1
|
Xu W, Liang X, Chen L, Hong W, Hu X. Biobanks in chronic disease management: A comprehensive review of strategies, challenges, and future directions. Heliyon 2024; 10:e32063. [PMID: 38868047 PMCID: PMC11168399 DOI: 10.1016/j.heliyon.2024.e32063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
Biobanks, through the collection and storage of patient blood, tissue, genomic, and other biological samples, provide unique and rich resources for the research and management of chronic diseases such as cardiovascular diseases, diabetes, and cancer. These samples contain valuable cellular and molecular level information that can be utilized to decipher the pathogenesis of diseases, guide the development of novel diagnostic technologies, treatment methods, and personalized medical strategies. This article first outlines the historical evolution of biobanks, their classification, and the impact of technological advancements. Subsequently, it elaborates on the significant role of biobanks in revealing molecular biomarkers of chronic diseases, promoting the translation of basic research to clinical applications, and achieving individualized treatment and management. Additionally, challenges such as standardization of sample processing, information privacy, and security are discussed. Finally, from the perspectives of policy support, regulatory improvement, and public participation, this article provides a forecast on the future development directions of biobanks and strategies to address challenges, aiming to safeguard and enhance their unique advantages in supporting chronic disease prevention and treatment.
Collapse
Affiliation(s)
- Wanna Xu
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen, 518020, China
| | - Xiongshun Liang
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen, 518020, China
| | - Lin Chen
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen, 518020, China
| | - Wenxu Hong
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen, 518020, China
| | - Xuqiao Hu
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen, 518020, China
- Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| |
Collapse
|
2
|
Katki HA, Berndt SI, Machiela MJ, Stewart DR, Garcia-Closas M, Kim J, Shi J, Yu K, Rothman N. Increase in power by obtaining 10 or more controls per case when type-1 error is small in large-scale association studies. BMC Med Res Methodol 2023; 23:153. [PMID: 37386403 PMCID: PMC10308790 DOI: 10.1186/s12874-023-01973-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The rule of thumb that there is little gain in statistical power by obtaining more than 4 controls per case, is based on type-1 error α = 0.05. However, association studies that evaluate thousands or millions of associations use smaller α and may have access to plentiful controls. We investigate power gains, and reductions in p-values, when increasing well beyond 4 controls per case, for small α. METHODS We calculate the power, the median expected p-value, and the minimum detectable odds-ratio (OR), as a function of the number of controls/case, as α decreases. RESULTS As α decreases, at each ratio of controls per case, the increase in power is larger than for α = 0.05. For α between 10-6 and 10-9 (typical for thousands or millions of associations), increasing from 4 controls per case to 10-50 controls per case increases power. For example, a study with power = 0.2 (α = 5 × 10-8) with 1 control/case has power = 0.65 with 4 controls/case, but with 10 controls/case has power = 0.78, and with 50 controls/case has power = 0.84. For situations where obtaining more than 4 controls per case provides small increases in power beyond 0.9 (at small α), the expected p-value can decrease by orders-of-magnitude below α. Increasing from 1 to 4 controls/case reduces the minimum detectable OR toward the null by 20.9%, and from 4 to 50 controls/case reduces by an additional 9.7%, a result which applies regardless of α and hence also applies to "regular" α = 0.05 epidemiology. CONCLUSIONS At small α, versus 4 controls/case, recruiting 10 or more controls/cases can increase power, reduce the expected p-value by 1-2 orders of magnitude, and meaningfully reduce the minimum detectable OR. These benefits of increasing the controls/case ratio increase as the number of cases increases, although the amount of benefit depends on exposure frequencies and true OR. Provided that controls are comparable to cases, our findings suggest greater sharing of comparable controls in large-scale association studies.
