1
|
Diao MN, Lv YJ, Xin H, Zhang YF, Zhang R. A comprehensive review of m6 A methylation in coronary heart disease. J Mol Med (Berl) 2025:10.1007/s00109-025-02540-1. [PMID: 40208302 DOI: 10.1007/s00109-025-02540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
The morbidity and mortality rates of coronary heart disease (CHD) are high worldwide. The primary pathological changes in CHD involve stenosis and ischemia caused by coronary atherosclerosis (AS). Extensive research on the pathogenesis of AS has revealed chronic immunoinflammatory processes and cell proliferation in all layers of coronary vessels, including endothelial cells (ECs), vascular smooth muscle cells, and macrophages. m6 A methylation is a common posttranscriptional modification of RNA that is coordinated by a variety of regulators (writers, readers, erasers) to maintain the functional stability of modified mRNAs and ncRNAs. In recent years, there has been increasing focus on the involvement of m6 A methylation in the incidence and progression of CHD, which starts with atherosclerotic plaque formation, leads to myocardial ischemia, and ultimately results in the occurrence of myocardial infarction (MI). m6 A regulators modulate relevant signaling pathways to participate in the inflammatory response, programmed death of cardiomyocytes, and fibrosis. Therefore, diagnostic models based on m6 A profiling are helpful for the early detection of CHD, and m6 A methylation shows promise as a sensitive target for new drugs to treat CHD in the future.
Collapse
Affiliation(s)
- Mei-Ning Diao
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, P. R. China
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Yi-Jv Lv
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, P. R. China
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, P. R. China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, College of Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China.
| | - Rui Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, Shandong, P. R. China.
| |
Collapse
|
2
|
Janakiraman V, Sudhan M, Ahmad SF, Attia SM, Emran TB, Ahmed SSSJ. Molecular Docking, Quantum Mechanics and Molecular Dynamics Simulation of Anti-CAD Drugs Against High-Risk Xanthine Dehydrogenase Variants Associated with Oxidative Stress Pathways. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2024; 23:1109-1128. [DOI: 10.1142/s2737416524500315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Xanthine dehydrogenase (XDH) contributes significantly to generating reactive oxygen species in coronary artery disease (CAD). XDH has been proposed as a therapeutic target, but its genetic variants could affect protein structure and drug response. We aimed to assess protein structure modification occur due to genetic variants and to screen 215 CAD drugs for their utility in personalized CAD treatment against the XDH variants. A series of computational methods were implemented to identify pathogenic variants that cause XDH structure instability localized at the con served regions contributing to functional significance. Then, the XDH structures with the pathogenic variants were modeled using two different approaches to select the best models for docking with the CAD drugs. Finally, the stability of the docked complexes and their ability to transfer electrons were evaluated using molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculation. Among 751 variants examined; R149C and Q919R showed high pathogenicity, localized in conserved regions could alter protein structure and function. Further, docking of CAD drugs against XDH (native, R149C and Q919R) showed vericiguat with higher affinity, ranging from −7.95 kcal/mol to −10.41 kcal/mol, than the well-known XDH inhibitor (febuxostat, −5.73 kcal/mol to −8.35 kcal/mol). This indicates that vericiguat will be effective in CAD treatment, regardless of the XDH variants. Additionally, MD simulation and QM/MM confirmed vericiguat stability and electron transfer ability to form hydrogen bonds with the XDH protein. In conclusion, vericiguat will be beneficial for the personalized treatment of CAD by inhibiting XDH variants. Additional clinical studies are necessary to confirm our findings.
Collapse
Affiliation(s)
- V. Janakiraman
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| | - M. Sudhan
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam 603103, Tamil Nadu, India
| |
Collapse
|
3
|
Khanna NN, Singh M, Maindarkar M, Kumar A, Johri AM, Mentella L, Laird JR, Paraskevas KI, Ruzsa Z, Singh N, Kalra MK, Fernandes JFE, Chaturvedi S, Nicolaides A, Rathore V, Singh I, Teji JS, Al-Maini M, Isenovic ER, Viswanathan V, Khanna P, Fouda MM, Saba L, Suri JS. Polygenic Risk Score for Cardiovascular Diseases in Artificial Intelligence Paradigm: A Review. J Korean Med Sci 2023; 38:e395. [PMID: 38013648 PMCID: PMC10681845 DOI: 10.3346/jkms.2023.38.e395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/15/2023] [Indexed: 11/29/2023] Open
Abstract
Cardiovascular disease (CVD) related mortality and morbidity heavily strain society. The relationship between external risk factors and our genetics have not been well established. It is widely acknowledged that environmental influence and individual behaviours play a significant role in CVD vulnerability, leading to the development of polygenic risk scores (PRS). We employed the PRISMA search method to locate pertinent research and literature to extensively review artificial intelligence (AI)-based PRS models for CVD risk prediction. Furthermore, we analyzed and compared conventional vs. AI-based solutions for PRS. We summarized the recent advances in our understanding of the use of AI-based PRS for risk prediction of CVD. Our study proposes three hypotheses: i) Multiple genetic variations and risk factors can be incorporated into AI-based PRS to improve the accuracy of CVD risk predicting. ii) AI-based PRS for CVD circumvents the drawbacks of conventional PRS calculators by incorporating a larger variety of genetic and non-genetic components, allowing for more precise and individualised risk estimations. iii) Using AI approaches, it is possible to significantly reduce the dimensionality of huge genomic datasets, resulting in more accurate and effective disease risk prediction models. Our study highlighted that the AI-PRS model outperformed traditional PRS calculators in predicting CVD risk. Furthermore, using AI-based methods to calculate PRS may increase the precision of risk predictions for CVD and have significant ramifications for individualized prevention and treatment plans.
Collapse
Affiliation(s)
- Narendra N Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, India
- Asia Pacific Vascular Society, New Delhi, India
| | - Manasvi Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Bennett University, Greater Noida, India
| | - Mahesh Maindarkar
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- School of Bioengineering Sciences and Research, Maharashtra Institute of Technology's Art, Design and Technology University, Pune, India
| | | | - Amer M Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Canada
| | - Laura Mentella
- Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Canada
| | - John R Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St. Helena, CA, USA
| | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Szeged, Hungary
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | | | | | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, USA
| | - Inder Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Jagjit S Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Mostafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, Canada
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, Beograd, Serbia
| | | | - Puneet Khanna
- Department of Anaesthesiology, AIIMS, New Delhi, India
| | - Mostafa M Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | - Jasjit S Suri
- Asia Pacific Vascular Society, New Delhi, India
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
- Department of Computer Engineering, Graphic Era Deemed to be University, Dehradun, India.
| |
Collapse
|
4
|
Kamzolas O, Papazoglou AS, Gemousakakis E, Moysidis DV, Kyriakoulis KG, Brilakis ES, Milkas A. Concomitant Coronary Artery Disease in Identical Twins: Case Report and Systematic Literature Review. J Clin Med 2023; 12:5742. [PMID: 37685809 PMCID: PMC10489011 DOI: 10.3390/jcm12175742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Coronary artery disease (CAD) is multifactorial and strongly affected by genetic, epigenetic and environmental factors. Several studies have reported development of concomitant CAD in identical twins. We report a case in which a pair of Caucasian male monozygotic twins presented almost concomitantly with acute coronary syndrome (ACS) and had concordant coronary anatomy and identical site of occlusion. We performed a systematic literature review of PubMed, Web Of Science and Scopus databases from inception until 28 February 2023 of case reports/case series reporting the concomitant development of CAD in monozygotic twins. We found 25 eligible case reports with a total of 31 monozygotic twin pairs (including the case from our center) suffering from CAD and presenting (most of them simultaneously) with ACS (mean age of presentation: 45 ± 12 years, males: 81%). Coronary angiograms demonstrated lesion and anatomy concordance in 77% and 79% of the twin pairs, respectively. Screening for disease-related genetic mutations was performed in six twin pairs leading to the identification of five CAD-related genetic polymorphisms. This is the first systematic literature review of studies reporting identical twin pairs suffering from CAD. In summary, there is high concordance of coronary anatomy and clinical presentation between monozygotic twins. Future monozygotic twin studies-unbiased by age effects-can provide insights into CAD heritability being able to disentangle the traditional dyad of genetic and environmental factors and investigate the within-pair epigenetic drift.
