1
|
Bernardini F, Nusca A, Coletti F, La Porta Y, Piscione M, Vespasiano F, Mangiacapra F, Ricottini E, Melfi R, Cavallari I, Ussia GP, Grigioni F. Incretins-Based Therapies and Their Cardiovascular Effects: New Game-Changers for the Management of Patients with Diabetes and Cardiovascular Disease. Pharmaceutics 2023; 15:1858. [PMID: 37514043 PMCID: PMC10386670 DOI: 10.3390/pharmaceutics15071858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Atherosclerosis is the leading cause of death worldwide, especially in patients with type 2 diabetes mellitus (T2D). GLP-1 receptor agonists and DPP-4 inhibitors were demonstrated to play a markedly protective role for the cardiovascular system beyond their glycemic control. Several cardiovascular outcome trials (CVOT) reported the association between using these agents and a significant reduction in cardiovascular events in patients with T2D and a high cardiovascular risk profile. Moreover, recent evidence highlights a favorable benefit/risk profile in myocardial infarction and percutaneous coronary revascularization settings. These clinical effects result from their actions on multiple molecular mechanisms involving the immune system, platelets, and endothelial and vascular smooth muscle cells. This comprehensive review specifically concentrates on these cellular and molecular processes mediating the cardiovascular effects of incretins-like molecules, aiming to improve clinicians' knowledge and stimulate a more extensive use of these drugs in clinical practice as helpful cardiovascular preventive strategies.
Collapse
Affiliation(s)
- Federico Bernardini
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Annunziata Nusca
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Federica Coletti
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Ylenia La Porta
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Mariagrazia Piscione
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Francesca Vespasiano
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Fabio Mangiacapra
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Elisabetta Ricottini
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Rosetta Melfi
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Ilaria Cavallari
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Gian Paolo Ussia
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Francesco Grigioni
- Unit of Cardiac Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| |
Collapse
|
2
|
Marx N, Husain M, Lehrke M, Verma S, Sattar N. GLP-1 Receptor Agonists for the Reduction of Atherosclerotic Cardiovascular Risk in Patients With Type 2 Diabetes. Circulation 2022; 146:1882-1894. [PMID: 36508493 DOI: 10.1161/circulationaha.122.059595] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with type 2 diabetes are at high risk for development of cardiovascular disease, including myocardial infarction, stroke, heart failure, and cardiovascular death. Multiple large cardiovascular outcome trials with novel glucose-lowering agents, namely SGLT2i (SGLT2 inhibitors) and GLP-1 RA (GLP-1 receptor agonists), have demonstrated robust and significant reductions of major adverse cardiovascular events and additional cardiovascular outcomes, such as hospitalizations for heart failure. This evidence has changed the landscape for treatment of patients with type 2 diabetes. Both diabetes and cardiology guidelines and professional societies have responded to this paradigm shift by including strong recommendations to use SGLT2i and/or GLP-1 RA, with evidence-based benefits to reduce cardiovascular risk in high-risk individuals with type 2 diabetes, independent of the need for additional glucose control. GLP-1 RA were initially developed as glucose-lowering drugs because activation of the GLP-1 receptor by these agents leads to a reduction in blood glucose and an improvement in postprandial glucose metabolism. By stimulating GLP-1R in hypothalamic neurons, GLP-1 RA additionally induce satiety and lead to weight loss. Data from cardiovascular outcome trials demonstrated a robust and consistent reduction in atherothrombotic events, particularly in patients with established atherosclerotic cardiovascular disease. Despite the consistent evidence of atherosclerotic cardiovascular disease benefit from these trials, the number of patients receiving these drugs remains low. This overview summarizes the experimental and clinical evidence of cardiovascular risk reduction offered by GLP-1 RA, and provides practical information on how these drugs should be implemented in the treatment of type 2 diabetes in the cardiology community.
