed a comprehensive neuropsychological test battery and answered a questionnaire about reproductive life history. General linear models examined whether cognitive domain scores were associated with breastfeeding in depressed and non-depressed women, controlling for age, education and ethnicity. Results Women who breastfed exhibited superior performance in the domains of Learning, Delayed Recall, Executive Functioning and Processing Speed compared to women who did not breastfeed (P-values 0.0003–0.015). These four domains remained significant in analyses limited to non-depressed and parous subsets of the cohort. Among those depressed, only Executive Functioning and Processing Speed were positively associated with breastfeeding. Conclusions and implications We add to the growing list of lifespan health correlates of breastfeeding for women’s health, such as the lower risk of type-2 diabetes, cardiovascular disease and breast cancer. We surmise that women’s postmenopausal cognitive competence may have been greater in past environments in which breastfeeding was more prevalent, bolstering the possibility that postmenopausal longevity may have been adaptive across human evolutionary history. Lay Summary Breastfeeding may affect women’s cognitive performance. Breastfeeding’s biological effects and psychosocial effects, such as improved stress regulation, could exert long-term benefits for the mother’s brain. We found that women who breastfed performed better on a series of cognitive tests in later life compared to women who did not breastfeed.
Collapse
Affiliation(s)
- Molly Fox
- Department of Anthropology, University of California, Los Angeles, 341 Haines Hall, 375 Portola Plaza, Los Angeles, CA 90095, USA.,Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095-1759, USA
| | - Prabha Siddarth
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095-1759, USA
| | - Hanadi Ajam Oughli
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095-1759, USA
| | - Sarah A Nguyen
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095-1759, USA
| | - Michaela M Milillo
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095-1759, USA
| | - Yesenia Aguilar
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095-1759, USA
| | - Linda Ercoli
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095-1759, USA
| | - Helen Lavretsky
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90095-1759, USA
| |
Collapse
|
25
|
Lan YT, Blacker D, Yuan C, Chibnik LB, Hofman A, Ma Y. Longitudinal Body Weight Change, Visit-To-Visit Body Weight Fluctuation, and Cognitive Decline Among Older Adults. J Alzheimers Dis 2021; 84:777-786. [PMID: 34569956 DOI: 10.3233/jad-210625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The evidence regarding dementia and late-life weight change is inconsistent, and data on body weight fluctuation and dementia are limited. OBJECTIVE To test the hypothesis that weight loss and substantial weight fluctuation predict cognitive decline independent of body weight and traditional risk factors of dementia. METHODS This study utilized longitudinal data from the National Alzheimer's Coordinating Center for 10,639 stroke- and dementia-free older adults (60.9%female, mean age 71.6 years, median follow-up 5.5 years). Trends in weight change and weight fluctuation were estimated for each individual by regressing repeated body weight measurements on time. Cognitive decline was examined as diagnostic progression from normal to mild cognitive impairment (MCI) or dementia and from MCI to dementia. RESULTS Compared to participants with stable weight, those with weight loss had increased odds of diagnostic progression (adjusted OR = 1.35, 95%CI [1.21, 1.51]). Also, large weight fluctuation was associated with increased odds of diagnostic progression (OR comparing the extreme quartiles = 1.20, 95%CI [1.04, 1.39]) after adjusting for traditional risk factors for dementia and body weight change. The magnitude of the association appeared larger among those older than 80 and those with 3 or more cardiometabolic risk factors at baseline (both p for interaction < 0.05). CONCLUSION Weight loss and substantial weight fluctuation during late-life were associated with increased odds of cognitive decline independent of body weight and traditional risk factors of dementia. Our results suggested the linkage between late-life body weight instability and cognitive decline especially among those with greater age or higher cardiometabolic risk.
Collapse
Affiliation(s)
- Yu-Tung Lan
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Deborah Blacker
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Changzheng Yuan
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lori B Chibnik
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Albert Hofman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Yuan Ma
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Smith M, Van N, Roberts A, Hosaka KR, Choi SY, Viereck J, Carrazana E, Borman P, Chen JJ, Liow KK. Disparities in Alzheimer Disease and Mild Cognitive Impairment Among Native Hawaiians and Pacific Islanders. Cogn Behav Neurol 2021; 34:200-206. [PMID: 34473671 PMCID: PMC8425603 DOI: 10.1097/wnn.0000000000000279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/16/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Previous studies of racial differences in Alzheimer disease (AD) presentation have not included Native Hawaiians and Pacific Islanders (NHPI). OBJECTIVE To explore the presentation of AD and mild cognitive impairment (MCI) in NHPI. METHOD We conducted a retrospective review of patient records from Hawaii with a diagnosis of unspecified AD or MCI from September 2000 to September 2019. Variables of interest included age at diagnosis, gender, race, marital status, insurance, comorbidities, and scores on the Mini-Mental State Examination (MMSE) or the Montreal Cognitive Assessment (MoCA). RESULTS We reviewed the medical records of 598 patients, including 224 Asians, 202 Whites, 87 NHPI, and 85 Other. AD was more dominant than MCI across all of the groups, with the highest percentage in NHPI. Among the mean ages of diagnosis, NHPI were the youngest. Across all groups, a higher proportion of women than men had AD, with the highest female prevalence among NHPI. Hypertension, hyperlipidemia, and type II diabetes were highest among NHPI compared with the other groups. Of individuals with MMSE/MoCA scores, there were significant variations in scores by racial group. The mean MMSE/MoCA score was highest among Whites and lowest among NHPI. CONCLUSION Compared with other racial groups, NHPI have a higher proportion of AD than MCI at diagnosis, are diagnosed at a younger age, have a higher female prevalence, have more comorbidities that may contribute to AD/MCI onset, and present with lower MMSE scores.
