1
|
Popescu AI, Rata AL, Barac S, Popescu R, Onofrei RR, Vlad C, Vlad D. Narrative Review of Biological Markers in Chronic Limb-Threatening Ischemia. Biomedicines 2024; 12:798. [PMID: 38672153 PMCID: PMC11047884 DOI: 10.3390/biomedicines12040798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Chronic limb-threatening ischemia (CLTI), the advanced stage of peripheral arterial disease, is diagnosed in the presence of ischemic rest pain, non-healing ulcers, or gangrene. Several studies have demonstrated that inflammation and endothelial dysfunction are some of the main substrates of CLTI. METHODS A narrative review was conducted and reported according to PRISMA guidelines. Three databases were searched-Web of Science, Medline, and EMBASE-for the studies assessing CLTI and the biological markers related to it. RESULTS We included 22 studies, and all the markers identified (C-reactive protein, D-dimers, fibrinogen, cytokines, IL-6, TNF-α, ICAM-1 (Intracellular Adhesion Molecule-1), VCAM-1 (Vascular Cell Adhesion Molecule-1), neutrophile-to-lymphocytes ratio (NLR), IL-8, Pentraxin-3, neutrophil gelatinase-associated lipocalin (NGAL), calprotectin, E-selectin, P-selectin, neopterin, High-Mobility Group Box-1 protein (HGMB-1), Osteoprotegerin (OPG) and Sortilin) were positively associated with advanced CLTI, with major limb or major cardiovascular events in these patients. CONCLUSIONS All the studied markers had increased values in patients with CLTI, especially when associated with diabetes mellitus, proving a very important association between diabetes and major limb or cardiovascular events in these patients. There is a need for more studies to validate these markers in terms of diagnosis or prognosis in CLTI patients and in trying to find new medical strategies that target inflammation or endothelial dysfunction in these patients.
Collapse
Affiliation(s)
- Alexandra Ioana Popescu
- Pharmacology Department, Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Andreea Luciana Rata
- Surgical Emergencies Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Sorin Barac
- Vascular Surgery Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Roxana Popescu
- Cell and Molecular Biology Department, ”Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Roxana Ramona Onofrei
- Department of Rehabilitation, Physical Medicine and Rheumatology, Research Center for Assessment of Human Motion, Functionality and Disability, ”Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Cristian Vlad
- Pharmacology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.V.); (D.V.)
| | - Daliborca Vlad
- Pharmacology Department, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (C.V.); (D.V.)
| |
Collapse
|
2
|
The Genetic Architecture of the Etiology of Lower Extremity Peripheral Artery Disease: Current Knowledge and Future Challenges in the Era of Genomic Medicine. Int J Mol Sci 2022; 23:ijms231810481. [PMID: 36142394 PMCID: PMC9499674 DOI: 10.3390/ijms231810481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022] Open
Abstract
Lower extremity artery disease (LEAD), caused by atherosclerotic obstruction of the arteries of the lower limb extremities, has exhibited an increase in mortality and morbidity worldwide. The phenotypic variability of LEAD is correlated with its complex, multifactorial etiology. In addition to traditional risk factors, it has been shown that the interaction between genetic factors (epistasis) or between genes and the environment potentially have an independent role in the development and progression of LEAD. In recent years, progress has been made in identifying genetic variants associated with LEAD, by Genome-Wide Association Studies (GWAS), Whole Exome Sequencing (WES) studies, and epigenetic profiling. The aim of this review is to present the current knowledge about the genetic factors involved in the etiopathogenic mechanisms of LEAD, as well as possible directions for future research. We analyzed data from the literature, starting with candidate gene-based association studies, and then continuing with extensive association studies, such as GWAS and WES. The results of these studies showed that the genetic architecture of LEAD is extremely heterogeneous. In the future, the identification of new genetic factors will allow for the development of targeted molecular therapies, and the use of polygenic risk scores (PRS) to identify individuals at an increased risk of LEAD will allow for early prophylactic measures and personalized therapy to improve their prognosis.
Collapse
|
3
|
Li Z, Ge Q, Feng J, Jia K, Zhao J. Quantification of blood flow index in diffuse correlation spectroscopy using long short-term memory architecture. BIOMEDICAL OPTICS EXPRESS 2021; 12:4131-4146. [PMID: 34457404 PMCID: PMC8367234 DOI: 10.1364/boe.423777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 05/30/2023]
Abstract
Diffuse correlation spectroscopy (DCS) is a noninvasive technique that derives blood flow information from measurements of the temporal intensity fluctuations of multiply scattered light. Blood flow index (BFI) and especially its variation was demonstrated to be approximately proportional to absolute blood flow. We investigated and assessed the utility of a long short-term memory (LSTM) architecture for quantification of BFI in DCS. Phantom and in vivo experiments were established to measure normalized intensity autocorrelation function data. Improved accuracy and faster computational time were gained by the proposed LSTM architecture. The results support the notion of using proposed LSTM architecture for quantification of BFI in DCS. This approach would be especially useful for continuous real-time monitoring of blood flow.
