1
|
Feng Q, Ma J, Jiang X, Wei W, Xu D, Cao Y, Pei H. Therapeutic potential of fucoidan in atherosclerosis: a review. Food Funct 2025. [PMID: 40353291 DOI: 10.1039/d4fo05388e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Atherosclerosis (AS) is a slowly progressive disease that significantly increases the risk of cardiovascular diseases. The development of AS is closely associated with various factors, including disturbances in lipid metabolism, endothelial damage, inflammation, and the formation of unstable plaques. AS is strongly linked to diseases with high incidence and mortality, such as ischemic heart disease and stroke, which pose significant economic burdens. Recent studies have focused on identifying effective treatments for preventing and reversing AS. New evidence indicates that fucoidan, a polysaccharide derived from rockweed, possesses lipid-lowering, antioxidant, anti-inflammatory, endothelial-protective and prebiotic properties that align with the pathophysiology of AS, making it a promising therapeutic candidate. This review systematically presents recent progress in understanding the anti-atherosclerotic effects of fucoidan, particularly its underlying mechanisms. These mechanisms involve the regulation of lipid levels, reduction of vascular inflammation, enhancement of antioxidant defenses, and protection of the vascular endothelium. These insights are essential for improving cardiovascular and cerebrovascular health.
Collapse
Affiliation(s)
- Qiujian Feng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- Beijing University of Chinese Medicine, Beijing, China
| | - Jinye Ma
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefan Jiang
- Beijing University of Chinese Medicine, Beijing, China
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongchen Xu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Cao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hui Pei
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Lei S, Liu C, Zheng TX, Fu W, Huang MZ. The relationship of redox signaling with the risk for atherosclerosis. Front Pharmacol 2024; 15:1430293. [PMID: 39148537 PMCID: PMC11324460 DOI: 10.3389/fphar.2024.1430293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
Oxidative balance plays a pivotal role in physiological homeostasis, and many diseases, particularly age-related conditions, are closely associated with oxidative imbalance. While the strategic role of oxidative regulation in various diseases is well-established, the specific involvement of oxidative stress in atherosclerosis remains elusive. Atherosclerosis is a chronic inflammatory disorder characterized by plaque formation within the arteries. Alterations in the oxidative status of vascular tissues are linked to the onset, progression, and outcome of atherosclerosis. This review examines the role of redox signaling in atherosclerosis, including its impact on risk factors such as dyslipidemia, hyperglycemia, inflammation, and unhealthy lifestyle, along with dysregulation, vascular homeostasis, immune system interaction, and therapeutic considerations. Understanding redox signal transduction and the regulation of redox signaling will offer valuable insights into the pathogenesis of atherosclerosis and guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sujuan Lei
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chen Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Tian-Xiang Zheng
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| | - Mei-Zhou Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary Surgery), Chongqing, Sichuan, China
| |
Collapse
|
3
|
Cestari AP, Gasparotto FM, Kassuya CAL, Lacerda TMR, Donadel G, Moura CS, Ceranto DB, Jacomassi E, Alberton O, Tramontini SB, Bertoncello LA, Gasparotto Junior A, Lourenço ELB. Ateroprotective effects of Plinia cauliflora in. New Zealand rabbits: beyond the lipid-lowering effect. Front Pharmacol 2024; 15:1244632. [PMID: 38283628 PMCID: PMC10811141 DOI: 10.3389/fphar.2024.1244632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024] Open
Abstract
Introduction: Plinia cauliflora [Mart.] Kausel (Myrtaceae), popularly known as "jabuticaba," is a fruit species native to Brazil. Despite extensive widespread usage, its antiatherosclerotic properties' impact remains unknown. Thus, the present study aimed to investigate the cardioprotective effects of a preparation obtained from the fruit peels of P. cauliflora (EEPC). Methods: Male New Zealand rabbits received a 1% cholesterol-supplemented diet for 60 days. On the thirtieth day, the animals were divided into five experimental groups and received, once a day, by the oral route, the EEPC (10, 30, and 100 mg/kg), simvastatin (2.5 mg/kg), or vehicle for 30 days. At the end of the experimental period, peripheral blood and arterial branch samples were collected. The levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglyceride (TG), malondialdehyde (MDA), nitrotyrosine (NT), nitrite, interleukin 1 beta (IL-1b), interleukin 6 (IL-6), soluble inter-cellular adhesion molecule-1 (sICAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1) levels were measured. Moreover, the catalase and superoxide dismutase levels were measured on the arterial samples. Histopathological analysis and arterial morphometry were also performed. Results and discussion: The oral administration of ESEG significantly lowered the levels of lipids in rabbits that were fed a CRD diet. This treatment also adjusted the protective system against oxidation in the arteries by decreasing the oxidation of lipids and proteins. Additionally, the levels of IL-1b, IL-6, sICAM-1, and sVCAM-1 in the bloodstream decreased significantly, and this was accompanied by a reduction of atherosclerotic lesions in all branches of the arteries. The findings suggest that EEPC may be a possible option for additional management of atherosclerosis.