Collapse
Affiliation(s)
- Maiya Smith
- Department of Medicine, John A. Burns School of Medicine, Honolulu, Hawaii
| | - Nicholas Van
- Undergraduate Education, University of Hawaii at Mānoa, Honolulu, Hawaii
| | - Alyssa Roberts
- Undergraduate Education, University of Hawaii at Mānoa, Honolulu, Hawaii
| | - Kalei R.J. Hosaka
- Department of Medicine, John A. Burns School of Medicine, Honolulu, Hawaii
| | - So Yung Choi
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, Honolulu, Hawaii
| | - Jason Viereck
- Department of Medicine, John A. Burns School of Medicine, Honolulu, Hawaii
- Clinical and Translational Research, John A. Burns School of Medicine, Honolulu, Hawaii
- Alzheimer’s Research Unit and Memory Disorders Center, Hawaii Pacific Neuroscience, Honolulu, Hawaii
| | - Enrique Carrazana
- Department of Medicine, John A. Burns School of Medicine, Honolulu, Hawaii
- Epilepsy Research Unit, Hawaii Pacific Neuroscience, Honolulu, Hawaii
| | - Pat Borman
- Alzheimer’s Research Unit and Memory Disorders Center, Hawaii Pacific Neuroscience, Honolulu, Hawaii
- Department of Geriatrics, John A. Burns School of Medicine, Honolulu, Hawaii
| | - John J. Chen
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, Honolulu, Hawaii
| | - Kore Kai Liow
- Department of Medicine, John A. Burns School of Medicine, Honolulu, Hawaii
- Clinical and Translational Research, John A. Burns School of Medicine, Honolulu, Hawaii
- Alzheimer’s Research Unit and Memory Disorders Center, Hawaii Pacific Neuroscience, Honolulu, Hawaii
| |
Collapse
|
27
|
Haase Alasantro L, Hicks TH, Green-Krogmann E, Murphy C. Metabolic syndrome and cognitive performance across the adult lifespan. PLoS One 2021; 16:e0249348. [PMID: 33956820 PMCID: PMC8101918 DOI: 10.1371/journal.pone.0249348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/16/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolic Syndrome (MetS) is associated with increased rates of mortality and increased risk for developing dementia. Changes in brain structure and cognitive functioning have been reported within the literature. However, research examining cognitive performance in individuals with MetS is limited, inconclusive, and focuses primarily on older cohorts. As such, the effect of MetS on cognitive functioning earlier in the lifespan is unclear. This study aimed to investigate cognitive performance in young, middle-aged, and older adults with multiple metabolic and vascular risk factors in a sample of community dwelling participants (N = 128). Participants were administered a comprehensive neuropsychological battery and self-report measures. As expected, older adults performed more poorly than young and middle-aged adults across most assessments. Relative to controls, individuals with MetS reported greater hunger and disinhibited eating. MetS participants performed more poorly on Color-Word Interference: Inhibition. Additionally, when weight was accounted for, there was a significant relationship between MetS and select executive functioning tasks in middle-aged adults. These findings suggest that aspects of executive functioning may be impaired in MetS and could be further impacted by excess weight in middle-age. Future studies aimed at investigating potential causal relationships between metabolic and vascular risk factors, disinhibited eating, and executive dysfunction may provide insight into effective intervention targets to prevent MetS.
Collapse
Affiliation(s)
- Lori Haase Alasantro
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, California, United States of America
- Department of Psychiatry, University of California, San Diego, La Jolla, California, United States of America
| | - Tracey H. Hicks
- Department of Psychology, San Diego State University, San Diego, California, United States of America
| | - Erin Green-Krogmann
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, California, United States of America
| | - Claire Murphy
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, California, United States of America
- Department of Psychiatry, University of California, San Diego, La Jolla, California, United States of America
- Department of Psychology, San Diego State University, San Diego, California, United States of America
| |
Collapse
|
28
|
Neter E, Chachashvili-Bolotin S, Erlich B, Ifrah K. Benefiting From Digital Use: Prospective Association of Internet Use With Knowledge and Preventive Behaviors Related to Alzheimer Disease in the Israeli Survey of Aging. JMIR Aging 2021; 4:e25706. [PMID: 33929331 PMCID: PMC8122300 DOI: 10.2196/25706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/12/2021] [Accepted: 03/28/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Previous work documented the beneficial association between internet use and improved cognition, functional capacity, and less cognitive decline among people in late adulthood. This work focused on potential mechanisms of such an association: knowledge on Alzheimer disease (AD) and preventive behaviors related to AD. OBJECTIVE The aim of this study was to examine prospective associations of internet use and perceived computer skills with knowledge on AD and preventive behaviors related to AD. METHODS The sample included 1232 older adults (mean age 71.12 [SD 9.07]) drawn from the Israeli branch of the Survey of Health, Aging, and Retirement in Europe (SHARE-Israel). The sample is representative of Israeli households of adults aged 50 or older and their spouses. Data analyzed were collected in person during 2015 (Wave 6), and in a drop-off questionnaire following the in-person 2017 data collection (Wave 7). RESULTS Although both internet use and perceived computer skills were prospectively associated with knowledge and behaviors related to AD in bivariate analyses, after controlling for sociodemographics, only internet use was associated with more such knowledge (β=.13, P<.001) and behaviors (β=.22, P<.001). CONCLUSIONS Internet use emerged as a prospective predictor of protective factors against AD. Policymakers should advance digital engagement so as to enhance knowledge on AD and preventive behaviors among older adults.
Collapse
Affiliation(s)
- Efrat Neter
- Department Behavioral Sciences, Faculty of Social & Community Sciences, Ruppin Academic Center, Emeq Hefer, Israel
| | - Svetlana Chachashvili-Bolotin
- Institute for Immigration & Social Integration, Faculty of Social & Community Sciences, Ruppin Academic Center, Emeq Hefer, Israel
| | - Bracha Erlich
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.,Gerontological Data Center, The Paul Baerwald School of Social Work and Social Welfare, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kfir Ifrah
- Gerontological Psychology, Faculty of Social & Community Sciences, Ruppin Academic Center, Emeq Hefer, Israel
| |
Collapse
|
29
|
Azar J, Salama M, Chidambaram SB, Al‐Balushi B, Essa MM, Qoronfleh MW. Precision health in Alzheimer disease: Risk assessment‐based strategies. PRECISION MEDICAL SCIENCES 2021. [DOI: 10.1002/prm2.12036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jihan Azar
- Institute of Global Health and Human Ecology (I‐GHHE) The American University in Cairo (AUC) Cairo Egypt
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (I‐GHHE) The American University in Cairo (AUC) Cairo Egypt
- Faculty of Medicine Mansoura University Mansoura Egypt
| | - Saravana Babu Chidambaram
- Department of Pharmacology JSS College of Pharmacy, JSS Academy of Higher Education & Research Mysuru India
| | - Buthaina Al‐Balushi
- Department of Food Science and Nutrition CAMS, Sultan Qaboos University Muscat Oman
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition CAMS, Sultan Qaboos University Muscat Oman
- Ageing and Dementia Research Group Sultan Qaboos University Muscat Oman
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI) Research & Policy Division Ypsilanti Michigan USA
- 21 Health Street, Consulting Services London UK
| |
Collapse
|
30
|
Plasma osteopontin as a biomarker of Alzheimer's disease and vascular cognitive impairment. Sci Rep 2021; 11:4010. [PMID: 33597603 PMCID: PMC7889621 DOI: 10.1038/s41598-021-83601-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022] Open
Abstract
Cerebrovascular disease (CeVD) and neurodegenerative dementia such as Alzheimer’s disease (AD) are frequently associated comorbidities in the elderly, sharing common risk factors and pathophysiological mechanisms including neuroinflammation. Osteopontin (OPN) is an inflammatory marker found upregulated in vascular diseases as well as in AD. However, its involvement in vascular dementia (VaD) and pre-dementia stages, namely cognitive impairment no dementia (CIND), both of which fall under the spectrum of vascular cognitive impairment (VCI), has yet to be examined. Its correlations with inflammatory cytokines in cognitive impairment also await investigation. 80 subjects with no cognitive impairment (NCI), 160 with CIND and 144 with dementia were included in a cross-sectional study on a Singapore-based memory clinic cohort. All subjects underwent comprehensive clinical, neuropsychological and brain neuroimaging assessments, together with clinical diagnoses based on established criteria. Blood samples were collected and OPN as well as inflammatory cytokines interleukin (IL)-6, IL-8 and tumor necrosis factor (TNF) were measured using immunoassays. Multivariate regression analyses showed significant associations between increased OPN and VCI groups, namely CIND with CeVD, AD with CeVD and VaD. Interestingly, higher OPN was also significantly associated with AD even in the absence of CeVD. We further showed that increased OPN significantly associated with neuroimaging markers of CeVD and neurodegeneration, including cortical infarcts, lacunes, white matter hyperintensities and brain atrophy. OPN also correlated with elevated levels of IL-6, IL-8 and TNF. Our findings suggest that OPN may play a role in both VCI and neurodegenerative dementias. Further longitudinal analyses are needed to assess the prognostic utility of OPN in disease prediction and monitoring.
