1
|
Lv R, Maehara A, Matsumura M, Wang L, Zhang C, Huang M, Guo X, Samady H, Giddens DP, Zheng J, Mintz GS, Tang D. Using Optical Coherence Tomography and Intravascular Ultrasound Imaging to Quantify Coronary Plaque Cap Stress/Strain and Progression: A Follow-Up Study Using 3D Thin-Layer Models. Front Bioeng Biotechnol 2021; 9:713525. [PMID: 34497800 PMCID: PMC8419245 DOI: 10.3389/fbioe.2021.713525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate plaque cap thickness quantification and cap stress/strain calculations are of fundamental importance for vulnerable plaque research. To overcome uncertainties due to intravascular ultrasound (IVUS) resolution limitation, IVUS and optical coherence tomography (OCT) coronary plaque image data were combined together to obtain accurate and reliable cap thickness data, stress/strain calculations, and reliable plaque progression predictions. IVUS, OCT, and angiography baseline and follow-up data were collected from nine patients (mean age: 69; m: 5) at Cardiovascular Research Foundation with informed consent obtained. IVUS and OCT slices were coregistered and merged to form IVUS + OCT (IO) slices. A total of 114 matched slices (IVUS and OCT, baseline and follow-up) were obtained, and 3D thin-layer models were constructed to obtain stress and strain values. A generalized linear mixed model (GLMM) and least squares support vector machine (LSSVM) method were used to predict cap thickness change using nine morphological and mechanical risk factors. Prediction accuracies by all combinations (511) of those predictors with both IVUS and IO data were compared to identify optimal predictor(s) with their best accuracies. For the nine patients, the average of minimum cap thickness from IVUS was 0.17 mm, which was 26.08% lower than that from IO data (average = 0.23 mm). Patient variations of the individual errors ranged from ‒58.11 to 20.37%. For maximum cap stress between IO and IVUS, patient variations of the individual errors ranged from ‒30.40 to 46.17%. Patient variations of the individual errors of maximum cap strain values ranged from ‒19.90 to 17.65%. For the GLMM method, the optimal combination predictor using IO data had AUC (area under the ROC curve) = 0.926 and highest accuracy = 90.8%, vs. AUC = 0.783 and accuracy = 74.6% using IVUS data. For the LSSVM method, the best combination predictor using IO data had AUC = 0.838 and accuracy = 75.7%, vs. AUC = 0.780 and accuracy = 69.6% using IVUS data. This preliminary study demonstrated improved plaque cap progression prediction accuracy using accurate cap thickness data from IO slices and the differences in cap thickness, stress/strain values, and prediction results between IVUS and IO data. Large-scale studies are needed to verify our findings.
Collapse
Affiliation(s)
- Rui Lv
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Akiko Maehara
- The Cardiovascular Research Foundation, Columbia University, New York, NY, United States
| | - Mitsuaki Matsumura
- The Cardiovascular Research Foundation, Columbia University, New York, NY, United States
| | - Liang Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Caining Zhang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Mengde Huang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiaoya Guo
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Don. P. Giddens
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, United States
| | - Gary S. Mintz
- The Cardiovascular Research Foundation, Columbia University, New York, NY, United States
| | - Dalin Tang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
2
|
Molecular imaging of inflammation - Current and emerging technologies for diagnosis and treatment. Pharmacol Ther 2020; 211:107550. [PMID: 32325067 DOI: 10.1016/j.pharmthera.2020.107550] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
Inflammation is a key factor in multiple diseases including primary immune-mediated inflammatory diseases e.g. rheumatoid arthritis but also, less obviously, in many other common conditions, e.g. cardiovascular disease and diabetes. Together, chronic inflammatory diseases contribute to the majority of global morbidity and mortality. However, our understanding of the underlying processes by which the immune response is activated and sustained is limited by a lack of cellular and molecular information obtained in situ. Molecular imaging is the visualization, detection and quantification of molecules in the body. The ability to reveal information on inflammatory biomarkers, pathways and cells can improve disease diagnosis, guide and monitor therapeutic intervention and identify new targets for research. The optimum molecular imaging modality will possess high sensitivity and high resolution and be capable of non-invasive quantitative imaging of multiple disease biomarkers while maintaining an acceptable safety profile. The mainstays of current clinical imaging are computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US) and nuclear imaging such as positron emission tomography (PET). However, none of these have yet progressed to routine clinical use in the molecular imaging of inflammation, therefore new approaches are required to meet this goal. This review sets out the respective merits and limitations of both established and emerging imaging modalities as clinically useful molecular imaging tools in addition to potential theranostic applications.