Collapse
Affiliation(s)
- Ana Paula Cestari
- Master’s Degree in Medicinal Plants and Herbal Medicines in Basic Healthcare, Paranaense University, Umuarama, Brazil
| | - Francielly Mourão Gasparotto
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Cândida Aparecida Leite Kassuya
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Tauany Milan Ribeiro Lacerda
- Master’s Degree in Medicinal Plants and Herbal Medicines in Basic Healthcare, Paranaense University, Umuarama, Brazil
| | - Guilherme Donadel
- Master’s Degree in Medicinal Plants and Herbal Medicines in Basic Healthcare, Paranaense University, Umuarama, Brazil
| | - Catia Sari Moura
- Master’s Degree in Medicinal Plants and Herbal Medicines in Basic Healthcare, Paranaense University, Umuarama, Brazil
| | - Daniela Boleta Ceranto
- Master’s Degree in Medicinal Plants and Herbal Medicines in Basic Healthcare, Paranaense University, Umuarama, Brazil
| | - Ezilda Jacomassi
- Master’s Degree in Medicinal Plants and Herbal Medicines in Basic Healthcare, Paranaense University, Umuarama, Brazil
| | - Odair Alberton
- Master’s Degree in Medicinal Plants and Herbal Medicines in Basic Healthcare, Paranaense University, Umuarama, Brazil
| | - Salviano Belletini Tramontini
- Master’s Degree in Medicinal Plants and Herbal Medicines in Basic Healthcare, Paranaense University, Umuarama, Brazil
| | - Luana Ale Bertoncello
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Brazil
| | - Emerson Luiz Botelho Lourenço
- Master’s Degree in Medicinal Plants and Herbal Medicines in Basic Healthcare, Paranaense University, Umuarama, Brazil
| |
Collapse
|
4
|
Balkrishna A, Gohel V, Pathak N, Singh R, Tomer M, Rawat M, Dev R, Varshney A. Anti-oxidant response of lipidom modulates lipid metabolism in Caenorhabditis elegans and in OxLDL-induced human macrophages by tuning inflammatory mediators. Biomed Pharmacother 2023; 160:114309. [PMID: 36709598 DOI: 10.1016/j.biopha.2023.114309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023] Open
Abstract
Atherosclerosis is the main pathological process of several cardiovascular diseases. It may begin early in life and stay latent and asymptomatic for an extended period before its clinical manifestation. The formation of foamy macrophages due to dysregulated lipid metabolism is a key event in the development and progression of atherosclerotic plaque. The current pharmacotherapy for atherosclerosis is not able to address multiple aetiologies associated with the disease. Lipidom, an herbal prescription medicine, has anti-oxidant, lipid lowering and anti-inflammatory properties that lead to multifaceted treatment benefits against chronic inflammation, dyslipidaemia, and oxidative stress. The present study aimed to characterize the pharmacological effects of Lipidom using various experimental models. The phytochemical analysis of Lipidom was performed on ultra-high performance liquid chromatography (UHPLC) platform. Lipidom was evaluated for cytosafety, IL-1β and MCP-1 release, modulation of NLRP3 pathway, NFκB activity, ROS generation, lipid accumulation and gene expression in THP1 macrophages. Furthermore, Lipidom evaluation was also performed in the N2, CF1553, and TJ356 strains of Caenorhabditis elegans (C. elegans). The evaluation of brood size, adult (%), lipid accumulation, triglyceride levels, SOD-3 GFP signal, MDA formation, DAF-16 nuclear translocation, and gene expression was performed in C. elegans. Lipidom treatment significantly reduced the inflammatory mediators, lipid accumulation, oxidative stress, and normalized genes involved in the development of foamy macrophages. Lipidom treated C. elegans showed a significant decline in lipid accumulation and oxidative stress. Taken together, Lipidom treatment showed a multifaceted approach in the modulation of several mediators responsible for the development and progression of atherosclerotic plaque.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249405, Uttarakhand, India; Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India; Patanjali Yog Peeth (UK) Trust, 40 Lambhill Street, Kinning Park, Glasgow G411AU, UK
| | - Vivek Gohel
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249405, Uttarakhand, India
| | - Nishit Pathak
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249405, Uttarakhand, India
| | - Rani Singh
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249405, Uttarakhand, India
| | - Meenu Tomer
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249405, Uttarakhand, India
| | - Malini Rawat