Collapse
Affiliation(s)
- Hormuzd A Katki
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Douglas R Stewart
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Montserrat Garcia-Closas
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Erdmann J. What can we learn from common variants associated with unexpected phenotypes in rare genetic diseases? Orphanet J Rare Dis 2021; 16:41. [PMID: 33478553 PMCID: PMC7818908 DOI: 10.1186/s13023-021-01684-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/06/2021] [Indexed: 11/30/2022] Open
Abstract
The purpose of this article is to stimulate discussion about whether a phenome-wide association study is a suitable tool for uncovering late-onset risks in patients with monogenic disorders that are not yet fully recognized because the life expectancy of people with such conditions has only recently extended, and they now reach older ages when they may develop additional complications.
Collapse
Affiliation(s)
- Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Ratzeburger Allee 160, Building 67, 23562, Lübeck, Germany.
| |
Collapse
|
4
|
Tanisawa K, Wang G, Seto J, Verdouka I, Twycross-Lewis R, Karanikolou A, Tanaka M, Borjesson M, Di Luigi L, Dohi M, Wolfarth B, Swart J, Bilzon JLJ, Badtieva V, Papadopoulou T, Casasco M, Geistlinger M, Bachl N, Pigozzi F, Pitsiladis Y. Sport and exercise genomics: the FIMS 2019 consensus statement update. Br J Sports Med 2020; 54:969-975. [PMID: 32201388 PMCID: PMC7418627 DOI: 10.1136/bjsports-2019-101532] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 12/26/2022]
Abstract
Rapid advances in technologies in the field of genomics such as high throughput DNA sequencing, big data processing by machine learning algorithms and gene-editing techniques are expected to make precision medicine and gene-therapy a greater reality. However, this development will raise many important new issues, including ethical, moral, social and privacy issues. The field of exercise genomics has also advanced by incorporating these innovative technologies. There is therefore an urgent need for guiding references for sport and exercise genomics to allow the necessary advancements in this field of sport and exercise medicine, while protecting athletes from any invasion of privacy and misuse of their genomic information. Here, we update a previous consensus and develop a guiding reference for sport and exercise genomics based on a SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis. This SWOT analysis and the developed guiding reference highlight the need for scientists/clinicians to be well-versed in ethics and data protection policy to advance sport and exercise genomics without compromising the privacy of athletes and the efforts of international sports federations. Conducting research based on the present guiding reference will mitigate to a great extent the risks brought about by inappropriate use of genomic information and allow further development of sport and exercise genomics in accordance with best ethical standards and international data protection principles and policies. This guiding reference should regularly be updated on the basis of new information emerging from the area of sport and exercise medicine as well as from the developments and challenges in genomics of health and disease in general in order to best protect the athletes, patients and all other relevant stakeholders.
Collapse
Affiliation(s)
- Kumpei Tanisawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Guan Wang
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UK
| | - Jane Seto
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Ioanna Verdouka
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UK
| | - Richard Twycross-Lewis
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Antonia Karanikolou
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UK
| | - Masashi Tanaka
- Department for Health and Longevity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Mats Borjesson
- Department of Neuroscience and Physiology, Center for Health and Performance, Goteborg University, Göteborg, Sweden
- Sahlgrenska University Hospital/Ostra, Göteborg, Sweden
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Michiko Dohi
- Sport Medical Center, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Bernd Wolfarth
- Department of Sport Medicine, Humboldt University and Charité University School of Medicine, Berlin, Germany
| | - Jeroen Swart
- UCT Research Unit for Exercise Science and Sports Medicine, Cape Town, South Africa
| | | | - Victoriya Badtieva
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russian Federation
- Moscow Research and Practical Center for Medical Rehabilitation, Restorative and Sports Medicine, Moscow Healthcare Department, Moscow, Russian Federation
| | - Theodora Papadopoulou
- Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, UK
- British Association of Sport and Exercise Medicine, Doncaster, UK