Collapse
Affiliation(s)
| | | | | | | | | | - Emmanouil S Brilakis
- Center for Coronary Artery Disease, Minneapolis Heart Institute and Minneapolis Heart Institute Foundation, Abbott Northwestern, Minneapolis, MN 55407, USA
| | | |
Collapse
|
5
|
Dorajoo R, Ihsan MO, Liu W, Lim HY, Angeli V, Park SJ, Chan JMS, Lin XY, Ong MS, Muniasamy U, Lee CH, Gurung R, Ho HH, Foo R, Liu J, Kofidis T, Lee CN, Sorokin VA. Vascular smooth muscle cells in low SYNTAX scores coronary artery disease exhibit proinflammatory transcripts and proteins correlated with IL1B activation. Atherosclerosis 2023; 365:15-24. [PMID: 36646016 DOI: 10.1016/j.atherosclerosis.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/22/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS The SYNTAX score is clinically validated to stratify number of lesions and pattern of CAD. A better understanding of the underlying molecular mechanisms influencing the pattern and complexity of coronary arteries lesions among CAD patients is needed. METHODS Human arterial biopsies from 49 patients (16 low-SYNTAX-score (LSS, <23), 16 intermediate-SYNTAX-score (ISS, 23 to 32) and 17 high-SYNTAX-score (HSS, >32)) were evaluated using Affymetrix GeneChip® Human Genome U133 Plus 2.0 microarray. The data were validated by Next-Generation Sequencing (NGS). Primary VSMC from patients with low and high SYNTAX scores were isolated and compared using immunohistochemistry, qPCR and immunoblotting to confirm mRNA and proteomic results. RESULTS The IL1B was verified as the top upstream regulator of 47 inflammatory DEGs in LSS patients and validated by another sets of patient samples using NGS analysis. The upregulated expression of IL1B was translated to increased level of IL1β protein in the LSS tissue based on immunohistochemical quantitative analysis. Plausibility of idea that IL1B in the arterial wall could be originated from VSMC was checked by exposing culture to proinflammatory conditions where IL1B came out as the top DEG (logFC = 7.083, FDR = 1.38 × 10-114). The LSS patient-derived primary VSMCs confirmed higher levels of IL1B mRNA and protein. CONCLUSIONS LSS patients could represent a group of patients where IL1B could play a substantial role in disease pathogenesis. The LSS group could represent a plausible cohort of patients for whom anti-inflammatory therapy could be considered.
Collapse
Affiliation(s)
- Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore; Health Services and Systems Research, Duke-NUS Medical School Singapore, Singapore
| | - Mario Octavianus Ihsan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wenting Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore; Taihe Hospital, Hubei University of Medicine and Center of Health Administration and Development Studies, School of Public Health, Hubei University of Medicine, Singapore
| | - Hwee Ying Lim
- Immunology Translational Research Program, Department of Microbiology and Immunology, National University of Singapore, Singapore
| | - Veronique Angeli
- Immunology Translational Research Program, Department of Microbiology and Immunology, National University of Singapore, Singapore
| | - Sung-Jin Park
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Joyce M S Chan
- Translational Cardiovascular Imaging Group, Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Vascular Surgery, Singapore General Hospital, SingHealth, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Xiao Yun Lin
- Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, Singapore
| | - Mei Shan Ong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Umamaheswari Muniasamy
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chi-Hang Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cardiology, National University Hospital, National University Health System, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rijan Gurung
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hee Hwa Ho
- Department of Cardiology, Tan Tock Seng Hospital, Singapore
| | - Roger Foo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cardiology, National University Hospital, National University Health System, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Theo Kofidis
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, Singapore
| | - Vitaly A Sorokin
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cardiac, Thoracic and Vascular Surgery, National University Hospital, National University Health System, Singapore.
| |
Collapse
|
6
|
Association of lipid metabolism-related gene promoter methylation with risk of coronary artery disease. Mol Biol Rep 2022; 49:9373-9378. [PMID: 35941416 DOI: 10.1007/s11033-022-07789-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Coronary artery disease (CAD) is a complex disease that is influenced by environmental and genetic factors. Lipid levels are regarded as a major risk factor for CAD, and epigenetic mechanisms might be involved in the regulation of CAD development. This study was designed to investigate the association between the DNA methylation status of 8 lipid metabolism-related genes and the risk of CAD in the Chinese Han population. METHODS A total of 260 individuals were sampled in this study, including 120 CAD cases and 140 normal healthy controls. DNA methylation status was tested via targeted bisulfite sequencing. RESULTS The results indicated a significant association between hypomethylation of the APOC3, CETP and APOC1 gene promoters and the risk of CAD. Individuals with higher methylation levels of the APOA5 and LIPC gene promoters had increased risks for CAD. In addition, ANGPTL4 methylation level was significantly associated with CAD in males but not females. There were no significant differences in the methylation levels of the APOB and PCSK9 gene promoters between CAD patients and controls. CONCLUSIONS The methylation status of the APOC3, APOA5, LIPC, CETP and APOC1 gene promoters may be associated with the development of CAD.
Collapse
|
7
|
Pourgholi M, Abazari O, Pourgholi L, Ghasemi-Kasman M, Boroumand M. Association between rs3088440 (G > A) polymorphism at 9p21.3 locus with the occurrence and severity of coronary artery disease in an Iranian population. Mol Biol Rep 2021; 48:5905-5912. [PMID: 34313925 DOI: 10.1007/s11033-021-06587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Several genome-wide association studies showed that a series of genetic variants located at the chromosome 9p21 locus are strongly associated with coronary artery disease (CAD). RATIONALE AND PURPOSE OF THE STUDY In the present study, the relationship of rs3088440 (G > A) in cyclin-dependent kinase inhibitor 2A (CDKN2A) gene site with the presence of coronary artery disease (CAD) and its severity was evaluated in an Iranian population. METHODS AND RESULTS The presence of rs3088440 (G > A) genotypes was assessed by polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) technique in 324 CAD patients and 148 normal controls. rs3088440 (G > A) polymorphism was associated with increased risk of CAD in the total population (adjusted OR = 1.76, 95% CI = 1.10-2.82; p-value = 0.017) or in women (adjusted OR = 2.96, 95% CI = 1.34-6.55; p-value = 0.007), but not in the men (adjusted OR = 1.35, 95% CI = 0.70-2.6; p-value = 0.368). CONCLUSIONS Our findings suggest that the presence of rs3088440 (G > A) is potentially linked with the risk of CAD and its severity in whole study subjects or in women only, independent of CAD risk factors.
Collapse
Affiliation(s)
- Mitra Pourgholi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Omid Abazari
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Leyla Pourgholi
- Department of Pathology and Laboratory Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, P.O. Box 4136747176, Babol, Iran.
| | - Mohammadali Boroumand
- Department of Pathology and Laboratory Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Coordination of endothelial cell positioning and fate specification by the epicardium. Nat Commun 2021; 12:4155. [PMID: 34230480 PMCID: PMC8260743 DOI: 10.1038/s41467-021-24414-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
The organization of an integrated coronary vasculature requires the specification of immature endothelial cells (ECs) into arterial and venous fates based on their localization within the heart. It remains unclear how spatial information controls EC identity and behavior. Here we use single-cell RNA sequencing at key developmental timepoints to interrogate cellular contributions to coronary vessel patterning and maturation. We perform transcriptional profiling to define a heterogenous population of epicardium-derived cells (EPDCs) that express unique chemokine signatures. We identify a population of Slit2+ EPDCs that emerge following epithelial-to-mesenchymal transition (EMT), which we term vascular guidepost cells. We show that the expression of guidepost-derived chemokines such as Slit2 are induced in epicardial cells undergoing EMT, while mesothelium-derived chemokines are silenced. We demonstrate that epicardium-specific deletion of myocardin-related transcription factors in mouse embryos disrupts the expression of key guidance cues and alters EPDC-EC signaling, leading to the persistence of an immature angiogenic EC identity and inappropriate accumulation of ECs on the epicardial surface. Our study suggests that EC pathfinding and fate specification is controlled by a common mechanism and guided by paracrine signaling from EPDCs linking epicardial EMT to EC localization and fate specification in the developing heart. It remains unclear how spatial information controls endothelial cell identity and behavior in the developing heart. Here the authors perform single cell RNA sequencing at key developmental timepoints in mice to interrogate cellular contributions to coronary vessel patterning and maturation in the epicardium.