Collapse
|
31
|
Vigasova D, Nemergut M, Liskova B, Damborsky J. Multi-pathogen infections and Alzheimer's disease. Microb Cell Fact 2021; 20:25. [PMID: 33509204 PMCID: PMC7844946 DOI: 10.1186/s12934-021-01520-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease associated with the overproduction and accumulation of amyloid-β peptide and hyperphosphorylation of tau proteins in the brain. Despite extensive research on the amyloid-based mechanism of AD pathogenesis, the underlying cause of AD is not fully understood. No disease-modifying therapies currently exist, and numerous clinical trials have failed to demonstrate any benefits. The recent discovery that the amyloid-β peptide has antimicrobial activities supports the possibility of an infectious aetiology of AD and suggests that amyloid-β plaque formation might be induced by infection. AD patients have a weakened blood-brain barrier and immune system and are thus at elevated risk of microbial infections. Such infections can cause chronic neuroinflammation, production of the antimicrobial amyloid-β peptide, and neurodegeneration. Various pathogens, including viruses, bacteria, fungi, and parasites have been associated with AD. Most research in this area has focused on individual pathogens, with herpesviruses and periodontal bacteria being most frequently implicated. The purpose of this review is to highlight the potential role of multi-pathogen infections in AD. Recognition of the potential coexistence of multiple pathogens and biofilms in AD's aetiology may stimulate the development of novel approaches to its diagnosis and treatment. Multiple diagnostic tests could be applied simultaneously to detect major pathogens, followed by anti-microbial treatment using antiviral, antibacterial, antifungal, and anti-biofilm agents.
Collapse
Affiliation(s)
- Dana Vigasova
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Michal Nemergut
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Barbora Liskova
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
32
|
Leszek J, Mikhaylenko EV, Belousov DM, Koutsouraki E, Szczechowiak K, Kobusiak-Prokopowicz M, Mysiak A, Diniz BS, Somasundaram SG, Kirkland CE, Aliev G. The Links between Cardiovascular Diseases and Alzheimer's Disease. Curr Neuropharmacol 2021; 19:152-169. [PMID: 32727331 PMCID: PMC8033981 DOI: 10.2174/1570159x18666200729093724] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/02/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
The root cause of non-inherited Alzheimer's disease (AD) remains unknown despite hundreds of research studies performed to attempt to solve this problem. Since proper prophylaxis remains the best strategy, many scientists have studied the risk factors that may affect AD development. There is robust evidence supporting the hypothesis that cardiovascular diseases (CVD) may contribute to AD progression, as the diseases often coexist. Therefore, a lack of well-defined diagnostic criteria makes studying the relationship between AD and CVD complicated. Additionally, inflammation accompanies the pathogenesis of AD and CVD, and is not only a consequence but also implicated as a significant contributor to the course of the diseases. Of note, АроЕε4 is found to be one of the major risk factors affecting both the cardiovascular and nervous systems. According to genome wide association and epidemiological studies, numerous common risk factors have been associated with the development of AD-related pathology. Furthermore, the risk of developing AD and CVDs appears to be increased by a wide range of conditions and lifestyle factors: hypertension, dyslipidemia, hypercholesterolemia, hyperhomocysteinemia, gut/oral microbiota, physical activity, and diet. This review summarizes the literature and provides possible mechanistic links between CVDs and AD.
Collapse
Affiliation(s)
- Jerzy Leszek
- Address correspondence to these authors at the Department of Psychiatry, Wrocław Medical University, Ul. Pasteura 10, 50-367, Wroclaw, Poland;, E-mail: and GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA; Tel: +1-210-442-8625 or +1-440-263-7461; E-mails: ,
| | | | | | | | | | | | | | | | | | | | - Gjumrakch Aliev
- Address correspondence to these authors at the Department of Psychiatry, Wrocław Medical University, Ul. Pasteura 10, 50-367, Wroclaw, Poland;, E-mail: and GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, USA; Tel: +1-210-442-8625 or +1-440-263-7461; E-mails: ,
| |
Collapse
|
33
|
Migrino RQ, Karamanova N, Truran S, Serrano GE, Davies HA, Madine J, Beach TG. Cerebrovascular medin is associated with Alzheimer's disease and vascular dementia. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12072. [PMID: 32875054 PMCID: PMC7447901 DOI: 10.1002/dad2.12072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Medin, an aging-associated amyloidogenic protein, induces cerebrovascular dysfunction and inflammation. We investigated the relationship between cerebrovascular medin and Alzheimer's disease (AD) and vascular dementia (VaD). METHODS Cerebral arteriole medin was quantified from 91 brain donors with no dementia (ND), AD, VaD, or combined AD and VaD. Correlation analyses evaluated the relationship between arteriole medin, and plaques, tangles, or white matter lesions (WML). Receiver operating characteristic and regression analyses assessed whether medin is predictive of AD or VaD versus other cerebrovascular pathologies (circle of Willis [CoW] atherosclerosis and cerebral amyloid angiopathy [CAA]). RESULTS Arteriole medin was higher in those with AD, VaD, or combined AD/VaD versus ND (P < .05), and correlated with tangle, plaque, and WML, but not CAA or CoW atherosclerosis. Among cerebrovascular pathologies, medin was the strongest predictor of AD diagnosis, whereas CoW atherosclerosis and arteriole medin were predictors of VaD. DISCUSSION Cerebral arteriole medin is associated with and could be a potential novel risk factor or biomarker for AD and VaD.
Collapse
Affiliation(s)
- Raymond Q. Migrino
- Phoenix Veterans Affairs Health Care SystemPhoenixArizonaUSA
- University of Arizona College of Medicine‐PhoenixPhoenixArizonaUSA
| | - Nina Karamanova
- Phoenix Veterans Affairs Health Care SystemPhoenixArizonaUSA
| | - Seth Truran
- Phoenix Veterans Affairs Health Care SystemPhoenixArizonaUSA
| | | | | | | | | |
Collapse
|
34
|
Oudin A. Short review: Air pollution, noise and lack of greenness as risk factors for Alzheimer's disease- epidemiologic and experimental evidence. Neurochem Int 2019; 134:104646. [PMID: 31866324 DOI: 10.1016/j.neuint.2019.104646] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/07/2019] [Accepted: 12/18/2019] [Indexed: 01/17/2023]
Abstract
The number of patients with Alzheimer's disease (AD) is likely to triple in a few decades as the world's population ages. Given the high personal and societal burden of this disease, it is imperative to identify its risk factors. The etiology of AD is still not fully understood, but environmental factors have emerged as plausible important risk factors on the population-level. In this short review, the author summarizes literature on air pollution, noise and (lack of) greenness as risk factors for AD. In conclusion, a link between air pollution and AD is supported by experimental studies as well as epidemiological studies, although a multi-exposure approach is lacking in most epidemiological studies. Although evidence is much more limited regarding noise and (lack of) greenness as risk factors for AD, future epidemiological studies should have a multi-exposure approach in order to separate potential effects of air pollution, noise and lack of greenness. Given the heavy toll of AD on individuals and society, as well as the ubiquitous nature of environmental factors, a link between environmental stressors and AD deserves special attention.
