1
|
Mansoor T, Rao BH, Gupta K, Parikh SS, Abramov D, Mehta A, Al Rifai M, Virani SS, Nambi V, Minhas AMK, Koshy SKG. Inclisiran as a siRNA Inhibitor of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9); Past, Present, and Future. Am J Cardiovasc Drugs 2025; 25:293-306. [PMID: 39707142 DOI: 10.1007/s40256-024-00712-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
Reducing low-density lipoprotein cholesterol (LDL-C) levels has been shown to reduce the risk of developing atherosclerotic cardiovascular disease (ASCVD). Statins are the foundation of LDL-C lowering therapy with other non-statin agents used in circumstances where goal LDL-C levels are not reached or owing to intolerance to adverse effects of statins. In 2003, the discovery of the role of the proprotein convertase subtilisin/kexin type 9 (PCSK9) system in promoting elevated LDL-C levels led to new avenues of drug development to achieve target LDL-C. In 2021, inclisiran, a small interfering ribonucleic acid (siRNA) molecule targeting PCSK9 was approved by the Food and Drug Administration (FDA). Inclisiran has demonstrated effective reductions of LDL-C, such as in the large phase-3 ORION-9, ORION-10, and ORION-11 trials in which it achieved LDL-C reductions of 39.7%, 52.3%, and 49.9%, respectively. This review discusses the current clinical evidence and ongoing clinical studies of inclisiran as well as analyzes other areas of PCSK9 inhibition development.
Collapse
Affiliation(s)
- Taha Mansoor
- Department of Internal Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, 1000 Oakland Dr, Kalamazoo, MI, USA.
| | | | - Kartik Gupta
- Department of Cardiology, Henry Ford Hospital, Detroit, MI, USA
| | - Sachin S Parikh
- Department of Cardiology, Henry Ford Hospital, Detroit, MI, USA
| | - Dmitry Abramov
- Division of Cardiology, Department of Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | - Anurag Mehta
- Division of Cardiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Mahmoud Al Rifai
- Houston Methodist DeBakey Heart and Vascular Center, Houston, TX, USA
| | - Salim S Virani
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Vijay Nambi
- Department of Cardiology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Abdul Mannan Khan Minhas
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Section of Cardiovascular Research, Baylor College of Medicine, Houston, TX, USA
| | - Santhosh K G Koshy
- Department of Internal Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, 1000 Oakland Dr, Kalamazoo, MI, USA
- Department of Cardiology, Ascension Borgess Hospital, Kalamazoo, MI, USA
| |
Collapse
|
2
|
Zimodro JM, Mucha M, Berthold HK, Gouni-Berthold I. Lipoprotein Metabolism, Dyslipidemia, and Lipid-Lowering Therapy in Women: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:913. [PMID: 39065763 PMCID: PMC11279947 DOI: 10.3390/ph17070913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Lipid-lowering therapy (LLT) is a cornerstone of atherosclerotic cardiovascular disease prevention. Although LLT might lead to different reductions in low-density lipoprotein cholesterol (LDL-C) levels in women and men, LLT diminishes cardiovascular risk equally effectively in both sexes. Despite similar LLT efficacy, the use of high-intensity statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 inhibitors is lower in women compared to men. Women achieve the guideline-recommended LDL-C levels less often than men. Greater cholesterol burden is particularly prominent in women with familial hypercholesterolemia. In clinical practice, women and men with dyslipidemia present with different cardiovascular risk profiles and disease manifestations. The concentrations of LDL-C, lipoprotein(a), and other blood lipids differ between women and men over a lifetime. Dissimilar levels of LLT target molecules partially result from sex-specific hormonal and genetic determinants of lipoprotein metabolism. Hence, to evaluate a potential need for sex-specific LLT, this comprehensive review (i) describes the impact of sex on lipoprotein metabolism and lipid profile, (ii) highlights sex differences in cardiovascular risk among patients with dyslipidemia, (iii) presents recent, up-to-date clinical trial and real-world data on LLT efficacy and safety in women, and (iv) discusses the diverse medical needs of women and men with dyslipidemia and increased cardiovascular risk.