Collapse
|
9
|
Zheng PF, Yin RX, Guan YZ, Wei BL, Liu CX, Deng GX. Association between SLC44A4-NOTCH4 SNPs and serum lipid levels in the Chinese Han and Maonan ethnic groups. Nutr Metab (Lond) 2020; 17:105. [PMID: 33317561 PMCID: PMC7737288 DOI: 10.1186/s12986-020-00533-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The current research was to assess the relationship of the solute carrier family 44 member 4 (SLC44A4) rs577272, notch receptor 4 (NOTCH4) rs3134931 SNPs and serum lipid levels in the Han and Maonan ethnic groups. METHODS The genetic makeup of the SLC44A4 rs577272 and NOTCH4 rs3134931 SNPs in 2467 unrelated subjects (Han, 1254; Maonan,1213) was obtained by using polymerase chain reaction and restriction fragment length polymorphism technique, combined with gel electrophoresis, and confirmed by direct sequencing. RESULTS The genotype frequencies of SLC44A4 rs577272 and NOTCH4 rs3134931 SNPs were different between Han and Maonan populations (P < 0.05); respectively. The SLC44A4 rs577272 SNP was associated with total cholesterol (TC) and high-density lipoprotein cholesterol (HDL-C) levels in Maonan group. The NOTCH4 rs3134931 SNP was associated with triglyceride (TG) in Han; and TG and low-density lipoprotein cholesterol (LDL-C) levels in Maonan groups (P < 0.025-0.001). Stratified analysis according to gender showed that the SLC44A4 rs577272 SNP was associated with TC and HDL-C in Han and Maonan females; TC in Maonan males, meanwhile, the NOTCH4 rs3134931 SNP was associated with TG and HDL-C in Han males; TG in Han females; TG and LDL-C in Maonan males; and TG, HDL-C and LDL-C in Maonan females. Linkage disequilibrium analysis showed that the most common haplotype was rs577272G-rs3134931A (> 50%) in both Han and Maonan groups. The haplotype of rs577272G-rs3134931A was associated with TG and HDL-C in Han; and TC, TG and HDL-C in Maonan ethnic groups. CONCLUSIONS These results suggest that the relationship among SLC44A4 rs577272, NOTCH4 rs3134931 SNPs and serum lipid parameters may vary depending on the gender and/or ethnicity/race in some populations. Haplotypes could explain more changes in serum lipid parameters than any single SNP alone particularly for TC, TG and HDL-C.
Collapse
Affiliation(s)
- Peng-Fei Zheng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China. .,Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Disease Control and Prevention, Nanning, 530021, Guangxi, People's Republic of China. .,Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, 530021, Guangxi, People's Republic of China.
| | - Yao-Zong Guan
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Bi-Liu Wei
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Chun-Xiao Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| | - Guo-Xiong Deng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| |
Collapse
|
10
|
Wang J, Wang Y, Duan Z, Hu W. Hypoxia‐induced alterations of transcriptome and chromatin accessibility in
HL
‐1 cells. IUBMB Life 2020; 72:1737-1746. [PMID: 32351020 DOI: 10.1002/iub.2297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Jingru Wang
- Department of Cardiovascular MedicineThe Fourth Affiliated Hospital of China Medical University Shenyang China
| | - Yang Wang
- Department of Cardiovascular MedicineThe Fourth Affiliated Hospital of China Medical University Shenyang China
| | - Zhiying Duan
- Department of Cardiovascular MedicineThe Fourth Affiliated Hospital of China Medical University Shenyang China
| | - Weina Hu
- Department of Cardiovascular MedicineThe Fourth Affiliated Hospital of China Medical University Shenyang China
| |
Collapse
|
11
|
Peng XY, Wang Y, Hu H, Zhang XJ, Li Q. Identification of the molecular subgroups in coronary artery disease by gene expression profiles. J Cell Physiol 2019; 234:16540-16548. [PMID: 30805932 DOI: 10.1002/jcp.28324] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 01/24/2023]
Abstract
Coronary artery disease (CAD) is the most common type of cardiovascular disease and becomes a leading cause of death worldwide. Aiming to uncover the underlying molecular features for different types of CAD, we classified 352 CAD cases into three subgroups based on gene expression profiles, which were retrieved from the Gene Expression Omnibus database. Also, these subgroups present different expression patterns and clinical characteristics. To uncover the transcriptomic differences between the subgroups, weighted gene co-expression analysis (WGCNA) was used and identified six subgroup-specific WGCNA modules. Characterization of the WCGNA modules revealed that lipid metabolism pathways, specifically upregulated in subgroup I, might be an indicator of increased severity. Moreover, subgroup II was considered as an early-stage of CAD because of normal-like gene expression patterns. In contrast, the mammalian target of rapamycin signaling pathway was significantly upregulated in subgroup III. Although subgroups II and III did not have a significant prognostic difference, their intrinsic biological characteristics were highly different, suggesting that the transcriptome classification may represent risk factors of both age and the intrinsic biological characteristics. In conclusion, the transcriptome classification of CAD cases revealed that cases from different subgroups may have their unique gene expression patterns, indicating that patients in each subgroup should receive more personalized treatment.
Collapse
Affiliation(s)
- Xiao-Yan Peng
- Department of Neurology, First People's Hospital of Jingzhou, First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Yong Wang
- Cardiovascular Disease Center, Central Hospital of Enshi Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, China
| | - Haibo Hu
- Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xian-Jin Zhang
- Department of Intensive Care Unit, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huaian, China
| | - Qi Li
- Department of Emergency, Huai'an Hospital, Huai'an, China
| |
Collapse
|
12
|
Jia Z, Zhang Y, Li Q, Ye Z, Liu Y, Fu C, Cang X, Wang M, Guan MX. A coronary artery disease-associated tRNAThr mutation altered mitochondrial function, apoptosis and angiogenesis. Nucleic Acids Res 2019; 47:2056-2074. [PMID: 30541130 PMCID: PMC6393294 DOI: 10.1093/nar/gky1241] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/31/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
The tissue specificity of mitochondrial tRNA mutations remains largely elusive. In this study, we demonstrated the deleterious effects of tRNAThr 15927G>A mutation that contributed to pathogenesis of coronary artery disease. The m.15927G>A mutation abolished the highly conserved base-pairing (28C-42G) of anticodon stem of tRNAThr. Using molecular dynamics simulations, we showed that the m.15927G>A mutation caused unstable tRNAThr structure, supported by decreased melting temperature and slower electrophoretic mobility of mutated tRNA. Using cybrids constructed by transferring mitochondria from a Chinese family carrying the m.15927G>A mutation and a control into mitochondrial DNA (mtDNA)-less human umbilical vein endothelial cells, we demonstrated that the m.15927G>A mutation caused significantly decreased efficiency in aminoacylation and steady-state levels of tRNAThr. The aberrant tRNAThr metabolism yielded variable decreases in mtDNA-encoded polypeptides, respiratory deficiency, diminished membrane potential and increased the production of reactive oxygen species. The m.15927G>A mutation promoted the apoptosis, evidenced by elevated release of cytochrome c into cytosol and increased levels of apoptosis-activated proteins: caspases 3, 7, 9 and PARP. Moreover, the lower wound healing cells and perturbed tube formation were observed in mutant cybrids, indicating altered angiogenesis. Our findings provide new insights into the pathophysiology of coronary artery disease, which is manifested by tRNAThr mutation-induced alterations.
Collapse
Affiliation(s)
- Zidong Jia
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ye Zhang
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qiang Li
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhenzhen Ye
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yuqi Liu
- Cardiac Department, PLA General Hospital, Beijing 100853, China
| | - Changzhu Fu
- Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Key lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
13
|
Musunuru K, Bernstein D, Cole FS, Khokha MK, Lee FS, Lin S, McDonald TV, Moskowitz IP, Quertermous T, Sankaran VG, Schwartz DA, Silverman EK, Zhou X, Hasan AAK, Luo XZJ. Functional Assays to Screen and Dissect Genomic Hits: Doubling Down on the National Investment in Genomic Research. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002178. [PMID: 29654098 DOI: 10.1161/circgen.118.002178] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The National Institutes of Health have made substantial investments in genomic studies and technologies to identify DNA sequence variants associated with human disease phenotypes. The National Heart, Lung, and Blood Institute has been at the forefront of these commitments to ascertain genetic variation associated with heart, lung, blood, and sleep diseases and related clinical traits. Genome-wide association studies, exome- and genome-sequencing studies, and exome-genotyping studies of the National Heart, Lung, and Blood Institute-funded epidemiological and clinical case-control studies are identifying large numbers of genetic variants associated with heart, lung, blood, and sleep phenotypes. However, investigators face challenges in identification of genomic variants that are functionally disruptive among the myriad of computationally implicated variants. Studies to define mechanisms of genetic disruption encoded by computationally identified genomic variants require reproducible, adaptable, and inexpensive methods to screen candidate variant and gene function. High-throughput strategies will permit a tiered variant discovery and genetic mechanism approach that begins with rapid functional screening of a large number of computationally implicated variants and genes for discovery of those that merit mechanistic investigation. As such, improved variant-to-gene and gene-to-function screens-and adequate support for such studies-are critical to accelerating the translation of genomic findings. In this White Paper, we outline the variety of novel technologies, assays, and model systems that are making such screens faster, cheaper, and more accurate, referencing published work and ongoing work supported by the National Heart, Lung, and Blood Institute's R21/R33 Functional Assays to Screen Genomic Hits program. We discuss priorities that can accelerate the impressive but incomplete progress represented by big data genomic research.