Collapse
Affiliation(s)
- Anna Oudin
- Occupational and Environmental Medicine, Lund University and Umeå University, Arbets-och Miljömedicin, Medicon Village, Scheelevägen 2, 22363, Lund, Sweden.
| |
Collapse
|
35
|
Clustering and Additive Effects of Nongenetic Risk Factors in Non-Autosomal-Dominant Degenerative and Vascular Young Onset Dementia. Alzheimer Dis Assoc Disord 2019; 34:128-134. [PMID: 31633559 DOI: 10.1097/wad.0000000000000358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Both genetic and nongenetic factors contribute to the risk profile of young onset dementia (YOD), but risk factors often co-occur. This matched case-control study examined whether nongenetic risk factors cluster together, to inform targeted prevention efforts. METHODS Ninety-six participants with non-autosomal-dominant degenerative and/or vascular YOD and 175 controls were recruited to 2 Australian epidemiological studies. Risk exposure was retrospectively self-reported and/or informant-reported. RESULTS Each additional exposure increased the risk for YOD, though only where vascular dementia was included in the analysis. Cluster analysis identified 4 risk groups, one of which reported a high probability of exposure to all risks and a significantly higher risk for YOD. DISCUSSION Results suggest that combinations of nongenetic risk factors confer more risk for young onset vascular dementia, and possibly primary degenerative YOD, than a single factor on its own. Compared with their same-age peers, some people with YOD experience a lifetime of risk exposure starting from early in life.
Collapse
|
36
|
Bahrami A, Barreto GE, Lombardi G, Pirro M, Sahebkar A. Emerging roles for high-density lipoproteins in neurodegenerative disorders. Biofactors 2019; 45:725-739. [PMID: 31301192 DOI: 10.1002/biof.1541] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022]
Abstract
Lipoproteins are the complexes of different lipids and proteins, which are devoted to the transport and clearance of lipids or lipid-related molecules in the circulation. Lipoproteins have been found to play a crucial role in brain function and may influence myelination process. Among lipoproteins, high-density lipoproteins (HDLs) and their major protein component, apoA-I, are directly involved in cholesterol efflux in the brain. It has been suggested that inadequate or dysfunctional brain HDLs may contribute to cerebrovascular dysfunctions, neurodegeneration, or neurovascular instability. HDL deficiency could also promote cognitive decline through impacting on atherosclerotic risk. The focus of this review is to discuss knowledge on HDL dysregulation in neurological disorders. A better understanding on how changes in cellular HDL and apolipoprotein homeostasis affect central nervous system function may provide promising novel avenues for the treatment of specific HDL-related neurological disorders.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Gemma Lombardi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Göttler J, Preibisch C, Riederer I, Pasquini L, Alexopoulos P, Bohn KP, Yakushev I, Beller E, Kaczmarz S, Zimmer C, Grimmer T, Drzezga A, Sorg C. Reduced blood oxygenation level dependent connectivity is related to hypoperfusion in Alzheimer's disease. J Cereb Blood Flow Metab 2019; 39:1314-1325. [PMID: 29431005 PMCID: PMC6668525 DOI: 10.1177/0271678x18759182] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Functional connectivity of blood oxygenation level dependent signal fluctuations (BOLD-FC) is decreased in Alzheimer's disease (AD), and suggested to reflect reduced coherence in neural population activity; however, as both neuronal and vascular-hemodynamic processes underlie BOLD signals, impaired perfusion might also contribute to reduced BOLD-FC; 42 AD patients and 27 controls underwent simultaneous PET/MR imaging. Resting-state functional MRI assessed BOLD co-activity to quantify BOLD-FC, pulsed arterial spin labeling (pASL) assessed cerebral blood flow (CBF) as proxy for vascular hemodynamics, and 18F-fluorodeoxyglucose PET assessed glucose metabolism (GluMet) to index neuronal activity. Patients' BOLD-FC, CBF, and GluMet were reduced within the same precuneal parietal regions. BOLD-FC was positively associated with mean CBF, specifically in patients and controlled for GluMet levels, suggesting that BOLD-FC reductions correlate with pASL-derived hypoperfusion in AD, independently from 18F-fluorodeoxyglucose PET-derived hypometabolism. Data indicate that impaired vascular hemodynamic processes contribute to reduced BOLD connectivity in AD.
Collapse
Affiliation(s)
- Jens Göttler
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Christine Preibisch
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,3 Clinic for Neurology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Isabelle Riederer
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Lorenzo Pasquini
- 2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,4 Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Panagiotis Alexopoulos
- 5 Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Karl Peter Bohn
- 6 Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Igor Yakushev
- 2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,6 Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Ebba Beller
- 7 Department of Radiology, Klinikum Großhadern, Ludwig-Maximilans-Universität München, Munich, Germany
| | - Stephan Kaczmarz
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Claus Zimmer
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Timo Grimmer
- 2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,5 Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexander Drzezga
- 6 Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,8 Department of Nuclear Medicine, University of Cologne, Cologne, Germany
| | - Christian Sorg
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,5 Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
38
|
Use of sedative-hypnotics and the risk of Alzheimer's dementia: A retrospective cohort study. PLoS One 2018; 13:e0204413. [PMID: 30248129 PMCID: PMC6152975 DOI: 10.1371/journal.pone.0204413] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/09/2018] [Indexed: 11/19/2022] Open
Abstract
There has been a growing interest in the relationship between sedative-hypnotics use and the risk of Alzheimer's dementia (AD) risk. This study aimed to evaluate the risk of AD associated with the use of sedative-hypnotics. A retrospective cohort study was conducted with randomly selected 5% samples from ≥50 years old beneficiaries of National Health Insurance Service (NHIS) of Korea from January 2002 to December 2015. The exposure to sedative-hypnotics was defined when prescribed over 30 defined daily dose (DDD) after January 2004 and it was categorized by prescribed dosage, types and half-lives of benzodiazepines. Time-dependent Cox regression model with a lag period of 5-years was used to evaluate the association between use of sedative-hypnotics and the risk of subsequent AD. Sensitivity analysis was performed for restricting sedative-hypnotics only when prescribed with insomnia. A total of 268,170 subjects were identified and subjects exposed to sedative-hypnotics showed a higher risk of AD (HR: 1.79; 95% CI: 1.72-1.86) than those who were not. There was an increased risk of AD among subjects exposed to benzodiazepines or zolpidem (HR: 1.75; 95% CI: 1.67-1.82) and antidepressants or low-dose antipsychotics (HR: 1.63; 95% CI: 1.42-1.87). The risk of AD was increased regardless of dose of sedative-hypnotics and half-life among benzodiazepines, especially in exposure to more than 360 DDD of sedative-hypnotics (HR: 1.78; 95% CI: 1.60-1.99) and the long-acting benzodiazepine (HR:1.77; 95% CI: 1.65-1.89).