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249405, Uttarakhand, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249405, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Institute, Governed by Patanjali Research Foundation Trust, NH-58, Haridwar 249405, Uttarakhand, India; Department of Allied and Applied Sciences, University of Patanjali, Patanjali Yog Peeth, Roorkee-Haridwar Road, Haridwar 249405, Uttarakhand, India; Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
5
|
Yadav V, Sharma S, Kumar A, Singh S, Ravichandiran V. Serratiopeptidase Attenuates Lipopolysaccharide-Induced Vascular Inflammation by Inhibiting the Expression of Monocyte Chemoattractant Protein-1. Curr Issues Mol Biol 2023; 45:2201-2212. [PMID: 36975512 PMCID: PMC10047379 DOI: 10.3390/cimb45030142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 03/29/2023] Open
Abstract
Lipopolysaccharide (LPS) has potent pro-inflammatory properties and acts on many cell types including vascular endothelial cells. The secretion of the cytokines MCP-1 (CCL2), interleukins, and the elevation of oxidative stress by LPS-activated vascular endothelial cells contribute substantially to the pathogenesis of vascular inflammation. However, the mechanism involving LPS-induced MCP-1, interleukins, and oxidative stress together is not well demonstrated. Serratiopeptidase (SRP) has been widely used for its anti-inflammatory effects. In this research study, our intention is to establish a potential drug candidate for vascular inflammation in cardiovascular disorder conditions. We used BALB/c mice because this is the most successful model of vascular inflammation, suggested and validated by previous research findings. Our present investigation examined the involvement of SRP in vascular inflammation caused by lipopolysaccharides (LPSs) in a BALB/c mice model. We analyzed the inflammation and changes in the aorta by H&E staining. SOD, MDA, and GPx levels were determined as per the instructions of the kit protocols. ELISA was used to measure the levels of interleukins, whereas immunohistochemistry was carried out for the evaluation of MCP-1 expression. SRP treatment significantly suppressed vascular inflammation in BALB/c mice. Mechanistic studies demonstrated that SRP significantly inhibited the LPS-induced production of proinflammatory cytokines such as IL-2, IL-1, IL-6, and TNF-α in aortic tissue. Furthermore, it also inhibited LPS-induced oxidative stress in the aortas of mice, whereas the expression and activity of monocyte chemoattractant protein-1 (MCP-1) decreased after SRP treatment. In conclusion, SRP has the ability to reduce LPS-induced vascular inflammation and damage by modulating MCP-1.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| | - Satyam Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata 700054, West Bengal, India
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar 160062, Punjab, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur 844102, Bihar, India
| |
Collapse
|
6
|
Singh S, Changkija S, Mudgal R, Ravichandiran V. Bioactive components to inhibit foam cell formation in atherosclerosis. Mol Biol Rep 2022; 49:2487-2501. [PMID: 35013861 DOI: 10.1007/s11033-021-07039-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND The production of lipid-laden cells in macrophages after significant ingestion of oxidized low-density lipoprotein is considered the most critical phase in the creation of atherosclerotic lesions, which is known as foam cell formation. Targeting foam cell development to find a potential therapeutic strategy for the management of atherosclerosis has yielded numerous promising outcomes. Multiple variables influence foam cell growth, including scavenger receptor expression, cholesterol transporter expression acyl CoA: cholesterol acyltransferase activity, and neutral cholesteryl ester hydrolase activity. Plants used during herbal therapy have been shown to assist with a variety of ailments. RESULT In this study, we found medicinal plants and their bioactive components suppress foam cell formation in a variety of ways; some inhibit cholesterol transporter and lectin-like oxidized low-density lipoprotein receptor-1 upregulation, while others inhibit the function of acyl CoA: cholesterol acyltransferase activity, and neutral cholesteryl ester hydrolase activity. CONCLUSION Recent study findings related to the synthesis of the new active component from plant sources by focusing on the typical process involved in the generation of foam cells. We're also looking at using a cellular target-based therapeutic approach to generate novel plant-based medications for the cure of atherosclerosis.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India.