Collapse
Affiliation(s)
- Kiran Musunuru
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.).
| | - Daniel Bernstein
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - F Sessions Cole
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Mustafa K Khokha
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Frank S Lee
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Shin Lin
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Thomas V McDonald
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Ivan P Moskowitz
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Thomas Quertermous
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Vijay G Sankaran
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - David A Schwartz
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Edwin K Silverman
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Xiaobo Zhou
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Ahmed A K Hasan
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| | - Xiao-Zhong James Luo
- Cardiovascular Institute, Department of Medicine (K.M.), Department of Genetics (K.M.), and Department of Pathology and Laboratory Medicine (F.S.L.), Perelman School of Medicine at the University of Pennsylvania, Philadelphia. Department of Pediatrics (D.B.), Cardiovascular Institute (D.B., T.Q.), and Department of Medicine (T.Q.), Stanford University, CA. Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (F.S.C.). St. Louis Children's Hospital, MO (F.S.C.). Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT (M.K.K.). Division of Cardiology, Department of Medicine, University of Washington, Seattle (S.L.). Department of Cardiovascular Sciences, University of South Florida Morsani College of Medicine, Tampa, FL (T.V.M.). Department of Pediatrics (I.P.M.), Department of Pathology (I.P.M.), and Department of Human Genetics (I.P.M.), The University of Chicago, IL. Division of Hematology/ Oncology, Boston Children's Hospital, MA (V.G.S.). Department of Pediatric Oncology, Dana-Farber Cancer Institute (V.G.S.) and Channing Division of Network Medicine, Brigham and Women's Hospital (E.K.S., X.Z.), Harvard Medical School, Boston. Broad Institute of MIT and Harvard, Cambridge, MA (V.G.S.). University of Colorado, Aurora (D.A.S.). Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (A.A.K.H., X.-z.J.L.)
| |
Collapse
|
14
|
Kirlikaya B, Langridge B, Davies A, Onida S. Metabolomics as a tool to improve decision making for the vascular surgeon – wishful thinking or a dream come true? Vascul Pharmacol 2019; 116:1-3. [DOI: 10.1016/j.vph.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/19/2019] [Accepted: 03/29/2019] [Indexed: 12/21/2022]
|
15
|
Yang CH, Lin YD, Chuang LY. Multiple-Criteria Decision Analysis-Based Multifactor Dimensionality Reduction for Detecting Gene-Gene Interactions. IEEE J Biomed Health Inform 2018; 23:416-426. [PMID: 29993963 DOI: 10.1109/jbhi.2018.2790951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gene-gene interactions (GGIs) are important markers for determining susceptibility to a disease. Multifactor dimensionality reduction (MDR) is a popular algorithm for detecting GGIs and primarily adopts the correct classification rate (CCR) to assess the quality of a GGI. However, CCR measurement alone may not successfully detect certain GGIs because of potential model preferences and disease complexities. In this study, multiple-criteria decision analysis (MCDA) based on MDR was named MCDA-MDR and proposed for detecting GGIs. MCDA facilitates MDR to simultaneously adopt multiple measures within the two-way contingency table of MDR to assess GGIs; the CCR and rule utility measure were employed. Cross-validation consistency was adopted to determine the most favorable GGIs among the Pareto sets. Simulation studies were conducted to compare the detection success rates of the MDR-only-based measure and MCDA-MDR, revealing that MCDA-MDR had superior detection success rates. The Wellcome Trust Case Control Consortium dataset was analyzed using MCDA-MDR to detect GGIs associated with coronary artery disease, and MCDA-MDR successfully detected numerous significant GGIs (p < 0.001). MCDA-MDR performance assessment revealed that the applied MCDA successfully enhanced the GGI detection success rate of the MDR-based method compared with MDR alone.
Collapse
|
16
|
Gao H, Yin RX, Zhang QH, Qiu L, Khounphinith E, Wang DS, Li KG. Association of the FRMD5 rs2929282 polymorphism and serum lipid profiles in two Chinese ethnic groups. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3494-3510. [PMID: 31949728 PMCID: PMC6962873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/28/2018] [Indexed: 06/10/2023]
Abstract
Little is known about the association of the single nucleotide polymorphism (SNP) of rs2929282 near the FERM domain containing 5 (FRMD5) and serum lipid profiles. The present study detected the association of the FRMD5 rs2929282 SNP and several environmental factors with serum lipid profiles in the Han and Jing populations. Genotyping of the FRMD5 rs2929282 SNP in 1065 subjects of Jing and 1061 participants of Han peoples was performed by polymerase chain reaction and restriction fragment length polymorphism, and then confirmed by direct sequencing. The genotypic and allelic frequencies of the SNP were different between Han and Jing (P < 0.05). The frequency of the T allele was higher in Han than in Jing (8.2% vs. 6.1%). The genotypic and allelic frequencies of the FRMD5 rs2929282 SNP were significantly different between Han males and females (P < 0.05 for each), but not between Jing males and females. The frequency of the T allele was higher in Han females than in Han males (9.3% vs. 6.5%). The FRMD5 rs2929282 T allele carriers had lower serum high-density lipoprotein cholesterol (HDL-C), apolipoprotein (Apo) A1, and ApoB levels, and higher triglyceride (TG) levels in Jing but not in Han than the T allele non-carriers. Subgroup analysis according to sex showed that the T allele carriers had higher serum TG levels in Jing females but not in males than the T allele non-carriers (P < 0.05). The T allele carriers had higher HDL-C levels in Han males but not in Han females, and lower HDL-C levels in Jing females but not in Jing males compared to the T allele non-carriers (P < 0.05). The T allele carriers had lower ApoA1 levels in Jing females but not in Jing males and lower ApoB levels in Jing males but not in Jing females than the T allele non-carriers (P < 0.05). Serum lipid traits were also associated with several environmental factors in the Han and Jing populations, and in males and females of the both ethnic groups. These findings indicated that there may be a racial/ethnic- and/or sex-specific association of the FRMD5 rs2929282 SNP and serum lipid levels.
Collapse
Affiliation(s)
- Hui Gao
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University Nanning, Guangxi, People's Republic of China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University Nanning, Guangxi, People's Republic of China
| | - Qing-Hui Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University Nanning, Guangxi, People's Republic of China
| | - Ling Qiu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University Nanning, Guangxi, People's Republic of China
| | - Eksavang Khounphinith
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University Nanning, Guangxi, People's Republic of China
| | - Duo-Shun Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University Nanning, Guangxi, People's Republic of China
| | - Kai-Guang Li
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University Nanning, Guangxi, People's Republic of China
| |
Collapse
|
17
|
Shu L, Blencowe M, Yang X. Translating GWAS Findings to Novel Therapeutic Targets for Coronary Artery Disease. Front Cardiovasc Med 2018; 5:56. [PMID: 29900175 PMCID: PMC5989327 DOI: 10.3389/fcvm.2018.00056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
The success of genome-wide association studies (GWAS) has significantly advanced our understanding of the etiology of coronary artery disease (CAD) and opens new opportunities to reinvigorate the stalling CAD drug development. However, there exists remarkable disconnection between the CAD GWAS findings and commercialized drugs. While this could implicate major untapped translational and therapeutic potentials in CAD GWAS, it also brings forward extensive technical challenges. In this review we summarize the motivation to leverage GWAS for drug discovery, outline the critical bottlenecks in the field, and highlight several promising strategies such as functional genomics and network-based approaches to enhance the translational value of CAD GWAS findings in driving novel therapeutics
Collapse
Affiliation(s)
- Le Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States.,Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States.,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Delling FN, Li X, Li S, Yang Q, Xanthakis V, Martinsson A, Andell P, Lehman BT, Osypiuk EW, Stantchev P, Zöller B, Benjamin EJ, Sundquist K, Vasan RS, Smith JG. Heritability of Mitral Regurgitation: Observations From the Framingham Heart Study and Swedish Population. ACTA ACUST UNITED AC 2018; 10:CIRCGENETICS.117.001736. [PMID: 28993406 DOI: 10.1161/circgenetics.117.001736] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Familial aggregation has been described for primary mitral regurgitation (MR) caused by mitral valve prolapse. We hypothesized that heritability of MR exists across different MR subtypes including nonprimary MR. METHODS AND RESULTS Study participants were FHS (Framingham Heart Study) Generation 3 (Gen 3) and Gen 2 cohort participants and all adult Swedish siblings born after 1932 identified in 1997 and followed through 2010. MR was defined as ≥ mild regurgitation on color Doppler in FHS and from International Classification of Diseases codes in Sweden. We estimated the association of sibling MR with MR in Gen 2/Gen 3/Swedish siblings. We also estimated heritability of MR in 539 FHS pedigrees (7580 individuals). Among 5132 FHS Gen 2/Gen 3 participants with sibling information, 1062 had MR. Of siblings with sibling MR, 28% (500/1797) had MR compared with 17% (562/3335) without sibling MR (multivariable-adjusted odds ratio, 1.20; 95% confidence interval [CI], 1.01-1.43; P=0.04). When we combined parental and sibling data in FHS pedigrees, heritability of MR was estimated at 0.15 (95% CI, 0.07-0.23), 0.12 (95% CI, 0.04-0.20) excluding mitral valve prolapse, and 0.44 (95% CI, 0.15-0.73) for ≥ moderate MR only (all P<0.05). In Sweden, sibling MR was associated with a hazard ratio of 3.57 (95% CI, 2.21-5.76; P<0.001) for development of MR. CONCLUSIONS Familial clustering of MR exists in the community, supporting a genetic susceptibility common to primary and nonprimary MR. Further studies are needed to elucidate the common regulatory pathways that may lead to MR irrespective of its cause.