Collapse
|
39
|
Alagiakrishnan K, Mah D, Gyenes G. Cardiac rehabilitation and its effects on cognition in patients with coronary artery disease and heart failure. Expert Rev Cardiovasc Ther 2018; 16:645-652. [PMID: 30092659 DOI: 10.1080/14779072.2018.1510318] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Cardiac rehabilitation program is an evidence-based intervention and established model of exercise delivery following myocardial infarction and heart failure. Although it forms an important part of recovery and helps to prevent future events and complications, there has been little focus on its potential cognitive benefits. Areas covered: Coronary artery disease and heart failure are common heart problems associated with significant morbidity and mortality, and cognitive decline is commonly seen in affected individuals. Cognitive impairment may influence patient self-management by reducing medication adherence, rendering patients unable to make lifestyle modifications and causing missed healthcare visits. Cognitive assessment in cardiac rehabilitation as an outcome measure has the potential to improve clinical, functional and behavioral domains as well as help to reduce gaps in the quality of care in these patients. Expert commentary: Limited evidence at present has shown that cardiac rehabilitation and exercise has potential in preventing cognitive decline. Cardiac prehabilitation, a rehabilitation-like program delivered before cardiac surgery, may also play a role in preventing postoperative cognitive dysfunction, but needs future research studies to support it.
Collapse
Affiliation(s)
| | - Darren Mah
- a Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Canada
| | - Gabor Gyenes
- a Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Canada
| |
Collapse
|
40
|
Noble JM, Schupf N, Manly JJ, Andrews H, Tang MX, Mayeux R. Secular Trends in the Incidence of Dementia in a Multi-Ethnic Community. J Alzheimers Dis 2018; 60:1065-1075. [PMID: 28984588 DOI: 10.3233/jad-170300] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Determination of secular trends in cognitive aging is important for prioritization of resources, services, and research in aging populations. Prior studies have identified declining dementia incidence associated with changes in cardiovascular risk factors and increased educational attainment. However, few studies have examined these factors in multi-ethnic cohorts. OBJECTIVE To identify secular trends in the incidence rate of dementia in an elderly population. METHODS Participants in this study were drawn from the Washington Heights-Inwood Columbia Aging Project, a multi-ethnic cohort study of northern Manhattan residents aged 65 years and older. Cox proportional hazards models were used to examine differences in the incidence of dementia in cohorts recruited in 1992 and 1999, with age at dementia or age at last follow-up visit as the "time-to-event" variable. RESULTS Overall, there was a 41% reduction in the hazard ratio for dementia among participants in the 1999 cohort compared with those in the 1992 cohort, adjusting for age, sex, race, and baseline memory complaints (HR = 0.59). The reduction in incidence was greatest among non-Hispanic Whites and African-Americans and lowest among Hispanic participants (HRs = 0.60, 0.52 and 0.64, respectively), and was associated with increases in level of educational attainment, especially among African-Americans. Reduction in incidence of dementia was also greater among persons 75 years or older than among younger participants (HR = 0.52 versus HR = 0.69). CONCLUSIONS Our results support previous findings that secular trends in dementia incidence are changing, including in aging minority populations.
Collapse
Affiliation(s)
- James M Noble
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.,G.H. Sergievsky Center, Columbia University, New York, NY, USA.,Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.,G.H. Sergievsky Center, Columbia University, New York, NY, USA.,Department of Neurology, Columbia University Medical Center, New York, NY, USA.,Department of Epidemiology, Columbia University Medical Center, New York, NY, USA
| | - Jennifer J Manly
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.,G.H. Sergievsky Center, Columbia University, New York, NY, USA.,Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Howard Andrews
- Department of Biostatistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Ming-Xin Tang
- G.H. Sergievsky Center, Columbia University, New York, NY, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.,G.H. Sergievsky Center, Columbia University, New York, NY, USA.,Department of Neurology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
41
|
Sennik S, Schweizer TA, Fischer CE, Munoz DG. Risk Factors and Pathological Substrates Associated with Agitation/Aggression in Alzheimer's Disease: A Preliminary Study using NACC Data. J Alzheimers Dis 2018; 55:1519-1528. [PMID: 27911311 DOI: 10.3233/jad-160780] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Neuropsychiatric symptoms are common manifestations of Alzheimer's disease (AD). A number of studies have targeted psychosis, i.e., hallucinations and delusions in AD, but few have assessed agitation/aggression in AD. OBJECTIVE To investigate the risk factors and pathological substrates associated with presence [A(+)] and absence [A(-)] of agitation/aggression (A) in autopsy-confirmed AD. METHODS Data was collected from the UDS data as of 2015 on the NACC database. Patients were stratified as intermediate (IAD) or high (HAD) pathological load of AD. Clinical diagnoses were not considered; additional pathological diagnoses were treated as variables. Analysis of data did not include a control group or corrections for multiple comparisons. RESULTS 1,716 patients met the eligibility criteria; 31.2% of the IAD and 47.8% of the HAD patients were A(+), indicating an association with severity of pathology (p = 0.001). Risk factors for A(+) included: age at initial visit, age at death, years of education, smoking (in females), recent cardiac events (in males), and clinical history of traumatic brain injury (TBI) (in males). A history of hypertension was not related to A(+). In terms of comorbidity, clinical diagnosis of Lewy body dementia syndrome was associated with A(+) but the association was not confirmed when pathological diagnosis based on demonstration of Lewy bodies was used as the criterion. The additional presence of phosphorylated TDP-43, but not tau pathologies, was associated with A(+)HAD. Vascular lesions, including lacunes, large arterial infarcts, and severity of atherosclerosis were negatively associated with A(+). Associated symptoms included delusions, hallucinations, and depression, but not irritability, aberrant motor behavior, sleep and night time behavioral changes, or changes in appetite and eating habits. CONCLUSIONS Smoking, TBI, and phosphorylated TDP-43 are associated with A(+)AD in specific groups, respectively. A(+) is directly associated with AD pathology load and inversely with vascular lesions.
