1
|
Wen X, Lv C, Zhou R, Wang Y, Zhou X, Qin S. The Molecular Mechanism Underlying the Therapeutic Effect of Dihydromyricetin on Type 2 Diabetes Mellitus Based on Network Pharmacology, Molecular Docking, and Transcriptomics. Foods 2024; 13:344. [PMID: 38275711 PMCID: PMC10815645 DOI: 10.3390/foods13020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic and complex disease, and traditional drugs have many side effects. The active compound dihydromyricetin (DHM), derived from natural plants, has been shown in our previous study to possess the potential for reducing blood glucose levels; however, its precise molecular mechanism remains unclear. In the present study, network pharmacology and transcriptomics were performed to screen the molecular targets and signaling pathways of DHM disturbed associated with T2DM, and the results were partially verified by molecular docking, RT-PCR, and Western blotting at in vivo levels. Firstly, the effect of DHM on blood glucose, lipid profile, and liver oxidative stress in db/db mice was explored and the results showed that DHM could reduce blood glucose and improve oxidative stress in the liver. Secondly, GO analysis based on network pharmacology and transcriptomics results showed that DHM mainly played a significant role in anti-inflammatory, antioxidant, and fatty acid metabolism in biological processes, on lipoprotein and respiratory chain on cell components, and on redox-related enzyme activity, iron ion binding, and glutathione transferase on molecular functional processes. KEGG system analysis results showed that the PI3K-Akt signaling pathway, IL17 signaling pathway, HIF signaling pathway, MAPK signaling pathway, AGE-RAGE signaling pathway in diabetic complications, and TNF signaling pathway were typical signaling pathways disturbed by DHM in T2DM. Thirdly, molecular docking results showed that VEGFA, SRC, HIF1A, ESR1, KDR, MMP9, PPARG, and MAPK14 are key target genes, five genes of which were verified by RT-PCR in a dose-dependent manner. Finally, Western blotting results revealed that DHM effectively upregulated the expression of AKT protein and downregulated the expression of MEK protein in the liver of db/db mice. Therefore, our study found that DHM played a therapeutic effect partially by activation of the PI3K/AKT/MAPK signaling pathway. This study establishes the foundation for DHM as a novel therapeutic agent for T2DM. Additionally, it presents a fresh approach to utilizing natural plant extracts for chemoprevention and treatment of T2DM.
Collapse
Affiliation(s)
- Xinnian Wen
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.W.); (R.Z.); (Y.W.)
| | - Chenghao Lv
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Runze Zhou
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.W.); (R.Z.); (Y.W.)
| | - Yixue Wang
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.W.); (R.Z.); (Y.W.)
| | - Xixin Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Si Qin
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.W.); (R.Z.); (Y.W.)
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| |
Collapse
|
2
|
Bechaux J, Gatellier P, Le Page JF, Drillet Y, Sante-Lhoutellier V. A comprehensive review of bioactive peptides obtained from animal byproducts and their applications. Food Funct 2020; 10:6244-6266. [PMID: 31577308 DOI: 10.1039/c9fo01546a] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Livestock generates high quantities of residues, which has become a major socioeconomic issue for the meat industry. This review focuses on the identification of bioactive peptides (BPs) in animal byproducts and meat wastes. Firstly, the main bioactivities that peptides can have will be described and the methods for their evaluation will be discussed. Secondly, the various origins of these BPs will be studied. Then, the techniques and tools for the generation of BPs will be detailed in order to discuss, in the final part, how peptides could be used and assimilated. BPs possess diverse biological activities and can be strategic candidates for substituting synthetic molecules. In silico potentiality studies are a helpful tool to understand and predict BPs released from proteins and their potential activities. However, in vitro validation is often required. Although BP use is compelled by strict regulations in relation to the field of application, they are also limited by their low bioavailability and bioaccessibility. Therefore, it is important to test peptide stability during gastrointestinal digestion. Protective strategies have been discussed since their use could improve the stability and effectiveness of BPs.