Collapse
Affiliation(s)
- Francesca N Delling
- From the Boston University's and National Heart, Lung and Blood Institute's Framingham Heart Study, MA (F.N.D., B.T.L., E.W.O., P.S., E.J.B., R.S.V.); Cardiovascular Division, Department of Medicine, University of California San Francisco (F.N.D.); Center for Primary Health Care Research, Lund University, Malmö, Sweden (X.L., B.Z., K.S.); Department of Biostatistics (S.L., Q.Y., V.X.), Department of Epidemiology (V.X., E.J.B., R.S.V.), and Cardiology and Preventive Medicine Sections, Department of Medicine (E.J.B., R.S.V.), Boston University School of Medicine, MA; Department of Cardiology, Clinical Sciences, Lund University, Sweden (A.M., P.A., J.G.S.); and Skåne University Hospital, Lund, Sweden (A.M., P.A., J.G.S.).
| | - Xinjun Li
- From the Boston University's and National Heart, Lung and Blood Institute's Framingham Heart Study, MA (F.N.D., B.T.L., E.W.O., P.S., E.J.B., R.S.V.); Cardiovascular Division, Department of Medicine, University of California San Francisco (F.N.D.); Center for Primary Health Care Research, Lund University, Malmö, Sweden (X.L., B.Z., K.S.); Department of Biostatistics (S.L., Q.Y., V.X.), Department of Epidemiology (V.X., E.J.B., R.S.V.), and Cardiology and Preventive Medicine Sections, Department of Medicine (E.J.B., R.S.V.), Boston University School of Medicine, MA; Department of Cardiology, Clinical Sciences, Lund University, Sweden (A.M., P.A., J.G.S.); and Skåne University Hospital, Lund, Sweden (A.M., P.A., J.G.S.)
| | - Shuo Li
- From the Boston University's and National Heart, Lung and Blood Institute's Framingham Heart Study, MA (F.N.D., B.T.L., E.W.O., P.S., E.J.B., R.S.V.); Cardiovascular Division, Department of Medicine, University of California San Francisco (F.N.D.); Center for Primary Health Care Research, Lund University, Malmö, Sweden (X.L., B.Z., K.S.); Department of Biostatistics (S.L., Q.Y., V.X.), Department of Epidemiology (V.X., E.J.B., R.S.V.), and Cardiology and Preventive Medicine Sections, Department of Medicine (E.J.B., R.S.V.), Boston University School of Medicine, MA; Department of Cardiology, Clinical Sciences, Lund University, Sweden (A.M., P.A., J.G.S.); and Skåne University Hospital, Lund, Sweden (A.M., P.A., J.G.S.)
| | - Qiong Yang
- From the Boston University's and National Heart, Lung and Blood Institute's Framingham Heart Study, MA (F.N.D., B.T.L., E.W.O., P.S., E.J.B., R.S.V.); Cardiovascular Division, Department of Medicine, University of California San Francisco (F.N.D.); Center for Primary Health Care Research, Lund University, Malmö, Sweden (X.L., B.Z., K.S.); Department of Biostatistics (S.L., Q.Y., V.X.), Department of Epidemiology (V.X., E.J.B., R.S.V.), and Cardiology and Preventive Medicine Sections, Department of Medicine (E.J.B., R.S.V.), Boston University School of Medicine, MA; Department of Cardiology, Clinical Sciences, Lund University, Sweden (A.M., P.A., J.G.S.); and Skåne University Hospital, Lund, Sweden (A.M., P.A., J.G.S.)
| | - Vanessa Xanthakis
- From the Boston University's and National Heart, Lung and Blood Institute's Framingham Heart Study, MA (F.N.D., B.T.L., E.W.O., P.S., E.J.B., R.S.V.); Cardiovascular Division, Department of Medicine, University of California San Francisco (F.N.D.); Center for Primary Health Care Research, Lund University, Malmö, Sweden (X.L., B.Z., K.S.); Department of Biostatistics (S.L., Q.Y., V.X.), Department of Epidemiology (V.X., E.J.B., R.S.V.), and Cardiology and Preventive Medicine Sections, Department of Medicine (E.J.B., R.S.V.), Boston University School of Medicine, MA; Department of Cardiology, Clinical Sciences, Lund University, Sweden (A.M., P.A., J.G.S.); and Skåne University Hospital, Lund, Sweden (A.M., P.A., J.G.S.)
| | - Andreas Martinsson
- From the Boston University's and National Heart, Lung and Blood Institute's Framingham Heart Study, MA (F.N.D., B.T.L., E.W.O., P.S., E.J.B., R.S.V.); Cardiovascular Division, Department of Medicine, University of California San Francisco (F.N.D.); Center for Primary Health Care Research, Lund University, Malmö, Sweden (X.L., B.Z., K.S.); Department of Biostatistics (S.L., Q.Y., V.X.), Department of Epidemiology (V.X., E.J.B., R.S.V.), and Cardiology and Preventive Medicine Sections, Department of Medicine (E.J.B., R.S.V.), Boston University School of Medicine, MA; Department of Cardiology, Clinical Sciences, Lund University, Sweden (A.M., P.A., J.G.S.); and Skåne University Hospital, Lund, Sweden (A.M., P.A., J.G.S.)
| | - Pontus Andell
- From the Boston University's and National Heart, Lung and Blood Institute's Framingham Heart Study, MA (F.N.D., B.T.L., E.W.O., P.S., E.J.B., R.S.V.); Cardiovascular Division, Department of Medicine, University of California San Francisco (F.N.D.); Center for Primary Health Care Research, Lund University, Malmö, Sweden (X.L., B.Z., K.S.); Department of Biostatistics (S.L., Q.Y., V.X.), Department of Epidemiology (V.X., E.J.B., R.S.V.), and Cardiology and Preventive Medicine Sections, Department of Medicine (E.J.B., R.S.V.), Boston University School of Medicine, MA; Department of Cardiology, Clinical Sciences, Lund University, Sweden (A.M., P.A., J.G.S.); and Skåne University Hospital, Lund, Sweden (A.M., P.A., J.G.S.)
| | - Birgitta T Lehman
- From the Boston University's and National Heart, Lung and Blood Institute's Framingham Heart Study, MA (F.N.D., B.T.L., E.W.O., P.S., E.J.B., R.S.V.); Cardiovascular Division, Department of Medicine, University of California San Francisco (F.N.D.); Center for Primary Health Care Research, Lund University, Malmö, Sweden (X.L., B.Z., K.S.); Department of Biostatistics (S.L., Q.Y., V.X.), Department of Epidemiology (V.X., E.J.B., R.S.V.), and Cardiology and Preventive Medicine Sections, Department of Medicine (E.J.B., R.S.V.), Boston University School of Medicine, MA; Department of Cardiology, Clinical Sciences, Lund University, Sweden (A.M., P.A., J.G.S.); and Skåne University Hospital, Lund, Sweden (A.M., P.A., J.G.S.)