Collapse
Affiliation(s)
- Nikolaus Marx
- Department of Internal Medicine I (Cardiology), University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, Germany (N.M., M.L.)
| | - Mansoor Husain
- Ted Rogers Centre for Heart Research, Department of Medicine (M.H.), University of Toronto, Canada.,Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, Toronto, Canada (M.H.)
| | - Michael Lehrke
- Department of Internal Medicine I (Cardiology), University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, Germany (N.M., M.L.)
| | - Subodh Verma
- Department of Pharmacology and Toxicology (S.V.), University of Toronto, Canada.,Institutes of Medical Sciences (S.V.), University of Toronto, Canada.,Department of Surgery (S.V.), University of Toronto, Canada.,Division of Cardiovascular Surgery, St Michael's Hospital, Toronto, Canada (S.V)
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, United Kingdom (N.S.)
| |
Collapse
|
3
|
Nätynki A, Leisti P, Tuusa J, Varpuluoma O, Huilaja L, Izumi K, Herukka SK, Ukkola O, Junttila J, Kokkonen N, Tasanen K. Use of gliptins reduces levels of SDF-1/CXCL12 in bullous pemphigoid and type 2 diabetes, but does not increase autoantibodies against BP180 in diabetic patients. Front Immunol 2022; 13:942131. [PMID: 35958564 PMCID: PMC9357937 DOI: 10.3389/fimmu.2022.942131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
The use of dipeptidyl peptidase 4 (DPP4) inhibitors, (also known as gliptins), is associated with an increased risk of bullous pemphigoid (BP), an autoimmune blistering skin disease. To explore the mechanism behind gliptin-associated BP we investigated circulating autoantibodies against the major BP autoantigen BP180 in serum samples from patients with type 2 diabetes (T2D) with preceding gliptin medication (n = 136) or without (n = 136). Sitagliptin was the most frequently prescribed gliptin (125/136 patients). Using an ELISA assay, we showed that IgG autoantibodies against the immunodominant NC16A domain of BP180 were found in 5.9% of gliptin treated and in 6.6% of non-gliptin treated T2D patients. We found that 28% of gliptin treated patients had IgG autoantibodies recognizing the native full-length BP180 in ELISA, but among non-gliptin treated the seropositivity was even higher, at 32%. Further ELISA analysis of additional serum samples (n = 57) found no major changes in the seropositivity against BP180 during a follow-up period of about nine years. In immunoblotting, full-length BP180 was recognized by 71% of gliptin treated and 89% of non-gliptin treated T2D patients, but only by 46% of the age-and sex-matched controls. The chemokine stromal derived factor-1(SDF-1/CXCL12) is one of the major substrates of DPP4. Immunostainings showed that the expression of SDF-1 was markedly increased in the skin of BP patients, but not affected by prior gliptin treatment. We found that the use of gliptins decreased the serum level of SDF-1α in both BP and T2D patients. Our results indicate that the autoantibodies against the linear full-length BP180 are common in patients with T2D, but seropositivity is unaffected by the use of sitagliptin.