Collapse
Affiliation(s)
- Jakub Michal Zimodro
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Magda Mucha
- Faculty of Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Heiner K. Berthold
- Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), 33611 Bielefeld, Germany
| | - Ioanna Gouni-Berthold
- Center for Endocrinology, Diabetes and Preventive Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
3
|
Wu NQ, Li ZF, Lu MY, Li JJ. Monoclonal antibodies for dyslipidemia in adults: a focus on vulnerable patients groups. Expert Opin Biol Ther 2024; 24:157-169. [PMID: 38375817 DOI: 10.1080/14712598.2024.2321374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Dyslipidemia significantly contributes to atherosclerotic cardiovascular disease (ASCVD). Patients with lipid-rich vulnerable plaques are particularly susceptible to cardiovascular complications. Despite available lipid-lowering therapies (LLTs), challenges in effective lipid management remain. AREAS COVERED This article reviews monoclonal antibody (mAb) therapy in dyslipidemia, particularly focusing on vulnerable plaques and patients. We have reviewed the definitions of vulnerable plaques and patients, outlined the efficacy of traditional LLTs, and discussed in-depth the mAbs targeting PCSK9. We extensively discuss the potential mechanisms, intracoronary imaging, and clinical evidence of PCSK9mAbs in vulnerable plaques and patients. A brief overview of promising mAbs targeting other targets such as ANGPTL3 is also provided. EXPERT OPINION Research consistently supports the potential of mAb therapies in treating adult dyslipidemia, particularly in vulnerable patients. PCSK9mAbs are effective in regulating lipid parameters, such as LDL-C and Lp(a), and exhibit anti-inflammatory and anti-thrombotic properties. These antibodies also maintain endothelial and smooth muscle health, contributing to the stabilization of vulnerable plaques and reduction in adverse cardiovascular events. Future research aims to further understand PCSK9 and other targets like ANGPTL3, focusing on vulnerable groups. Overall, mAbs are emerging as a promising and superior approach in dyslipidemia management and cardiovascular disease prevention.
Collapse
Affiliation(s)
- Na-Qiong Wu
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Zhi-Fan Li
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Meng-Ying Lu
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Jian-Jun Li
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Zhang X, Yu W, Li Y, Wang A, Cao H, Fu Y. Drug development advances in human genetics-based targets. MedComm (Beijing) 2024; 5:e481. [PMID: 38344397 PMCID: PMC10857782 DOI: 10.1002/mco2.481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 10/28/2024] Open
Abstract
Drug development is a long and costly process, with a high degree of uncertainty from the identification of a drug target to its market launch. Targeted drugs supported by human genetic evidence are expected to enter phase II/III clinical trials or be approved for marketing more quickly, speeding up the drug development process. Currently, genetic data and technologies such as genome-wide association studies (GWAS), whole-exome sequencing (WES), and whole-genome sequencing (WGS) have identified and validated many potential molecular targets associated with diseases. This review describes the structure, molecular biology, and drug development of human genetics-based validated beneficial loss-of-function (LOF) mutation targets (target mutations that reduce disease incidence) over the past decade. The feasibility of eight beneficial LOF mutation targets (PCSK9, ANGPTL3, ASGR1, HSD17B13, KHK, CIDEB, GPR75, and INHBE) as targets for drug discovery is mainly emphasized, and their research prospects and challenges are discussed. In conclusion, we expect that this review will inspire more researchers to use human genetics and genomics to support the discovery of novel therapeutic drugs and the direction of clinical development, which will contribute to the development of new drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Wenjun Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
| | - Haiqiang Cao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Yuanlei Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
5
|
Bao X, Liang Y, Chang H, Cai T, Feng B, Gordon K, Zhu Y, Shi H, He Y, Xie L. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): from bench to bedside. Signal Transduct Target Ther 2024; 9:13. [PMID: 38185721 PMCID: PMC10772138 DOI: 10.1038/s41392-023-01690-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 01/09/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has evolved as a pivotal enzyme in lipid metabolism and a revolutionary therapeutic target for hypercholesterolemia and its related cardiovascular diseases (CVD). This comprehensive review delineates the intricate roles and wide-ranging implications of PCSK9, extending beyond CVD to emphasize its significance in diverse physiological and pathological states, including liver diseases, infectious diseases, autoimmune disorders, and notably, cancer. Our exploration offers insights into the interaction between PCSK9 and low-density lipoprotein receptors (LDLRs), elucidating its substantial impact on cholesterol homeostasis and cardiovascular health. It also details the evolution of PCSK9-targeted therapies, translating foundational bench discoveries into bedside applications for optimized patient care. The advent and clinical approval of innovative PCSK9 inhibitory therapies (PCSK9-iTs), including three monoclonal antibodies (Evolocumab, Alirocumab, and Tafolecimab) and one small interfering RNA (siRNA, Inclisiran), have marked a significant breakthrough in cardiovascular medicine. These therapies have demonstrated unparalleled efficacy in mitigating hypercholesterolemia, reducing cardiovascular risks, and have showcased profound value in clinical applications, offering novel therapeutic avenues and a promising future in personalized medicine for cardiovascular disorders. Furthermore, emerging research, inclusive of our findings, unveils PCSK9's potential role as a pivotal indicator for cancer prognosis and its prospective application as a transformative target for cancer treatment. This review also highlights PCSK9's aberrant expression in various cancer forms, its association with cancer prognosis, and its crucial roles in carcinogenesis and cancer immunity. In conclusion, this synthesized review integrates existing knowledge and novel insights on PCSK9, providing a holistic perspective on its transformative impact in reshaping therapeutic paradigms across various disorders. It emphasizes the clinical value and effect of PCSK9-iT, underscoring its potential in advancing the landscape of biomedical research and its capabilities in heralding new eras in personalized medicine.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, Shanghai, China.