| | - Ewa W Osypiuk
- From the Boston University's and National Heart, Lung and Blood Institute's Framingham Heart Study, MA (F.N.D., B.T.L., E.W.O., P.S., E.J.B., R.S.V.); Cardiovascular Division, Department of Medicine, University of California San Francisco (F.N.D.); Center for Primary Health Care Research, Lund University, Malmö, Sweden (X.L., B.Z., K.S.); Department of Biostatistics (S.L., Q.Y., V.X.), Department of Epidemiology (V.X., E.J.B., R.S.V.), and Cardiology and Preventive Medicine Sections, Department of Medicine (E.J.B., R.S.V.), Boston University School of Medicine, MA; Department of Cardiology, Clinical Sciences, Lund University, Sweden (A.M., P.A., J.G.S.); and Skåne University Hospital, Lund, Sweden (A.M., P.A., J.G.S.)
| | - Plamen Stantchev
- From the Boston University's and National Heart, Lung and Blood Institute's Framingham Heart Study, MA (F.N.D., B.T.L., E.W.O., P.S., E.J.B., R.S.V.); Cardiovascular Division, Department of Medicine, University of California San Francisco (F.N.D.); Center for Primary Health Care Research, Lund University, Malmö, Sweden (X.L., B.Z., K.S.); Department of Biostatistics (S.L., Q.Y., V.X.), Department of Epidemiology (V.X., E.J.B., R.S.V.), and Cardiology and Preventive Medicine Sections, Department of Medicine (E.J.B., R.S.V.), Boston University School of Medicine, MA; Department of Cardiology, Clinical Sciences, Lund University, Sweden (A.M., P.A., J.G.S.); and Skåne University Hospital, Lund, Sweden (A.M., P.A., J.G.S.)
| | - Bengt Zöller
- From the Boston University's and National Heart, Lung and Blood Institute's Framingham Heart Study, MA (F.N.D., B.T.L., E.W.O., P.S., E.J.B., R.S.V.); Cardiovascular Division, Department of Medicine, University of California San Francisco (F.N.D.); Center for Primary Health Care Research, Lund University, Malmö, Sweden (X.L., B.Z., K.S.); Department of Biostatistics (S.L., Q.Y., V.X.), Department of Epidemiology (V.X., E.J.B., R.S.V.), and Cardiology and Preventive Medicine Sections, Department of Medicine (E.J.B., R.S.V.), Boston University School of Medicine, MA; Department of Cardiology, Clinical Sciences, Lund University, Sweden (A.M., P.A., J.G.S.); and Skåne University Hospital, Lund, Sweden (A.M., P.A., J.G.S.)
| | - Emelia J Benjamin
- From the Boston University's and National Heart, Lung and Blood Institute's Framingham Heart Study, MA (F.N.D., B.T.L., E.W.O., P.S., E.J.B., R.S.V.); Cardiovascular Division, Department of Medicine, University of California San Francisco (F.N.D.); Center for Primary Health Care Research, Lund University, Malmö, Sweden (X.L., B.Z., K.S.); Department of Biostatistics (S.L., Q.Y., V.X.), Department of Epidemiology (V.X., E.J.B., R.S.V.), and Cardiology and Preventive Medicine Sections, Department of Medicine (E.J.B., R.S.V.), Boston University School of Medicine, MA; Department of Cardiology, Clinical Sciences, Lund University, Sweden (A.M., P.A., J.G.S.); and Skåne University Hospital, Lund, Sweden (A.M., P.A., J.G.S.)
| | - Kristina Sundquist
- From the Boston University's and National Heart, Lung and Blood Institute's Framingham Heart Study, MA (F.N.D., B.T.L., E.W.O., P.S., E.J.B., R.S.V.); Cardiovascular Division, Department of Medicine, University of California San Francisco (F.N.D.); Center for Primary Health Care Research, Lund University, Malmö, Sweden (X.L., B.Z., K.S.); Department of Biostatistics (S.L., Q.Y., V.X.), Department of Epidemiology (V.X., E.J.B., R.S.V.), and Cardiology and Preventive Medicine Sections, Department of Medicine (E.J.B., R.S.V.), Boston University School of Medicine, MA; Department of Cardiology, Clinical Sciences, Lund University, Sweden (A.M., P.A., J.G.S.); and Skåne University Hospital, Lund, Sweden (A.M., P.A., J.G.S.)
| | - Ramachandran S Vasan
- From the Boston University's and National Heart, Lung and Blood Institute's Framingham Heart Study, MA (F.N.D., B.T.L., E.W.O., P.S., E.J.B., R.S.V.); Cardiovascular Division, Department of Medicine, University of California San Francisco (F.N.D.); Center for Primary Health Care Research, Lund University, Malmö, Sweden (X.L., B.Z., K.S.); Department of Biostatistics (S.L., Q.Y., V.X.), Department of Epidemiology (V.X., E.J.B., R.S.V.), and Cardiology and Preventive Medicine Sections, Department of Medicine (E.J.B., R.S.V.), Boston University School of Medicine, MA; Department of Cardiology, Clinical Sciences, Lund University, Sweden (A.M., P.A., J.G.S.); and Skåne University Hospital, Lund, Sweden (A.M., P.A., J.G.S.)
| | - J Gustav Smith
- From the Boston University's and National Heart, Lung and Blood Institute's Framingham Heart Study, MA (F.N.D., B.T.L., E.W.O., P.S., E.J.B., R.S.V.); Cardiovascular Division, Department of Medicine, University of California San Francisco (F.N.D.); Center for Primary Health Care Research, Lund University, Malmö, Sweden (X.L., B.Z., K.S.); Department of Biostatistics (S.L., Q.Y., V.X.), Department of Epidemiology (V.X., E.J.B., R.S.V.), and Cardiology and Preventive Medicine Sections, Department of Medicine (E.J.B., R.S.V.), Boston University School of Medicine, MA; Department of Cardiology, Clinical Sciences, Lund University, Sweden (A.M., P.A., J.G.S.); and Skåne University Hospital, Lund, Sweden (A.M., P.A., J.G.S.)
| |
Collapse
|
19
|
Wirka RC, Pjanic M, Quertermous T. Advances in Transcriptomics: Investigating Cardiovascular Disease at Unprecedented Resolution. Circ Res 2018; 122:1200-1220. [PMID: 29700068 PMCID: PMC7274217 DOI: 10.1161/circresaha.117.310910] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Whole-genome transcriptional profiling has become a standard genomic approach to investigate biological processes. RNA sequencing (RNAseq) in particular has witnessed myriad applications in genetics and various biomedical fields. RNAseq involves a relatively simple experimental protocol of RNA extraction and cDNA library preparation and, because of decreasing next-generation sequencing cost and lower computational burden for data processing, has obtained a central role in the modern biology. The recent application of RNAseq methodology to single-cell transcriptional profiling has enabled the more precise characterization of cell lineage and cell state genetic profiles. The development of bioinformatic and statistical tools has provided for differential gene expression analysis, RNA isoform analysis, haplotype-specific analysis of gene expression (allele-specific expression), and analysis of expression quantitative trait loci. We give an overview of these and recent developments in RNAseq methodology with emphasis on quality control, read mapping, feature counting, differential gene expression, allele-specific expression and expression quantitative trait loci analysis, and fusion transcript detection. We describe utilization of RNAseq as a diagnostic tool in Mendelian diseases, complex phenotypes, and cancer and give an overview of long read RNAseq technology. Furthermore, we discuss in detail the recent revolution in single-cell transcriptomics that is reshaping modern biology.
Collapse
Affiliation(s)
| | | | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA 94305
| |
Collapse
|
20
|
Wang G, Li Y, Peng Y, Tang J, Li H. Association of polymorphisms in MALAT1 with risk of coronary atherosclerotic heart disease in a Chinese population. Lipids Health Dis 2018; 17:75. [PMID: 29631611 PMCID: PMC5891990 DOI: 10.1186/s12944-018-0728-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Background Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) plays an important role in vascular remodeling. Down-regulation of MALAT1 can inhibit the proliferation of vascular endothelial cells and vascular smooth muscle cells, reduce cardiomyocyte apoptosis and improve left ventricular function, which is closely linked to numerous pathological processes such as coronary atherosclerotic heart disease (CAD). The aim of this study was to investigate whether polymorphisms in MALAT1 were associated with the susceptibility to CAD. Methods A total of 508 CAD patients and 562 age-, gender-, and ethnicity-matched controls were enrolled in this study. Four polymorphisms in MALAT1 (i.e., rs11227209, rs619586, rs664589, and rs3200401) were genotyped using a TaqMan allelic discrimination assay. Results The rs619586 AG/GG genotypes and G allele were associated with a reduced risk of CAD (AG/GG vs. AA: adjusted OR = 0.66, 95% CI: 0.48–0.91; G vs. A: adjusted OR = 0.68, 95% CI: 0.51–0.90). Stratification analyses showed that CAD patients with rs11227209 CG/GG, rs619586 AG/GG, and rs3200401 CT/TT genotypes exhibited lower levels of TCH (P = 0.02, 0.04, and 0.02, respectively). Moreover, CGCC haplotype was associated with a decreased risk of CAD (OR = 0.28, 95% CI: 0.16–0.48). Multivariate logistic regression analysis identified some independent risk factors for CAD, including rs619586 and rs664589. Subsequent combined analysis showed that the combined genotypes of rs619586AG/GG and rs664589CC were associated with a reduced risk of CAD (OR = 0.29; 95%CI, 0.16–0.53). Conclusions These findings indicate that rs619586AG/GG genotypes in MALAT1 may protect against the occurrence of CAD. Electronic supplementary material The online version of this article (10.1186/s12944-018-0728-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Genan Wang
- Department of Heart Vascular Surgery, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, People's Republic of China
| | - Yaxiong Li
- Department of Heart Vascular Surgery, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, People's Republic of China
| | - Yong Peng
- Department of Heart Vascular Surgery, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, People's Republic of China
| | - Jian Tang
- Department of Heart Vascular Surgery, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, People's Republic of China
| | - Hua Li
- Department of Heart Vascular Surgery, Yan'An Hospital Affiliated to Kunming Medical University, Kunming, 650051, Yunnan, People's Republic of China.