| | - Senti Changkija
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India
| | - Rajat Mudgal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area, Vaishali District, Hajipur, Bihar, 844102, India
| |
Collapse
|
7
|
Kumar G, Dey SK, Kundu S. Herbs and their bioactive ingredients in cardio-protection: Underlying molecular mechanisms and evidences from clinical studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153753. [PMID: 34610528 DOI: 10.1016/j.phymed.2021.153753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Medicinal plants or herbs produce a bounty of bioactive phytochemicals. These phytochemicals can influence a variety of physiological events related to cardiovascular health through multiple underlying mechanisms, such as their role as antioxidative, anti-ischemic, anti-proliferative, hypotensive, anti-thrombotic, and anti-hypercholesterolemic agents. PURPOSE The purpose of this review is to summarize and connect evidences supporting the use of phytotherapy in the management of some of the most common cardiovascular impairments, molecular mechanisms underlying cardio-protection mediated by herbs, and clinical studies which are positively linked with the use of herbs in cardiovascular biology. Additionally, we also describe several adverse effects associated with some of the herbal plants and their products to provide a balanced set of studies in favor or against phytotherapy in cardiovascular health that may help global discourses on this matter. METHODS Studies relating to the use of medicinal plants were mined by strategically searching scientific databases including Google Scholar, PubMed and Science Direct. Investigations involving approximately 175 articles including reviews, research articles, meta-analyses, and cross-sectional and observational studies were retrieved and analyzed in line with the stated purpose of this study. RESULTS A positive correlation between the use of medicinal plants and cardiovascular health was observed. While maintaining cardiovascular physiology, medicinal plants and their derivatives seem to govern a variety of cellular mechanisms involved in vasoconstriction and vasorelaxation, which in turn, are important aspects of cardiovascular homeostasis. Furthermore, a variety of studies including clinical trials, cross-sectional studies, and meta-analyses have also supported the anti-hypertensive and thus, cardio-protective effects, of medicinal plants. Apart from this, evidence is also available for the potential drawbacks of several herbs and their products indicating that the unsupervised use of many herbs may lead to severe health issues. CONCLUSIONS The cardio-protective outcomes of medicinal plants and their derivatives are supported by ever-increasing studies, while evidences exist for the potential drawbacks of some of the herbs. A balanced view about the use of medicinal plants and their derivative in cardiovascular biology thus needs to be outlined by researchers and the medical community. The novelty and exhaustiveness of the present manuscript is reflected by the detailed outline of the molecular basis of "herbal cardio-protection", active involvement of several herbs in ameliorating the cardiovascular status, adverse effects of medicinal plants, and the clinical studies considering the use of phytotherapy, all on a single platform.