Collapse
Affiliation(s)
- Julia Bechaux
- INRA, UR 370, Qualité des Produits Animaux (QuaPA), Site de Theix, 63122, Saint-Genès Champanelle, France.
| | | | | | | | | |
Collapse
|
3
|
Jassim Z, Elajez R, Khudair I, Al Anany R, Al-Adawi RM. Efficacy and safety of once daily liraglutide versus twice daily exenatide in type 2 diabetic patients in Qatar: an observational study. JOURNAL OF PHARMACEUTICAL HEALTH SERVICES RESEARCH 2019. [DOI: 10.1111/jphs.12240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Abstract
Objective
Compare efficacy and safety of liraglutide (1.8 mg subcutaneous once daily) and exenatide (10 mcg subcutaneous twice daily) in uncontrolled type 2 diabetes at 26 and 52 weeks.
Method
A retrospective observation study of uncontrolled type 2 diabetes patients who took liraglutide or exenatide in addition to their anti-diabetic medications. This study was conducted at Hamad Medical Corporation, the predominant public healthcare organization in Qatar. The primary outcome was the change in haemoglobin A1C (HbA1C) after 26 and 52 weeks.
Key finding
Two hundred and two patients were included in this study (liraglutide 98, exenatide 114). There was no significant HbA1C change observed between two groups at either 26 or 52 weeks (P = 0.23 and 0.40 respectively). However, more patients in the liraglutide group achieved HbA1C ≤7% at week 26. Liraglutide reduced the mean Fasting blood glucose (FBG) more than exenatide at week 26 and 52. Although both medications were associated with some benefits in other studied variables at a certain point (e.g. weight losses, blood pressure), neither of them were able to show a significant change from baseline. No patients in either group reported drug-related side effects (e.g. nausea and vomiting) or episodes of hypoglycaemia during the treatment period.
Conclusions
Exenatide and liraglutide resulted in similar glycaemic effects (HbA1C and fasting plasma glucose changes) in patients with type 2 diabetes who were sub-optimally controlled with other anti-diabetic therapy. However, this study supports the effectiveness of both medications for weight reduction at both endpoints. A prospective large-scale study is recommended to overcome the study limitations.
Collapse
|
4
|
Pancholia AK. Sodium-glucose cotransporter-2 inhibition for the reduction of cardiovascular events in high-risk patients with diabetes mellitus. Indian Heart J 2018; 70:915-921. [PMID: 30580866 PMCID: PMC6306386 DOI: 10.1016/j.ihj.2018.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) exhibit an increased risk for cardiovascular (CV) events. Hyperglycemia itself contributes to the pathogenesis of atherosclerosis and heart failure (HF) in these patients, but glucose-lowering strategies studied to date have had little or no impact on reducing CV risk, especially in patients with a long duration of T2DM and prevalent CV disease (CVD). Sodium-glucose cotransporter-2 (SGLT2) inhibitors are the new class of glucose-lowering medications that increase urinary glucose excretion, thus improving glycemic control, independent of insulin. The recently published CV outcome trial, Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients-Removing Excess Glucose (EMPA-REG OUTCOME), demonstrated that the SGLT2 inhibitor empagliflozin significantly reduced the combined CV end point of CV death, nonfatal myocardial infarction, and nonfatal stroke vs. placebo in a population of patients with T2DM and prevalent atherosclerotic CVD. In addition, and quite unexpectedly, empagliflozin significantly and robustly reduced the individual end points of CV death, overall mortality, and hospitalization for HF in this high-risk population. Several beneficial factors beyond glucose control, such as weight loss, lowering blood pressure, sodium depletion, renal hemodynamic effects, effects on myocardial energetics, and/or neurohormonal effects, have been seen with SGLT2 inhibition.