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China.
- Center for Clinical Research, Fudan University Pudong Medical Center, Shanghai, China.
- Clinical Research Center for Cell-based Immunotherapy, Fudan University, Shanghai, China.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Yongjun Liang
- Center for Medical Research and Innovation, Fudan University Pudong Medical Center, Shanghai, China
| | - Hanman Chang
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Tianji Cai
- Department of Sociology, University of Macau, Taipa, Macau, China
| | - Baijie Feng
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China
| | - Konstantin Gordon
- Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia
- A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-tech Park, Shanghai, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Katsiki N, Vrablik M, Banach M, Gouni-Berthold I. Inclisiran, Low-Density Lipoprotein Cholesterol and Lipoprotein (a). Pharmaceuticals (Basel) 2023; 16:ph16040577. [PMID: 37111334 PMCID: PMC10143414 DOI: 10.3390/ph16040577] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/25/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Dyslipidemia treatment is of major importance in reducing the risk of atherosclerotic cardiovascular disease (ASCVD), which is still the most common cause of death worldwide. During the last decade, a novel lipid-lowering drug category has emerged, i.e., proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. Apart from the two available anti-PCSK9 monoclonal antibodies (alirocumab and evolocumab), other nucleic acid-based therapies that inhibit or "silence" the expression of PCSK9 are being developed. Among them, inclisiran is the first-in-class small interfering RNA (siRNA) against PCSK9 that has been approved by both the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of hypercholesterolemia. Importantly, inclisiran therapy may improve low-density lipoprotein cholesterol (LDL-C) target achievement by offering a prolonged and significant LDL-C-lowering effect with the administration of only two doses per year. The present narrative review discusses the ORION/VICTORION clinical trial program that has been designed to investigate the impact of inclisiran on atherogenic lipoproteins and major adverse cardiac events in different patient populations. The results of the completed clinical trials are presented, focusing on the effects of inclisiran on LDL-C and lipoprotein (a) (Lp(a)) levels as well as on other lipid parameters such as apolipoprotein B and non-high-density lipoprotein cholesterol (non-HDL-C). Ongoing clinical trials with inclisiran are also discussed.
Collapse
Affiliation(s)
- Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 574 00 Thessaloniki, Greece
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | - Michal Vrablik
- Third Department of Medicine-Department of Endocrinology and Metabolism of the First Faculty of Medicine, Charles University and General University Hospital, 121 08 Prague, Czech Republic
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz and Polish Mother's Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Ioanna Gouni-Berthold
- Center for Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
7
|
Carugo S, Sirtori CR, Corsini A, Tokgozoglu L, Ruscica M. PCSK9 Inhibition and Risk of Diabetes: Should We Worry? Curr Atheroscler Rep 2022; 24:995-1004. [PMID: 36383291 PMCID: PMC9750910 DOI: 10.1007/s11883-022-01074-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE OF REVIEW Since the clinical benefit of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors occurs in a setting of reducing low-density lipoprotein-cholesterol (LDL-C) to unprecedentedly low levels, it becomes of interest to investigate possible adverse effects pertaining to the risk of new-onset diabetes (NOD). RECENT FINDINGS While safety results reported in either meta-analyses or cardiovascular outcome trials FOURIER (with evolocumab) and ODYSSEY (with alirocumab) did not rise the incidence of NOD, Mendelian randomization analyses were almost concordant in showing an increased risk of NOD. This evidence was in line with post-marketing safety reports highlighting that evolocumab and alirocumab were primarily related to mild hyperglycaemia rather than diabetes, with most of the hyperglycaemic events occurring during the first 6 months of treatment. Considering the different nature of genetic studies and of randomized controlled trials, with careful monitoring of patients, particularly in the earlier phases of treatment, and the identification of those more susceptible to develop NOD, treatment with PCSK9 inhibitors should be of minimal concern.
Collapse
Affiliation(s)
- Stefano Carugo
- grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy ,Fondazione Ospedale Maggiore IRCCS Policlinico Di Milano, Milan, Italy
| | - Cesare R. Sirtori
- grid.4708.b0000 0004 1757 2822Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Alberto Corsini
- grid.4708.b0000 0004 1757 2822Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy
| | - Lale Tokgozoglu
- grid.14442.370000 0001 2342 7339Hacettepe University, Ankara, Turkey
| | - Massimiliano Ruscica
- grid.4708.b0000 0004 1757 2822Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|