Collapse
Affiliation(s)
- Gaurav Kumar
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi-110007, India; Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Sanjay Kumar Dey
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi-110007, India; Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India
| | - Suman Kundu
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi-110007, India; Department of Biochemistry, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
8
|
Chen CS, Pan BY, Tsai PH, Chen FY, Yang WC, Shen MY. Kansuinine A Ameliorates Atherosclerosis and Human Aortic Endothelial Cell Apoptosis by Inhibiting Reactive Oxygen Species Production and Suppressing IKKβ/IκBα/NF-κB Signaling. Int J Mol Sci 2021; 22:ijms221910309. [PMID: 34638650 PMCID: PMC8508741 DOI: 10.3390/ijms221910309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS)-induced vascular endothelial cell apoptosis is strongly associated with atherosclerosis progression. Herein, we aimed to examine whether Kansuinine A (KA), extracted from Euphorbia kansui L., prevents atherosclerosis development in a mouse model and inhibits cell apoptosis through oxidative stress reduction. Atherosclerosis development was analyzed in apolipoprotein E-deficient (ApoE-/-) mice fed a high-fat diet (HFD) using Oil Red O staining and H&E staining. Human aortic endothelial cells (HAECs) were treated with KA, followed by hydrogen peroxide (H2O2), to investigate the KA-mediated inhibition of ROS-induced oxidative stress and cell apoptosis. Oil Red O staining and H&E staining showed that atherosclerotic lesion size was significantly smaller in the aortic arch of ApoE-/- mice in the HFD+KA group than that in the aortic arch of those in the HFD group. Further, KA (0.1-1.0 μM) blocked the H2O2-induced death of HAECs and ROS generation. The H2O2-mediated upregulation of phosphorylated IKKβ, phosphorylated IκBα, and phosphorylated NF-κB was suppressed by KA. KA also reduced the Bax/Bcl-2 ratio and cleaved caspase-3 expression, preventing H2O2-induced vascular endothelial cell apoptosis. Our results indicate that KA may protect against ROS-induced endothelial cell apoptosis and has considerable clinical potential in the prevention of atherosclerosis and cardiovascular diseases.
Collapse
Affiliation(s)
- Chen-Sheng Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan;
| | - Bo-Yi Pan
- Graduate Institute of Biomedical Sciences, China Medical University, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan; (B.-Y.P.); (P.-H.T.); (F.-Y.C.)
| | - Ping-Hsuan Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan; (B.-Y.P.); (P.-H.T.); (F.-Y.C.)
| | - Fang-Yu Chen
- Graduate Institute of Biomedical Sciences, China Medical University, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan; (B.-Y.P.); (P.-H.T.); (F.-Y.C.)
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, 128, Sec. 2, Academia Rd., Nankang, Taipei 11529, Taiwan;
| | - Ming-Yi Shen
- Graduate Institute of Biomedical Sciences, China Medical University, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan; (B.-Y.P.); (P.-H.T.); (F.-Y.C.)
- Department of Medical Research, China Medical University Hospital, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan
- Department of Nursing, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-2205-3366
| |
Collapse
|
9
|
Paeonia lactiflora Root Extract and Its Components Reduce Biomarkers of Early Atherosclerosis via Anti-Inflammatory and Antioxidant Effects In Vitro and In Vivo. Antioxidants (Basel) 2021; 10:antiox10101507. [PMID: 34679642 PMCID: PMC8532938 DOI: 10.3390/antiox10101507] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Although various physiological activities of compounds obtained from Paeonia lactiflora have been reported, the effects of P. lactiflora extract (PLE) on early atherosclerosis remain unclear. Therefore, in this study, we investigated the in vitro and in vivo antiatherosclerosis and in vitro antioxidant effects of PLE and its compounds. PLE suppresses the tumor necrosis factor (TNF)-α-induced capacity of THP-1 cells to adhere to human umbilical vein endothelial cells (HUVECs), vascular cell adhesion molecule (VCAM)-1 expression, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling in HUVECs. PLE also suppresses TNF-α-induced nuclear translocation of NF-κB p65 from cytosol as well as the enhanced TNFA and C-C motif chemokine ligand 2 (CCL2) mRNA expression in HUVECs. We identified and quantified the following PLE compounds using high-performance liquid chromatography with diode array detection: methyl gallate, oxypaeoniflorin, catechin, albiflorin, paeoniflorin, benzoic acid, benzoylpaeoniflorin, and paeonol. Among these, methyl gallate had the strongest inhibitory effect on monocyte adherence to TNF-α-induced HUVECs and the VCAM-1 expression. Reverse transcriptase real-time quantitative polymerase chain reaction showed that PLE compounds had a dissimilar inhibition effect on TNF-α-induced mRNA expression levels of CCL2, TNFA, and IL6 in HUVECs. Except for paeonol, the compounds inhibited lipopolysaccharide (LPS)-induced reactive oxygen species production in RAW264.7 cells. In vivo, oral administration of PLE improved TNF-α-induced macrophage infiltration to the vascular endothelium and expression of VCAM-1, as well as IL6 and TNFA gene expression in the main artery of mice. PLE could be useful as a nutraceutical material against early atherosclerosis via the combined effects of its components.