Collapse
Affiliation(s)
- Antti Nätynki
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Päivi Leisti
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jussi Tuusa
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Outi Varpuluoma
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Laura Huilaja
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Kentaro Izumi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine - Neurology, University of Eastern Finland and Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Olavi Ukkola
- Department of Internal Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Juhani Junttila
- Department of Internal Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Nina Kokkonen
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Kaisa Tasanen
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
- *Correspondence: Kaisa Tasanen,
| |
Collapse
|
4
|
Siraj MA, Mundil D, Beca S, Momen A, Shikatani EA, Afroze T, Sun X, Liu Y, Ghaffari S, Lee W, Wheeler MB, Keller G, Backx P, Husain M. Cardioprotective GLP-1 metabolite prevents ischemic cardiac injury by inhibiting mitochondrial trifunctional protein-α. J Clin Invest 2020; 130:1392-1404. [PMID: 31985487 DOI: 10.1172/jci99934] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/13/2019] [Indexed: 01/02/2023] Open
Abstract
Mechanisms mediating the cardioprotective actions of glucagon-like peptide 1 (GLP-1) were unknown. Here, we show in both ex vivo and in vivo models of ischemic injury that treatment with GLP-1(28-36), a neutral endopeptidase-generated (NEP-generated) metabolite of GLP-1, was as cardioprotective as GLP-1 and was abolished by scrambling its amino acid sequence. GLP-1(28-36) enters human coronary artery endothelial cells (caECs) through macropinocytosis and acts directly on mouse and human coronary artery smooth muscle cells (caSMCs) and caECs, resulting in soluble adenylyl cyclase Adcy10-dependent (sAC-dependent) increases in cAMP, activation of protein kinase A, and cytoprotection from oxidative injury. GLP-1(28-36) modulates sAC by increasing intracellular ATP levels, with accompanying cAMP accumulation lost in sAC-/- cells. We identify mitochondrial trifunctional protein-α (MTPα) as a binding partner of GLP-1(28-36) and demonstrate that the ability of GLP-1(28-36) to shift substrate utilization from oxygen-consuming fatty acid metabolism toward oxygen-sparing glycolysis and glucose oxidation and to increase cAMP levels is dependent on MTPα. NEP inhibition with sacubitril blunted the ability of GLP-1 to increase cAMP levels in coronary vascular cells in vitro. GLP-1(28-36) is a small peptide that targets novel molecular (MTPα and sAC) and cellular (caSMC and caEC) mechanisms in myocardial ischemic injury.
Collapse
Affiliation(s)
- M Ahsan Siraj
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Dhanwantee Mundil
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Sanja Beca
- Heart and Stroke Richard Lewar Center of Excellence in Cardiovascular Research, and
| | - Abdul Momen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Eric A Shikatani
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Talat Afroze
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Xuetao Sun
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ying Liu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Siavash Ghaffari
- Keenan Research Centre for Biomedical Research, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Warren Lee
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Keenan Research Centre for Biomedical Research, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Biochemistry.,Department of Medicine, and
| | - Michael B Wheeler
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Gordon Keller
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,McEwen Centre for Regenerative Medicine, and
| | - Peter Backx
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mansoor Husain
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Heart and Stroke Richard Lewar Center of Excellence in Cardiovascular Research, and.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, and.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,McEwen Centre for Regenerative Medicine, and.,Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
5
|
The nonglycemic actions of dipeptidyl peptidase-4 inhibitors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:368703. [PMID: 25140306 PMCID: PMC4129137 DOI: 10.1155/2014/368703] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/10/2014] [Indexed: 12/13/2022]
Abstract
A cell surface serine protease, dipeptidyl peptidase 4 (DPP-4), cleaves dipeptide from peptides containing proline or alanine in the N-terminal penultimate position. Two important incretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), enhance meal-stimulated insulin secretion from pancreatic β-cells, but are inactivated by DPP-4. Diabetes and hyperglycemia increase the DPP-4 protein level and enzymatic activity in blood and tissues. In addition, multiple other functions of DPP-4 suggest that DPP-4 inhibitor, a new class of antidiabetic agents, may have pleiotropic effects. Studies have shown that DPP-4 itself is involved in the inflammatory signaling pathway, the stimulation of vascular smooth cell proliferation, and the stimulation of oxidative stress in various cells. DPP-4 inhibitor ameliorates these pathophysiologic processes and has been shown to have cardiovascular protective effects in both in vitro and in vivo experiments. However, in recent randomized clinical trials, DPP-4 inhibitor therapy in high risk patients with type 2 diabetes did not show cardiovascular protective effects. Some concerns on the actions of DPP-4 inhibitor include sympathetic activation and neuropeptide Y-mediated vascular responses. Further studies are required to fully characterize the cardiovascular effects of DPP-4 inhibitor.
Collapse
|