Collapse
|
3
|
Zuo P, Zuo Z, Zheng Y, Wang X, Zhou Q, Chen L, Ma G. Protease-Activated Receptor-2 Deficiency Attenuates Atherosclerotic Lesion Progression and Instability in Apolipoprotein E-Deficient Mice. Front Pharmacol 2017; 8:647. [PMID: 28959204 PMCID: PMC5603739 DOI: 10.3389/fphar.2017.00647] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/31/2017] [Indexed: 01/06/2023] Open
Abstract
Inflammatory mechanisms are involved in the process of atherosclerotic plaque formation and rupture. Accumulating evidence suggests that protease-activated receptor (PAR)-2 contributes to the pathophysiology of chronic inflammation on the vasculature. To directly examine the role of PAR-2 in atherosclerosis, we generated apolipoprotein E/PAR-2 double-deficient mice. Mice were fed with high-fat diet for 12 weeks starting at ages of 6 weeks. PAR-2 deficiency attenuated atherosclerotic lesion progression with reduced total lesion area, reduced percentage of stenosis and reduced total necrotic core area. PAR-2 deficiency increased fibrous cap thickness and collagen content of plaque. Moreover, PAR-2 deficiency decreased smooth muscle cell content, macrophage accumulation, matrix metallopeptidase-9 expression and neovascularization in plaque. Relative quantitative PCR assay using thoracic aorta revealed that PAR-2 deficiency reduced mRNA expression of inflammatory molecules, such as vascular cell adhesion molecule-1, intercellular adhesion molecule-1, tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1. In vitro experiment, we found that PAR-2 deficiency reduced mRNA expression of interferon-γ, interleukin-6, TNF-α and MCP-1 in macrophage under unstimulated and lipopolysaccharide-stimulated conditions. These results suggest that PAR-2 deficiency attenuates the progression and instability of atherosclerotic plaque.
Collapse
Affiliation(s)
- Pengfei Zuo
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast UniversityNanjing, China
| | - Zhi Zuo
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast UniversityNanjing, China
| | - Yueyue Zheng
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast UniversityNanjing, China
| | - Xin Wang
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast UniversityNanjing, China
| | - Qianxing Zhou
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast UniversityNanjing, China
| | - Long Chen
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast UniversityNanjing, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast UniversityNanjing, China
| |
Collapse
|
4
|
Zuo P, Zhou Q, Zuo Z, Wang X, Chen L, Ma G. Effects of the factor Xa inhibitor, fondaparinux, on the stability of atherosclerotic lesions in apolipoprotein E-deficient mice. Circ J 2015; 79:2499-508. [PMID: 26346031 DOI: 10.1253/circj.cj-15-0285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Atherosclerosis is a progressive inflammatory disease that can lead to sudden cardiac events by plaque rupture and subsequent thrombosis. Factor Xa (FXa) not only occupies a crucial position in the coagulation cascade responsible for thrombin generation, but also has pro-inflammatory effects. The hypothesis that Fondaparinux, the selective FXa inhibitor, attenuates plaque progression and promotes stability of atherosclerotic lesions was assessed. METHODS AND RESULTS Fondaparinux (5 mg/kg body weight/day) or 0.9% saline was intraperitoneally administered for 4 weeks to apolipoprotein E-deficient mice (n=12 per group) with established atherosclerotic lesions in the innominate arteries. Fondaparinux did not remarkably decrease the progression of atherosclerosis development in apolipoprotein E-deficient mice, but increased the thickness of fibrous cap (P=0.049) and decreased the ratio of necrotic core (P=0.001) significantly. Moreover, Fondaparinux reduced the staining against Mac-2 (P=0.017), α-SMA (P=0.002), protease-activated receptor (PAR)-1 (P=0.001), PAR-2 (P=0.003), CD-31 (P=0.024), MMP-9 (P=0.000), MMP-13(P=0.011), VCAM-1 (P=0.041) and the mRNA expression of inflammatory mediators (P<0.05) significantly, such as interleukin (IL)-6, MCP-1, IFN-γ, TNF-α, IL-10 and Egr-1. CONCLUSIONS Fondaparinux, the selective FXa inhibitor, can promote the stability of atherosclerotic lesions in apolipoprotein E-deficient mice, possibly through inhibiting expression of the inflammatory mediators in plaque and reduced synthesis of MMP-9 and MMP-13.
Collapse
Affiliation(s)
- Pengfei Zuo
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University
| | | | | | | | | | | |
Collapse
|
5
|
Li X, Yang Q, Wang Z, Wei D. Shear Stress in Atherosclerotic Plaque Determination. DNA Cell Biol 2014; 33:830-8. [DOI: 10.1089/dna.2014.2480] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Xiaohong Li
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| | - Qin Yang
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| | - Dangheng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|