Collapse
Affiliation(s)
- Simrin Sennik
- Keenan Biomedical Research Centre, the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Tom A Schweizer
- Keenan Biomedical Research Centre, the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Department of Surgery, Division of Neurosurgery, Faculty of Medicine, University of Toronto, ON, Canada.,Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Corinne E Fischer
- Keenan Biomedical Research Centre, the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, ON, Canada
| | - David G Munoz
- Keenan Biomedical Research Centre, the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.,Department of Laboratory Medicine, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
42
|
Fernando WB, Rainey-Smith SR, Gardener SL, Villemagne VL, Burnham SC, Macaulay SL, Brown BM, Gupta VB, Sohrabi HR, Weinborn M, Taddei K, Laws SM, Goozee K, Ames D, Fowler C, Maruff P, Masters CL, Salvado O, Rowe CC, Martins RN. Associations of Dietary Protein and Fiber Intake with Brain and Blood Amyloid-β. J Alzheimers Dis 2018; 61:1589-1598. [DOI: 10.3233/jad-170742] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- W.M.A.D. Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Stephanie R. Rainey-Smith
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Sir James McCusker Alzheimer’s Disease Research Unit, (Hollywood Private Hospital), Perth, WA, Australia
| | - Samantha L. Gardener
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Sir James McCusker Alzheimer’s Disease Research Unit, (Hollywood Private Hospital), Perth, WA, Australia
| | - Victor L. Villemagne
- Department of Molecular Imaging and Therapy, Centre for PET, Austin Health, Heidelberg, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | | | - S. Lance Macaulay
- CSIRO Health and Biosecurity/Australian e-Health Research Centre, Australia
| | - Belinda M. Brown
- Sir James McCusker Alzheimer’s Disease Research Unit, (Hollywood Private Hospital), Perth, WA, Australia
- School of Psychology and Exercise Science, Murdoch University, Murdoch, WA, Australia
| | - Veer Bala Gupta
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Sir James McCusker Alzheimer’s Disease Research Unit, (Hollywood Private Hospital), Perth, WA, Australia
| | - Hamid R. Sohrabi
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Sir James McCusker Alzheimer’s Disease Research Unit, (Hollywood Private Hospital), Perth, WA, Australia
- School of Biomedical Sciences, Macquarie University, NSW, Australia
| | - Michael Weinborn
- Sir James McCusker Alzheimer’s Disease Research Unit, (Hollywood Private Hospital), Perth, WA, Australia
- School of Psychological Science, University of Western Australia, Crawley, WA, Australia
| | - Kevin Taddei
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Sir James McCusker Alzheimer’s Disease Research Unit, (Hollywood Private Hospital), Perth, WA, Australia
| | - Simon M. Laws
- Collaborative Genomics Group, Centre of Excellence for Alzheimer’s disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health,
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Australia
| | - Kathryn Goozee
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
- McCusker KARVIAH Research Centre, ARV, Sydney, NSW, Australia
| | - David Ames
- Department of Psychiatry, Academic Unit for Psychiatry of Old Age, St. Vincent’s Health, The University of Melbourne, Kew, VIC, Australia
- National Ageing Research Institute, Parkville, VIC, Australia
| | - Christopher Fowler
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Paul Maruff
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Cogstate Ltd., Melbourne, VIC, Australia
| | - Colin L. Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Olivier Salvado
- CSIRO Health and Biosecurity/Australian e-Health Research Centre, Australia
| | - Christopher C. Rowe
- Department of Molecular Imaging and Therapy, Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Sir James McCusker Alzheimer’s Disease Research Unit, (Hollywood Private Hospital), Perth, WA, Australia
- School of Biomedical Sciences, Macquarie University, NSW, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, WA, Australia
| | | |
Collapse
|
43
|
Jahrling JB, Lin AL, DeRosa N, Hussong SA, Van Skike CE, Girotti M, Javors M, Zhao Q, Maslin LA, Asmis R, Galvan V. mTOR drives cerebral blood flow and memory deficits in LDLR -/- mice modeling atherosclerosis and vascular cognitive impairment. J Cereb Blood Flow Metab 2018; 38:58-74. [PMID: 28511572 PMCID: PMC5757441 DOI: 10.1177/0271678x17705973] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/01/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022]
Abstract
We recently showed that mTOR attenuation blocks progression and abrogates established cognitive deficits in Alzheimer's disease (AD) mouse models. These outcomes were associated with the restoration of cerebral blood flow (CBF) and brain vascular density (BVD) resulting from relief of mTOR inhibition of NO release. Recent reports suggested a role of mTOR in atherosclerosis. Because mTOR drives aging and vascular dysfunction is a universal feature of aging, we hypothesized that mTOR may contribute to brain vascular and cognitive dysfunction associated with atherosclerosis. We measured CBF, BVD, cognitive function, markers of inflammation, and parameters of cardiovascular disease in LDLR-/- mice fed maintenance or high-fat diet ± rapamycin. Cardiovascular pathologies were proportional to severity of brain vascular dysfunction. Aortic atheromas were reduced, CBF and BVD were restored, and cognitive dysfunction was attenuated potentially through reduction in systemic and brain inflammation following chronic mTOR attenuation. Our studies suggest that mTOR regulates vascular integrity and function and that mTOR attenuation may restore neurovascular function and cardiovascular health. Together with our previous studies in AD models, our data suggest mTOR-driven vascular damage may be a mechanism shared by age-associated neurological diseases. Therefore, mTOR attenuation may have promise for treatment of cognitive impairment in atherosclerosis.
Collapse
Affiliation(s)
- Jordan B Jahrling
- Department of Cellular and Integrative
Physiology and The Barshop Institute for Longevity and Aging Studies, University of
Texas Health Science Center at San Antonio, TX, USA
| | - Ai-Ling Lin
- Sanders-Brown Center on Aging,
Department of Pharmacology and Nutritional Sciences and Department of Biomedical
Engineering, University of Kentucky, KY, USA
| | - Nicholas DeRosa
- Department of Cellular and Integrative
Physiology and The Barshop Institute for Longevity and Aging Studies, University of
Texas Health Science Center at San Antonio, TX, USA
| | - Stacy A Hussong
- Department of Cellular and Integrative
Physiology and The Barshop Institute for Longevity and Aging Studies, University of
Texas Health Science Center at San Antonio, TX, USA
| | - Candice E Van Skike
- Department of Cellular and Integrative
Physiology and The Barshop Institute for Longevity and Aging Studies, University of
Texas Health Science Center at San Antonio, TX, USA
| | - Milena Girotti
- Department of Pharmacology, University
of Texas Health Science Center at San Antonio, TX, USA
| | - Martin Javors
- Department of Psychiatry, University of
Texas Health Science Center at San Antonio, TX, USA
| | - Qingwei Zhao
- Department of Medicine, University of
Texas Health Science Center at San Antonio, TX, USA
| | - Leigh Ann Maslin
- Department of Clinical Laboratory
Sciences, University of Texas Health Science Center at San Antonio, TX, USA
| | - Reto Asmis
- Department of Clinical Laboratory
Sciences, University of Texas Health Science Center at San Antonio, TX, USA
- Department of Biochemistry, University
of Texas Health Science Center at San Antonio, TX, USA
| | - Veronica Galvan
- Department of Cellular and Integrative
Physiology and The Barshop Institute for Longevity and Aging Studies, University of
Texas Health Science Center at San Antonio, TX, USA
| |
Collapse
|
44
|
Electronegative Low-Density Lipoprotein L5 Impairs Viability and NGF-Induced Neuronal Differentiation of PC12 Cells via LOX-1. Int J Mol Sci 2017; 18:ijms18081744. [PMID: 28800073 PMCID: PMC5578134 DOI: 10.3390/ijms18081744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/05/2017] [Accepted: 08/07/2017] [Indexed: 12/30/2022] Open
Abstract
There have been striking associations of cardiovascular diseases (e.g., atherosclerosis) and hypercholesterolemia with increased risk of neurodegeneration including Alzheimer's disease (AD). Low-density lipoprotein (LDL), a cardiovascular risk factor, plays a crucial role in AD pathogenesis; further, L5, a human plasma LDL fraction with high electronegativity, may be a factor contributing to AD-type dementia. Although L5 contributing to atherosclerosis progression has been studied, its role in inducing neurodegeneration remains unclear. Here, PC12 cell culture was used for treatments with human LDLs (L1, L5, or oxLDL), and subsequently cell viability and nerve growth factor (NGF)-induced neuronal differentiation were assessed. We identified L5 as a neurotoxic LDL, as demonstrated by decreased cell viability in a time- and concentration-dependent manner. Contrarily, L1 had no such effect. L5 caused cell damage by inducing ATM/H2AX-associated DNA breakage as well as by activating apoptosis via lectin-like oxidized LDL receptor-1 (LOX-1) signaling to p53 and ensuring cleavage of caspase-3. Additionally, sublethal L5 long-termly inhibited neurite outgrowth in NGF-treated PC12 cells, as evidenced by downregulation of early growth response factor-1 and neurofilament-M. This inhibitory effect was mediated via an interaction between L5 and LOX-1 to suppress NGF-induced activation of PI3k/Akt cascade, but not NGF receptor TrkA and downstream MAPK pathways. Together, our data suggest that L5 creates a neurotoxic stress via LOX-1 in PC12 cells, thereby leading to impairment of viability and NGF-induced differentiation. Atherogenic L5 likely contributes to neurodegenerative disorders.