Collapse
Affiliation(s)
- Zhe Li
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China
- Zhe Li and Qisi Ge contributed equally to this work
| | - Qisi Ge
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China
- Zhe Li and Qisi Ge contributed equally to this work
| | - Jinchao Feng
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China
| | - Kebin Jia
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
- Beijing Laboratory of Advanced Information Networks, Beijing 100124, China
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China
| | - Jing Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
4
|
Zalewski DP, Ruszel KP, Stępniewski A, Gałkowski D, Bogucki J, Kołodziej P, Szymańska J, Płachno BJ, Zubilewicz T, Feldo M, Kocki J, Bogucka-Kocka A. Identification of Transcriptomic Differences between Lower Extremities Arterial Disease, Abdominal Aortic Aneurysm and Chronic Venous Disease in Peripheral Blood Mononuclear Cells Specimens. Int J Mol Sci 2021; 22:3200. [PMID: 33801150 PMCID: PMC8004090 DOI: 10.3390/ijms22063200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 01/10/2023] Open
Abstract
Several human tissues are investigated in studies of molecular biomarkers associated with diseases development. Special attention is focused on the blood and its components due to combining abundant information about systemic responses to pathological processes as well as high accessibility. In the current study, transcriptome profiles of peripheral blood mononuclear cells (PBMCs) were used to compare differentially expressed genes between patients with lower extremities arterial disease (LEAD), abdominal aortic aneurysm (AAA) and chronic venous disease (CVD). Gene expression patterns were generated using the Ion S5XL next-generation sequencing platform and were analyzed using DESeq2 and UVE-PLS methods implemented in R programming software. In direct pairwise analysis, 21, 58 and 10 differentially expressed genes were selected from the comparison of LEAD vs. AAA, LEAD vs. CVD and AAA vs. CVD patient groups, respectively. Relationships between expression of dysregulated genes and age, body mass index, creatinine levels, hypertension and medication were identified using Spearman rank correlation test and two-sided Mann-Whitney U test. The functional analysis, performed using DAVID website tool, provides potential implications of selected genes in pathological processes underlying diseases studied. Presented research provides new insight into differences of pathogenesis in LEAD, AAA and CVD, and selected genes could be considered as potential candidates for biomarkers useful in diagnosis and differentiation of studied diseases.
Collapse
Affiliation(s)
- Daniel P. Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Karol P. Ruszel
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.K.)
| | - Andrzej Stępniewski
- Ecotech Complex Analytical and Programme Centre for Advanced Environmentally Friendly Technologies, University of Marie Curie-Skłodowska, 39 Głęboka St., 20-612 Lublin, Poland;
| | - Dariusz Gałkowski
- Department of Pathology and Laboratory Medicine, Rutgers-Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ 08903-0019, USA;
| | - Jacek Bogucki
- Chair and Department of Organic Chemistry, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Przemysław Kołodziej
- Laboratory of Diagnostic Parasitology, Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| | - Jolanta Szymańska
- Department of Integrated Paediatric Dentistry, Chair of Integrated Dentistry, Medical University of Lublin, 6 Chodźki St., 20-093 Lublin, Poland;
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland;
| | - Tomasz Zubilewicz
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (T.Z.); (M.F.)
| | - Marcin Feldo
- Chair and Department of Vascular Surgery and Angiology, Medical University of Lublin, 11 Staszica St., 20-081 Lublin, Poland; (T.Z.); (M.F.)
| | - Janusz Kocki
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwiłłowska St., 20-080 Lublin, Poland; (K.P.R.); (J.K.)
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland;
| |
Collapse
|
5
|
Kaschwich M, Behrendt CA, Heydecke G, Bayer A, Debus ES, Seedorf U, Aarabi G. The Association of Periodontitis and Peripheral Arterial Occlusive Disease-A Systematic Review. Int J Mol Sci 2019; 20:E2936. [PMID: 31208079 PMCID: PMC6627595 DOI: 10.3390/ijms20122936] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Observational studies support an association between periodontitis (PD) and atherosclerotic vascular disease, but little is known specifically about peripheral arterial occlusive disease (PAOD). OBJECTIVES To systematically review the evidence for an association between PD and PAOD. DATA SOURCES Medline via PubMed. REVIEW METHODS We searched the Pubmed database for original studies, case reports, case series, meta-analyses and systematic reviews that assessed whether there is an association between PD (all degrees of severity) and PAOD (all degrees of severity). The reporting of this systematic review was in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement following the Population, Intervention, Control, and Outcome (PICO) format. RESULTS 17 out of 755 detected studies were included in the qualitative synthesis. Nine studies demonstrated associations between PD and PAOD, and two studies reported associations between tooth loss and PAOD. Six studies addressed the pathomechanism regarding PD as a possible trigger for PAOD. No study that dismissed an association could be detected. Odds ratios or hazard ratios ranged from 1.3 to 3.9 in four large cohort studies after adjusting for established cardiovascular risk factors. CONCLUSIONS The presented evidence supports a link between PD and PAOD. Further studies which address the temporality of PD and PAOD and randomized controlled intervention trials examining the causal impact of PD on PAOD are needed. Although our results cannot confirm a causal role of PD in the development of PAOD, it is likely that PD is associated with PAOD and plays a contributing role.
Collapse
Affiliation(s)
- Mark Kaschwich
- Department of Vascular Medicine, University Heart Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
- Department of Surgery, University Medical Centre Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany.
| | - Christian-Alexander Behrendt
- Department of Vascular Medicine, University Heart Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Guido Heydecke
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Andreas Bayer
- Department of Surgery, University Medical Centre Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany.
| | - Eike Sebastian Debus
- Department of Vascular Medicine, University Heart Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Udo Seedorf
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Ghazal Aarabi
- Department of Prosthetic Dentistry, Center for Dental and Oral Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|