Collapse
Affiliation(s)
- A K Pancholia
- Medicine and Preventive Cardiology, Arihant Hospital and Research Centre, Gumashta Nagar, Indore.
| |
Collapse
|
5
|
|
6
|
Fitchett D. Cardiovascular Safety of Current and Emerging Glucose-Lowering Therapies. Can J Diabetes 2015; 39 Suppl 5:S176-82. [DOI: 10.1016/j.jcjd.2015.09.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 01/10/2023]
|
7
|
He ZX, Zhou ZW, Yang Y, Yang T, Pan SY, Qiu JX, Zhou SF. Overview of clinically approved oral antidiabetic agents for the treatment of type 2 diabetes mellitus. Clin Exp Pharmacol Physiol 2015; 42:125-38. [DOI: 10.1111/1440-1681.12332] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 09/22/2014] [Accepted: 10/14/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine; Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences; Guiyang Medical University; Guiyang China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa FL USA
| | - Yinxue Yang
- Department of Colorectal Surgery; General Hospital of Ningxia Medical University; Yinchuan China
| | - Tianxin Yang
- Department of Internal Medicine; University of Utah and Salt Lake Veterans Affairs Medical Center; Salt Lake City UT USA
| | - Si-Yuan Pan
- Department of Chinese Medicinal Pharmacology; School of Chinese Materia Medica; Beijing University of Chinese Medicine; Beijing China
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery; The First Affiliated Hospital of Nanchang University; Nanchang China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences; College of Pharmacy; University of South Florida; Tampa FL USA
| |
Collapse
|
8
|
Forst T, Bramlage P. Vildagliptin , a DPP-4 inhibitor for the twice-daily treatment of type 2 diabetes mellitus with or without metformin. Expert Opin Pharmacother 2014; 15:1299-313. [PMID: 24837407 DOI: 10.1517/14656566.2014.920009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Dipeptidyl peptidase-4 inhibitors increase circulating levels of glucagon-like peptide 1 (GLP-1) and glucose dependent insulinotropic polypeptide regulating glucose-dependent insulin secretion. In addition, GLP-1 suppresses glucagon secretion, delays gastric emptying and increases satiety. The combination of vildagliptin with the biguanide metformin is of particular interest because of its complementary mode of action, addressing insulin resistance, alpha- and beta cell function in the islet of the pancreas. AREAS COVERED Because of the abundance of data supporting the use of vildagliptin alone and in combination with metformin, the present paper aims at giving an overview on the current evidence for its use in patients with type 2 diabetes mellitus. EXPERT OPINION The data suggest that vildagliptin offers similar glycemic control compared to sulfonylureas and thiazolidinediones, while having the benefit of being associated with fewer cases of hypoglycemia and less body weight gain. There is increasing evidence that compared with sulfonylureas, vildagliptin has favorable effects on pancreatic alpha- and beta-cell function. Vildagliptin in combination with metformin, improve glycemic control with a favorable safety and tolerability profile, making it an attractive therapeutic option in patients where metformin monotherapy alone is not sufficient.
Collapse
Affiliation(s)
- Thomas Forst
- Profil Institut Mainz , Rheinstrasse 4C, 55116 Mainz , Germany +49 6131 2162701 ;
| | | |
Collapse
|
9
|
Bramlage P, Gitt AK, Schneider S, Deeg E, Tschöpe D. Clinical course and outcomes of type-2 diabetic patients after treatment intensification for insufficient glycaemic control - results of the 2 year prospective DiaRegis follow-up. BMC Cardiovasc Disord 2014; 14:162. [PMID: 25410473 PMCID: PMC4247562 DOI: 10.1186/1471-2261-14-162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 01/21/2023] Open
Abstract
Background In cases where antidiabetic monotherapy is unable to sufficiently control glucose levels in patients with type-2 diabetes, treatment needs to be intensified. Determining factors that may be predictors for the occurrence of comorbidities in these patients is essential for improving the efficacy of clinical diabetes care. Methods The DiaRegis prospective cohort study included 3,810 type-2 diabetics for whom the treating physician aimed to intensify and optimise antidiabetic treatment due to insufficient glucose control. Treatment intensification was defined as increasing the dose of the originally prescribed drug, and/or selecting an alternative drug, and/or prescribing