Collapse
|
45
|
Parthasarathy V, Frazier DT, Bettcher BM, Jastrzab L, Chao L, Reed B, Mungas D, Weiner M, DeCarli C, Chui H, Kramer JH. Triglycerides are negatively correlated with cognitive function in nondemented aging adults. Neuropsychology 2017; 31:682-688. [PMID: 28604016 DOI: 10.1037/neu0000335] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Vascular risk factors like hyperlipidemia may adversely affect brain function. We hypothesized that increased serum triglycerides are associated with decreased executive function and memory in nondemented elderly subjects. We also researched possible vascular mediators and white matter microstructure as assessed with diffusion tensor imaging (DTI). DESIGN/METHOD Participants were 251 nondemented elderly adults (54% male) with a mean age of 78 (SD = 6.4; range: 62-94) years and a mean education of 15.6 (SD = 2.9; range: 8-23) years. Fasting blood samples were used to detect serum triglyceride and low-density lipoprotein (LDL) levels along with ApoE4 status. DTI was used to determine whole brain fractional anisotropy (FA). Composite executive and memory scores were derived from item response theory. Clinical Dementia Rating (CDR) scores provided informant-based measures of daily functioning. RESULTS Triglyceride levels were inversely correlated with executive function, but there was no relationship with memory. Controlling for age, gender, and education did not affect this correlation. This relationship persisted after controlling for vascular risk factors like LDL, total cholesterol, CDR and ApoE4 status. Lastly, adding whole-brain FA to the model did not affect the correlation between triglycerides and executive function. CONCLUSION Triglyceride levels are inversely correlated with executive function in nondemented elderly adults after controlling for age, education, gender, total cholesterol, LDL, ApoE4 status, CDR, and white-matter microstructure. The fact that the effect of triglycerides on cognition was not clearly mediated by vascular risks or cerebrovascular injury raises questions about widely held assumptions of how triglycerides might impact cognition function. (PsycINFO Database Record
Collapse
Affiliation(s)
| | - Darvis T Frazier
- Memory and Aging Center, University of California, San Francisco
| | | | - Laura Jastrzab
- Memory and Aging Center, University of California, San Francisco
| | - Linda Chao
- Department of Radiology, University of California, San Francisco
| | - Bruce Reed
- Alzheimer's Disease Research Center, University of California, Davis
| | - Dan Mungas
- Alzheimer's Disease Research Center, University of California, Davis
| | - Michael Weiner
- Center for Imaging of Neurodegenerative Diseases, University of California, San Francisco
| | - Charles DeCarli
- Alzheimer's Disease Research Center, University of California, Davis
| | - Helena Chui
- Department of Neurology, University of Southern California
| | - Joel H Kramer
- Memory and Aging Center, University of California, San Francisco
| |
Collapse
|
46
|
Yu LE, Lai CL, Lee CT, Wang JY. Highly electronegative low-density lipoprotein L5 evokes microglial activation and creates a neuroinflammatory stress via Toll-like receptor 4 signaling. J Neurochem 2017; 142:231-245. [PMID: 28444734 DOI: 10.1111/jnc.14053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/30/2017] [Accepted: 04/19/2017] [Indexed: 12/23/2022]
Abstract
Atherogenic risk factors, such as hypercholesterolemia, are associated with increased risk of neurodegeneration, especially Alzheimer's dementia. Human plasma electronegative low-density lipoprotein [LDL(-)], especially L5, may serve as an important contributing factor. L5 promoting an inflammatory action in atherosclerosis has been extensively studied. However, the role of L5 in inducing neuroinflammation remains unknown. Here, we examined the impact of L5 on immune activation and cell viability in cultured BV-2 microglia. BV-2 cells treated with lipopolysaccharide or human LDLs (L1, L5, or oxLDL) were subjected to molecular/biochemical assays for measuring microglial activation, levels of inflammatory factors, and cell survival. A transwell BV-2/N2a co-culture was used to assess N2a cell viability following BV-2 cell exposure to L5. We found that L5 enables the activation of microglia and elicits an inflammatory response, as evidenced by increased oxygen/nitrogen free radicals (nitric oxide, reactive oxygen species, and peroxides), elevated tumor necrosis factor-α levels, decreased basal interleukin-10 levels, and augmented production of pro-inflammatory proteins (inducible nitric oxide synthase and cyclooxygenase-2). L5 also triggered BV-2 cell death primarily via apoptosis. These effects were markedly disrupted by the application of signaling pathway inhibitors, thus demonstrating that L5 interacts with Toll-like receptor 4 to modulate multiple pathways, including MAPKs, PI3K/Akt, and NF-κB. Decreased N2a cell viability in a transwell co-culture was mainly ascribed to L5-induced BV-2 cell activation. Together, our data suggest that L5 creates a neuroinflammatory stress via microglial Toll-like receptor 4, thereby leading to the death of BV-2 microglia and coexistent N2a cells. Atherogenic L5 possibly contributes to neuroinflammation-related neurodegeneration.
Collapse
Affiliation(s)
- Liang-En Yu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiou-Lian Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ching-Tien Lee
- Department of Nursing, Hsin-Sheng College of Medical Care and Management, Taoyuan, Taiwan
| | - Jiz-Yuh Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
47
|
Rai V. Methylenetetrahydrofolate Reductase (MTHFR) C677T Polymorphism and Alzheimer Disease Risk: a Meta-Analysis. Mol Neurobiol 2017; 54:1173-1186. [PMID: 26820674 DOI: 10.1007/s12035-016-9722-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/13/2016] [Indexed: 01/08/2023]
Abstract
Methylenetetrahydrofolate reductase (MTHFR) is key enzyme of folate/homocysteine pathway. Case control association studies on MTHFR C677T polymorphism and Alzheimer's disease (AD) have been repeatedly performed over the last two decades, but the results are inconclusive. The aim of the present study was to assess the risk of MTHFR C677T polymorphism for AD. Forty-one studies were identified by a search of PubMed, Google Scholar, Elsevier, and Springer Link databases, up to January 2015. Odds ratios (ORs) with corresponding 95 % confidence interval (CI) were calculated using fixed effect model or random effect model. The subgroup analyses based on ethnicity were performed. MTHFR C677T polymorphism had a significant association with susceptibility to AD in all genetic models (for T vs C OR = 1.29, 95 % CI = 1.07-1.56, p = 0.003; for TT + CT vs CC OR = 1.29, 95 % CI = 1.19-1.40, p = 0.0004; for TT vs CC OR = 1.31, 95 % CI = 1.16-1.48, p = 0.001; for CT vs CC OR = 1.24, 95 % CI = 1.13-1.35, p < 0.004; and for TT vs CT + CC OR = 1.13, 95 % CI = 1.00-1.28, p = 0.02). Results of present meta-analysis supported that the MTHFR C677T polymorphism was associated with an increased risk of AD.