| |
Collapse
|
21
|
Giese AK, Schirmer MD, Donahue KL, Cloonan L, Irie R, Winzeck S, Bouts MJRJ, McIntosh EC, Mocking SJ, Dalca AV, Sridharan R, Xu H, Frid P, Giralt-Steinhauer E, Holmegaard L, Roquer J, Wasselius J, Cole JW, McArdle PF, Broderick JP, Jimenez-Conde J, Jern C, Kissela BM, Kleindorfer DO, Lemmens R, Lindgren A, Meschia JF, Rundek T, Sacco RL, Schmidt R, Sharma P, Slowik A, Thijs V, Woo D, Worrall BB, Kittner SJ, Mitchell BD, Rosand J, Golland P, Wu O, Rost NS. Design and rationale for examining neuroimaging genetics in ischemic stroke: The MRI-GENIE study. Neurol Genet 2017; 3:e180. [PMID: 28852707 PMCID: PMC5570675 DOI: 10.1212/nxg.0000000000000180] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/30/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To describe the design and rationale for the genetic analysis of acute and chronic cerebrovascular neuroimaging phenotypes detected on clinical MRI in patients with acute ischemic stroke (AIS) within the scope of the MRI-GENetics Interface Exploration (MRI-GENIE) study. METHODS MRI-GENIE capitalizes on the existing infrastructure of the Stroke Genetics Network (SiGN). In total, 12 international SiGN sites contributed MRIs of 3,301 patients with AIS. Detailed clinical phenotyping with the web-based Causative Classification of Stroke (CCS) system and genome-wide genotyping data were available for all participants. Neuroimaging analyses include the manual and automated assessments of established MRI markers. A high-throughput MRI analysis pipeline for the automated assessment of cerebrovascular lesions on clinical scans will be developed in a subset of scans for both acute and chronic lesions, validated against gold standard, and applied to all available scans. The extracted neuroimaging phenotypes will improve characterization of acute and chronic cerebrovascular lesions in ischemic stroke, including CCS subtypes, and their effect on functional outcomes after stroke. Moreover, genetic testing will uncover variants associated with acute and chronic MRI manifestations of cerebrovascular disease. CONCLUSIONS The MRI-GENIE study aims to develop, validate, and distribute the MRI analysis platform for scans acquired as part of clinical care for patients with AIS, which will lead to (1) novel genetic discoveries in ischemic stroke, (2) strategies for personalized stroke risk assessment, and (3) personalized stroke outcome assessment.
Collapse
Affiliation(s)
| | | | | | - Lisa Cloonan
- Author affiliations are provided at the end of the article
| | - Robert Irie
- Author affiliations are provided at the end of the article
| | - Stefan Winzeck
- Author affiliations are provided at the end of the article
| | | | | | | | - Adrian V Dalca
- Author affiliations are provided at the end of the article
| | | | - Huichun Xu
- Author affiliations are provided at the end of the article
| | - Petrea Frid
- Author affiliations are provided at the end of the article
| | | | | | - Jaume Roquer
- Author affiliations are provided at the end of the article
| | | | - John W Cole
- Author affiliations are provided at the end of the article
| | | | | | | | - Christina Jern
- Author affiliations are provided at the end of the article
| | | | | | - Robin Lemmens
- Author affiliations are provided at the end of the article
| | - Arne Lindgren
- Author affiliations are provided at the end of the article
| | | | - Tatjana Rundek
- Author affiliations are provided at the end of the article
| | - Ralph L Sacco
- Author affiliations are provided at the end of the article
| | | | - Pankaj Sharma
- Author affiliations are provided at the end of the article
| | | | - Vincent Thijs
- Author affiliations are provided at the end of the article
| | - Daniel Woo
- Author affiliations are provided at the end of the article
| | | | | | | | | | - Polina Golland
- Author affiliations are provided at the end of the article
| | - Ona Wu
- Author affiliations are provided at the end of the article
| | - Natalia S Rost
- Author affiliations are provided at the end of the article
| |
Collapse
|
22
|
Pjanic M. The role of polycarbonate monomer bisphenol-A in insulin resistance. PeerJ 2017; 5:e3809. [PMID: 28929027 PMCID: PMC5600722 DOI: 10.7717/peerj.3809] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023] Open
Abstract
Bisphenol A (BPA) is a synthetic unit of polycarbonate polymers and epoxy resins, the types of plastics that could be found in essentially every human population and incorporated into almost every aspect of the modern human society. BPA polymers appear in a wide range of products, from liquid storages (plastic bottles, can and glass linings, water pipes and tanks) and food storages (plastics wraps and containers), to medical and dental devices. BPA polymers could be hydrolyzed spontaneously or in a photo- or temperature-catalyzed process, providing widespread environmental distribution and chronic exposure to the BPA monomer in contemporary human populations. Bisphenol A is also a xenoestrogen, an endocrine-disrupting chemical (EDC) that interferes with the endocrine system mimicking the effects of an estrogen and could potentially keep our endocrine system in a constant perturbation that parallels endocrine disruption arising during pregnancy, such as insulin resistance (IR). Gestational insulin resistance represents a natural biological phenomenon of higher insulin resistance in peripheral tissues of the pregnant females, when nutrients are increasingly being directed to the embryo instead of being stored in peripheral tissues. Gestational diabetes mellitus may appear in healthy non-diabetic females, due to gestational insulin resistance that leads to increased blood sugar levels and hyperinsulinemia (increased insulin production from the pancreatic beta cells). The hypothesis states that unnoticed and constant exposure to this environmental chemical might potentially lead to the formation of chronic low-level endocrine disruptive state that resembles gestational insulin resistance, which might contribute to the development of diabetes. The increasing body of evidence supports the major premises of this hypothesis, as exemplified by the numerous publications examining the association of BPA and insulin resistance, both epidemiological and mechanistic. However, to what extent BPA might contribute to the development of diabetes in the modern societies still remains unknown. In this review, I discuss the chemical properties of BPA and the sources of BPA contamination found in the environment and in human tissues. I provide an overview of mechanisms for the proposed role of bisphenol A in insulin resistance and diabetes, as well as other related diseases, such as cardiovascular diseases. I describe the transmission of BPA effects to the offspring and postulate that gender related differences might originate from differences in liver enzyme levels, such as UDP-glucuronosyltransferase, which is involved in BPA processing and its elimination from the organism. I discuss the molecular mechanisms of BPA action through nuclear and membrane-bound ER receptors, non-monotonic dose response, epigenetic modifications of the DNA and propose that chronic exposure to weak binders, such as BPA, may mimic the effects of strong binders, such as estrogens.