Collapse
|
10
|
Li T, Li D, Xu X, Zhu Y, Phiri M, Ji S, Shu C, Ding L. A simple injectable peptide-based hydrogel of tanshinone ⅡA for antioxidant and anticoagulation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Sharifi-Rad J, Rodrigues CF, Sharopov F, Docea AO, Can Karaca A, Sharifi-Rad M, Kahveci Karıncaoglu D, Gülseren G, Şenol E, Demircan E, Taheri Y, Suleria HAR, Özçelik B, Nur Kasapoğlu K, Gültekin-Özgüven M, Daşkaya-Dikmen C, Cho WC, Martins N, Calina D. Diet, Lifestyle and Cardiovascular Diseases: Linking Pathophysiology to Cardioprotective Effects of Natural Bioactive Compounds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:2326. [PMID: 32235611 PMCID: PMC7177934 DOI: 10.3390/ijerph17072326] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
Heart and blood vessels disorders comprise one of the main causes of death worldwide. Pharmacologically active natural compounds have been used as a complementary therapy in cardiovascular disease around the world in a traditional way. Dietary, natural bioactive compounds, as well as healthy lifestyles, are considered to prevent coronary artery diseases. Pre-clinical and clinical studies reported that consumption of plant-food bioactive derivatives including polyphenolic compounds, peptides, oligosaccharides, vitamins, unsaturated fatty acids possess protective effects on cardiovascular diseases. This review aims to summarize the cardiovascular risk factors, pre-clinical studies and clinical trials related to cardioprotective properties of the plant-food-derived bioactive compounds. Molecular mechanisms by the natural bioactive compounds exert their cardiovascular protective properties have also been highlighted.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran;
| | - Célia F. Rodrigues
- LEPABE—Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, 734003 Dushanbe, Tajikistan;
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Aslı Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (A.C.K.); (D.K.K.); (B.O.); (K.N.K.); (M.G.-Ö.)
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Derya Kahveci Karıncaoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (A.C.K.); (D.K.K.); (B.O.); (K.N.K.); (M.G.-Ö.)
| | - Gözde Gülseren
- Department of Food Engineering, Chemical and Metallurgical Faculty, Istanbul Technical University, Maslak Istanbul 34469, Turkey; (G.G.); (E.Ş.); (E.D.)
| | - Ezgi Şenol
- Department of Food Engineering, Chemical and Metallurgical Faculty, Istanbul Technical University, Maslak Istanbul 34469, Turkey; (G.G.); (E.Ş.); (E.D.)
| | - Evren Demircan
- Department of Food Engineering, Chemical and Metallurgical Faculty, Istanbul Technical University, Maslak Istanbul 34469, Turkey; (G.G.); (E.Ş.); (E.D.)
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran;
| | | | - Beraat Özçelik
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (A.C.K.); (D.K.K.); (B.O.); (K.N.K.); (M.G.-Ö.)
- Bioactive Research & Innovation Food Manufac. Indust. Trade Ltd., Katar Street, Teknokent ARI-3, B110, Sarıyer, Istanbul 34467, Turkey
| | - Kadriye Nur Kasapoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (A.C.K.); (D.K.K.); (B.O.); (K.N.K.); (M.G.-Ö.)
| | - Mine Gültekin-Özgüven
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (A.C.K.); (D.K.K.); (B.O.); (K.N.K.); (M.G.-Ö.)
| | - Ceren Daşkaya-Dikmen
- Pladis TR R&D Department, Kısıklı mah., Ferah cad. Üsküdar İstanbul 34692, Turkey;
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|