an additional drug. The aims were to monitor the co-morbidity burden of type-2 diabetic patients over a follow-up of two years, and to identify multivariable adjusted predictors for the development of comorbidity and cardiovascular events. Results A total of 3,058 patients completed the 2 year follow-up. A substantial proportion of these patients had co-morbidities such as vascular disease, neuropathy, and heart failure at baseline. After treatment intensification, there was an increased use of DPP-4 inhibitors, insulin, and GLP-1 analogues, achieving reductions in HbA1c, fasting plasma glucose, and postprandial glucose. During the 2 year period 2.5% of patients (n = 75) died, 3.2% experienced non-fatal macrovascular events, 11.9% experienced microvascular events, and 4.3% suffered onset of heart failure. Predictors for combined macro-/microvascular complications/heart failure/death were found to be age (OR 1.36; 95% CI 1.10–1.68), prior vascular disease (1.73; 1.39–2.16), and history of heart failure (2.78; 2.10–3.68). Conclusions Determining the factors that contribute to co-morbidities during intensive glucose-lowering treatment is essential for improving the efficacy of diabetes care. Our results indicate that age, prior vascular disease, and heart failure constitute important predictors of poor cardiovascular outcomes in patients receiving such therapy.
Collapse
Affiliation(s)
- Peter Bramlage
- Institut für Pharmakologie und präventive Medizin, Menzelstrasse 21, 15831 Mahlow, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Triggle CR, Ding H. Cardiovascular impact of drugs used in the treatment of diabetes. Ther Adv Chronic Dis 2014; 5:245-68. [PMID: 25364492 PMCID: PMC4205571 DOI: 10.1177/2040622314546125] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The International Diabetes Federation predicts that by 2035 10% of the population of the world will have been diagnosed with diabetes, raising serious concerns over the resulting elevated morbidity and mortality as well as the impact on health care budgets. It is also well recognized that cardiovascular disease is the primary cause of the high morbidity and mortality associated with diabetes, raising the concern that appropriate drug therapy should not only correct metabolic dysfunction, but also protect the cardiovascular system from the effects of, in particular, the epigenetic changes that result from hyperglycaemia. A number of new classes of drugs for the treatment of diabetes have been introduced in the past decade, providing the opportunity to optimize treatment; however, comparative information of the cardiovascular benefits, or risks, of the newer drugs versus older therapies such as metformin is variable. This review, in addition to summarizing the cellular basis for the therapeutic action of these drugs, addresses the evidence for their cardiovascular benefits and risks. A particular focus is provided on metformin as it is the first choice drug for most patients with type 2 diabetes.
Collapse
Affiliation(s)
- Chris R Triggle
- Departments of Pharmacology and Medical Education, Weill Cornell Medical College in Qatar, PO Box 24144, Education City, Doha, Qatar
| | - Hong Ding
- Departments of Pharmacology and Medical Education, Weill Cornell Medical College in Qatar, Education City, Doha, Qatar
| |
Collapse
|
11
|
Abstract
Diabetes mellitus (DM) is a major risk factor for cardiovascular disease. Near-normal glycemic control does not reduce cardiovascular events. For many patients with 1- or 2-vessel coronary artery disease, there is little benefit from any revascularization procedure over optimal medical therapy. For multivessel coronary disease, randomized trials demonstrated the superiority of coronary artery bypass grafting over multivessel percutaneous coronary intervention in patients with treated DM. However, selection of the optimal myocardial revascularization strategy requires a multidisciplinary team approach ('heart team'). This review summarizes the current evidence regarding the effectiveness of various medical therapies and revascularization strategies in patients with DM.
Collapse
Affiliation(s)
- Doron Aronson
- Department of Cardiology, Rambam Medical Center, Technion, Israel Institute of Technology, P.O.B 9602, Haifa 31096, Israel.
| | - Elazer R Edelman
- Cardiovascular Division, Department of Medicine, Institute for Medical Science and Engineering, Massachusetts Institute of Technology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|