Collapse
Affiliation(s)
- Milos Pjanic
- Department of Medicine, Division of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
23
|
Guo L, Li D, Li M, Li L, Huang Y. Variant in GALNT3 Gene Linked with Reduced Coronary Artery Disease Risk in Chinese Population. DNA Cell Biol 2017; 36:529-534. [PMID: 28453302 DOI: 10.1089/dna.2017.3688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our previous study found expression of GALNT3 gene was reduced in coronary artery disease (CAD) patients, and it contributed to endothelial injury by regulating apoptosis and matrix metalloproteinase (MMP) expression. GALNT3 gene may be a potential target for future therapeutic intervention of CAD. However, none reports linking the GALNT3 gene to susceptibility of CAD. This study investigated the variant associations of GALNT3 gene and CAD. Thirteen single nucleotide polymorphism (SNP) in and around the GALNT3 gene were tagged and analyzed in CAD patients (n = 1515) and control individuals (n = 5019), and the SNPs with CAD were tested with multiple logistic regression analysis in an additive genetic model (with one degree of freedom) after adjusting for age and sex. Expression of GALNT3 gene was detected by real-time PCR and Western blot. Luciferase reporter assays were used to detect the allele-specific effect of rs4621175 on transcriptional activity. Two GALNT3 markers, rs13427924 and rs4621175, were significantly associated with CAD (odds ratio [OR] = 0.87, p = 1.01 × 10-3 and OR = 0.75, p = 2.51 × 10-4, respectively), and the risk A allele of rs4621175 was associated with lower GALNT3 expression in both mRNA and protein level; also, A allele showed decreased reporter activity. In addition, we found the level of GALNT3 negatively correlated with MMP-2 gene expression. This study identified GALNT3 as a novel gene that rendered patients susceptible to CAD, and the A allele of a disease-associated variant rs4621175 linked reduced CAD risk through decreased GALNT3 expression. These results confirmed the role of GALNT3 gene in CAD and provided new insights into the genetic regulation of the GALNT3 gene with respect to the pathogenesis of CAD.
Collapse
Affiliation(s)
- Liwei Guo
- 1 Department of Forensic Medicine, Xinxiang Medical University , Xinxiang, China
| | - Duan Li
- 2 Department of Basic Medicine, Xinxiang Medical University , Xinxiang, China
| | - Mengting Li
- 3 State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Lin Li
- 3 State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, China
| | - Yanmei Huang
- 1 Department of Forensic Medicine, Xinxiang Medical University , Xinxiang, China
| |
Collapse
|
24
|
Genetics: Implications for Prevention and Management of Coronary Artery Disease. J Am Coll Cardiol 2017; 68:2797-2818. [PMID: 28007143 DOI: 10.1016/j.jacc.2016.10.039] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/12/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022]
Abstract
An exciting new era has dawned for the prevention and management of coronary artery disease (CAD) utilizing genetic risk variants. The recent identification of over 60 susceptibility loci for CAD confirms not only the importance of established risk factors, but also the existence of many novel causal pathways that are expected to improve our understanding of the genetic basis of CAD and facilitate the development of new therapeutic agents over time. Concurrently, Mendelian randomization studies have provided intriguing insights on the causal relationship between CAD-related traits, and highlight the potential benefits of long-term modifications of risk factors. Last, genetic risk scores of CAD may serve not only as prognostic, but also as predictive markers, and carry the potential to considerably improve the delivery of established prevention strategies. This review will summarize the evolution and discovery of genetic risk variants for CAD and their current and future clinical applications.
Collapse
|
25
|
Johnson KW, Shameer K, Glicksberg BS, Readhead B, Sengupta PP, Björkegren JLM, Kovacic JC, Dudley JT. Enabling Precision Cardiology Through Multiscale Biology and Systems Medicine. ACTA ACUST UNITED AC 2017; 2:311-327. [PMID: 30062151 PMCID: PMC6034501 DOI: 10.1016/j.jacbts.2016.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022]
Abstract
The traditional paradigm of cardiovascular disease research derives insight from large-scale, broadly inclusive clinical studies of well-characterized pathologies. These insights are then put into practice according to standardized clinical guidelines. However, stagnation in the development of new cardiovascular therapies and variability in therapeutic response implies that this paradigm is insufficient for reducing the cardiovascular disease burden. In this state-of-the-art review, we examine 3 interconnected ideas we put forth as key concepts for enabling a transition to precision cardiology: 1) precision characterization of cardiovascular disease with machine learning methods; 2) the application of network models of disease to embrace disease complexity; and 3) using insights from the previous 2 ideas to enable pharmacology and polypharmacology systems for more precise drug-to-patient matching and patient-disease stratification. We conclude by exploring the challenges of applying a precision approach to cardiology, which arise from a deficit of the required resources and infrastructure, and emerging evidence for the clinical effectiveness of this nascent approach.
Collapse
Affiliation(s)
- Kipp W Johnson
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Khader Shameer
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Benjamin S Glicksberg
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ben Readhead
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Partho P Sengupta
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Medical Biochemistry and Biophysics Vascular Biology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joel T Dudley
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
26
|
New landscape of cardiovascular genetics and genomics. Curr Opin Cardiol 2017; 32:229-231. [DOI: 10.1097/hco.0000000000000394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Corella D, Coltell O, Mattingley G, Sorlí JV, Ordovas JM. Utilizing nutritional genomics to tailor diets for the prevention of cardiovascular disease: a guide for upcoming studies and implementations. Expert Rev Mol Diagn 2017; 17:495-513. [PMID: 28337931 DOI: 10.1080/14737159.2017.1311208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Personalized diets based on an individual's genome to optimize the success of dietary intervention and reduce genetic cardiovascular disease (CVD) risk, is one of the challenges most frequently discussed in the scientific community. Areas covered: The authors gathered literature-based evidence on nutritional genomics and CVD phenotypes, our own results and research experience to provide a critical overview of the current situation of using nutritional genomics to tailor diets for CVD prevention and to propose guidelines for future studies and implementations. Expert commentary: Hundreds of studies on gene-diet interactions determining CVD intermediate (plasma lipids, hypertension, etc.) and final phenotypes (stroke, etc.) have furnished top-level scientific evidence for claiming that the genetic effect in cardiovascular risk is not deterministic, but can be modified by diet. However, despite the many results obtained, there are still gaps in practically applying a personalized diet design to specific genotypes. Hence, a better systemization and methodological improvement of new studies is required to obtain top-level evidence that will allow their application in the future precision nutrition/medicine. The authors propose several recommendations for tackling new approaches and applications.
Collapse
Affiliation(s)
- Dolores Corella
- a Department of Preventive Medicine and Public Health, School of Medicine , University of Valencia , Valencia , Spain.,b CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III , Madrid , Spain
| | - Oscar Coltell
- b CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III , Madrid , Spain.,c Department of Computer Languages and Systems, School of Technology and Experimental Sciences , Universitat Jaume I , Castellón , Spain
| | - George Mattingley
- a Department of Preventive Medicine and Public Health, School of Medicine , University of Valencia , Valencia , Spain
| | - José V Sorlí
- a Department of Preventive Medicine and Public Health, School of Medicine , University of Valencia , Valencia , Spain.,b CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III , Madrid , Spain
| | - Jose M Ordovas
- d Nutrition and Genomics Laboratory , JM-USDA Human Nutrition Research Center on Aging at Tufts University , Boston , MA , USA
| |
Collapse
|
28
|
Zhang QH, Yin RX, Gao H, Huang F, Wu JZ, Pan SL, Lin WX, Yang DZ. Association of the SPTLC3 rs364585 polymorphism and serum lipid profiles in two Chinese ethnic groups. Lipids Health Dis 2017; 16:1. [PMID: 28056980 PMCID: PMC5217591 DOI: 10.1186/s12944-016-0392-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/14/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Little is known about the association of the single nucleotide polymorphism (SNP) of rs364585 near serine palmitoyl-transferase long-chain base subunit 3 gene (SPTLC3) and serum lipid profiles. The present study was detected the association of the SPTLC3 rs364585 SNP and several environmental factors with serum lipid profiles in the Han and Jing populations. METHODS Genotyping of the SPTLC3 rs364585 SNP was performed in 824 unrelated individuals of Han and 783 participants of Jing by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. RESULTS There was no significant difference in either genotypic or allelic frequencies between Han and Jing, or between males and females of the both ethnic groups. The levels of serum low-density lipoprotein cholesterol (LDL-C) and the ratio of apolipoprotein (Apo) A1 to ApoB in Han; and total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and LDL-C in Jing were different between the A allele carriers and the A allele non-carriers (P < 0.05-0.001). Subgroup analysis according to sex showed that the levels of LDL-C in Han males; TC and LDL-C in Jing males; and HDL-C and LDL-C in Jing females were different between the A allele carriers and the A allele non-carriers (P < 0.05-0.001), the A allele carriers had higher LDL-C and TC levels, and lower HDL-C levels than the A allele non-carriers. Serum lipid traits were also associated with several environmental factors in the Han and Jing populations, or in males and females of the both ethnic groups. CONCLUSIONS The present study demonstrates the association between the SPTLC3 rs364585 SNP and serum TC, HDL-C and LDL-C levels in our study populations. These associations might have ethnic- and/or sex-specificity. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Qing-Hui Zhang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China.
| | - Hui Gao
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Feng Huang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Jin-Zhen Wu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Premedical Sciences, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Wei-Xiong Lin
- Department of Molecular Biology, Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - De-Zhai Yang
- Department of Molecular Biology, Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| |
Collapse
|