Collapse
Affiliation(s)
- Vandana Rai
- Department of Biotechnology, Human Molecular Genetics Laboratory, VBS Purvanchal University, Jaunpur, 222003, UP, India.
| |
Collapse
|
48
|
de Pedro-Cuesta J, Martínez-Martín P, Rábano A, Alcalde-Cabero E, José García López F, Almazán-Isla J, Ruiz-Tovar M, Medrano MJ, Avellanal F, Calero O, Calero M. Drivers: A Biologically Contextualized, Cross-Inferential View of the Epidemiology of Neurodegenerative Disorders. J Alzheimers Dis 2016; 51:1003-22. [PMID: 26923014 PMCID: PMC4927850 DOI: 10.3233/jad-150884] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Sutherland et al. (2011) suggested that, instead of risk factors for single neurodegenerative disorders (NDDs), there was a need to identify specific “drivers”, i.e., risk factors with impact on specific deposits, such as amyloid-β, tau, or α-synuclein, acting across entities. Objectives and Methods: Redefining drivers as “neither protein/gene- nor entity-specific features identifiable in the clinical and general epidemiology of conformational NDDs (CNDDs) as potential footprints of templating/spread/transfer mechanisms”, we conducted an analysis of the epidemiology of ten CNDDs, searching for patterns. Results: We identified seven potential drivers, each of which was shared by at least two CNDDs: 1) an age-at-exposure-related susceptibility to Creutzfeldt-Jakob disease (CJD) and several late-life CNDDs; 2) a relationship between age at onset, survival, and incidence; 3) shared genetic risk factors for CJD and late-life CNNDs; 4) partly shared personal (diagnostic, educational, behavioral, and social risk factors) predating clinical onset of late-life CNDDs; 5) two environmental risk factors, namely, surgery for sporadic CJD and amyotrophic lateral sclerosis, and Bordetella pertussis infection for Parkinson’s disease; 6) reticulo-endothelial system stressors or general drivers (andropause or premenopausal estrogen deficiency, APOEɛ4, and vascular risk factors) for late-life CNDDs such as dementia/Alzheimer’s disease, type-2 diabetes mellitus, and some sporadic cardiac and vascular degenerative diseases; and 7) a high, invariant incidence ratio of sporadic to genetic forms of mid- and late-life CNDDs, and type-2 diabetes mellitus. Conclusion: There might be a systematic epidemiologic pattern induced by specific proteins (PrP, TDP-43, SOD1, α-synuclein, amyloid-β, tau, Langerhans islet peptide, and transthyretin) or established combinations of these.
Collapse
Affiliation(s)
- Jesús de Pedro-Cuesta
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo Martínez-Martín
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Rábano
- Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Enrique Alcalde-Cabero
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Fernando José García López
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Javier Almazán-Isla
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - María Ruiz-Tovar
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria-José Medrano
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Fuencisla Avellanal
- Department of Applied Epidemiology, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Olga Calero
- Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Chronic Disease Programme, Carlos III Institute of Health, Madrid, Spain
| | - Miguel Calero
- Consortium for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain.,Chronic Disease Programme, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
49
|
Gardener SL, Rainey-Smith SR, Martins RN. Diet and Inflammation in Alzheimer's Disease and Related Chronic Diseases: A Review. J Alzheimers Dis 2016; 50:301-34. [PMID: 26682690 DOI: 10.3233/jad-150765] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inflammation is one of the pathological features of the neurodegenerative disease, Alzheimer's disease (AD). A number of additional disorders are likewise associated with a state of chronic inflammation, including obesity, cardiovascular disease, and type-2 diabetes, which are themselves risk factors for AD. Dietary components have been shown to modify the inflammatory process at several steps of the inflammatory pathway. This review aims to evaluate the published literature on the effect of consumption of pro- or anti-inflammatory dietary constituents on the severity of both AD pathology and related chronic diseases, concentrating on the dietary constituents of flavonoids, spices, and fats. Diet-based anti-inflammatory components could lead to the development of potent novel anti-inflammatory compounds for a range of diseases. However, further work is required to fully characterize the therapeutic potential of such compounds, including gaining an understanding of dose-dependent relationships and limiting factors to effectiveness. Nutritional interventions utilizing anti-inflammatory foods may prove to be a valuable asset in not only delaying or preventing the development of age-related neurodegenerative diseases such as AD, but also treating pre-existing conditions including type-2 diabetes, cardiovascular disease, and obesity.
Collapse
Affiliation(s)
- Samantha L Gardener
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, Australia.,Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, Australia
| | - Stephanie R Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, Australia.,Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Perth, Australia.,Sir James McCusker Alzheimer's Disease Research Unit (Hollywood Private Hospital), Perth, Australia
| |
Collapse
|
50
|
Sampaio A, Marques EA, Mota J, Carvalho J. Effects of a multicomponent exercise program in institutionalized elders with Alzheimer's disease. DEMENTIA 2016; 18:417-431. [PMID: 27756836 DOI: 10.1177/1471301216674558] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study examined the effect of a Multicomponent Training (MT) intervention on cognitive function, functional fitness and anthropometric variables in institutionalized patients with Alzheimer's disease (AD). Thirty-seven institutionalized elders (84.05 ± 5.58 years) clinically diagnosed with AD (mild and moderate stages) were divided into two groups: Experimental Group (EG, n = 19) and Control Group (CG, n = 18). The EG participated in a six-month supervised MT program (aerobic, muscular resistance, flexibility and postural exercises) of 45-55 minutes/session, twice/week. Cognitive function (MMSE), physical fitness (Senior Fitness Test) and anthropometric variables (Body Mass Index and Waist Circumference), were assessed before (M1), after three months (M2) and after six months (M3) of the experimental protocol. A two-way ANOVA, with repeated measures, revealed significant group and time interactions on cognitive function, chair stand, arm curl, 2-min step, 8-foot up-and-go (UG), chair sit-and-reach (CSR) and back scratch tests as well as waist circumference. Accordingly, for those variables a different response in each group was evident over the time, supported by a significantly better EG performance in chair stand, arm curl, 2-min step, UG, CSR and back scratch tests from M1 to M3, and a significant increase in MMSE from M1 to M2. The CG's performance decreased over time (M1 to M3) in chair stand, arm curl, 2-min step, UG, CSR, back scratch and MMSE. Results suggest that MT programs may be an important non-pharmacological strategy to improve physical and cognitive functions in institutionalized AD patients.
Collapse
Affiliation(s)
- Arnaldina Sampaio
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport Science, University of Porto, Porto, Portugal
| | - Elisa A Marques
- Research Center in Sports Sciences, Health and Human Development, University Institute of Maia (ISMAI), Portugal; National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jorge Mota
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport Science, University of Porto, Porto, Portugal
| | - Joana Carvalho
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport Science, University of Porto, Porto, Portugal
| |
Collapse
|