| | | | - Michael Geistlinger
- Unit of International Law, Department of Constitutional, International and European Law, University of Salzburg, Salzburg, Salzburg, Austria
| | - Norbert Bachl
- Institute of Sports Science, University of Vienna, Vienna, Austria
- Austrian Institute of Sports Medicine, Vienna, Austria
| | - Fabio Pigozzi
- Sport Medicine Unit, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Yannis Pitsiladis
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UK
| |
Collapse
|
5
|
Middleton A, Milne R, Thorogood A, Kleiderman E, Niemiec E, Prainsack B, Farley L, Bevan P, Steed C, Smith J, Vears D, Atutornu J, Howard HC, Morley KI. Attitudes of publics who are unwilling to donate DNA data for research. Eur J Med Genet 2019; 62:316-323. [PMID: 30476628 PMCID: PMC6582635 DOI: 10.1016/j.ejmg.2018.11.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/17/2022]
Abstract
With the use of genetic technology, researchers have the potential to inform medical diagnoses and treatment in actionable ways. Accurate variant interpretation is a necessary condition for the utility of genetic technology to unfold. This relies on the ability to access large genomic datasets so that comparisons can be made between variants of interest. This can only be successful if DNA and medical data are donated by large numbers of people to 'research', including clinical, non-profit and for-profit research initiatives, in order to be accessed by scientists and clinicians worldwide. The objective of the 'Your DNA, Your Say' global survey is to explore public attitudes, values and opinions towards willingness to donate and concerns regarding the donation of one's personal data for use by others. Using a representative sample of 8967 English-speaking publics from the UK, the USA, Canada and Australia, we explore the characteristics of people who are unwilling (n = 1426) to donate their DNA and medical information, together with an exploration of their reasons. Understanding this perspective is important for making sense of the interaction between science and society. It also helps to focus engagement initiatives on the issues of concern to some publics.
Collapse
Affiliation(s)
- Anna Middleton
- Society and Ethics Research, Connecting Science, Wellcome Genome Campus, Cambridge, UK; Faculty of Education, University of Cambridge, Cambridge, UK.
| | - Richard Milne
- Society and Ethics Research, Connecting Science, Wellcome Genome Campus, Cambridge, UK; Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Adrian Thorogood
- Centre of Genomics and Policy, McGill University, Montreal, Quebec, Canada
| | - Erika Kleiderman
- Centre of Genomics and Policy, McGill University, Montreal, Quebec, Canada
| | - Emilia Niemiec
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| | - Barbara Prainsack
- Department of Political Science, University of Vienna, Austria; Department of Global Health & Social Medicine, King's College London, UK
| | - Lauren Farley
- Society and Ethics Research, Connecting Science, Wellcome Genome Campus, Cambridge, UK
| | - Paul Bevan
- Web Team, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Claire Steed
- Web Team, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - James Smith
- Web Team, Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Danya Vears
- Center for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Melbourne Law School, The University of Melbourne, Melbourne, Australia; Biomedical Ethics Research Group, Murdoch Children's Research Institute, Parkville, Australia
| | - Jerome Atutornu
- Society and Ethics Research, Connecting Science, Wellcome Genome Campus, Cambridge, UK; Faculty of Education, University of Cambridge, Cambridge, UK; School of Health Sciences, University of Suffolk, Ipswich, UK
| | - Heidi C Howard
- Society and Ethics Research, Connecting Science, Wellcome Genome Campus, Cambridge, UK; Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden
| | - Katherine I Morley
- Society and Ethics Research, Connecting Science, Wellcome Genome Campus, Cambridge, UK; Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK; Centre for Epidemiology and Biostatistics, Melbourne School of Global and Population Health, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Genome-Wide Association Studies of Coronary Artery Disease: Recent Progress and Challenges Ahead. Curr Atheroscler Rep 2018; 20:47. [DOI: 10.1007/s11883-018-0748-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Morgan TM. Genomic Screening: The Mutation and the Mustard Seed. THE JOURNAL OF LAW, MEDICINE & ETHICS : A JOURNAL OF THE AMERICAN SOCIETY OF LAW, MEDICINE & ETHICS 2018; 46:541-546. [PMID: 30146977 PMCID: PMC9547665 DOI: 10.1177/1073110518782963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Thomas M Morgan
- Thomas M. Morgan, M.D., F.A.C.M.G., is an Associate Professor of Pediatrics at Vanderbilt University School of Medicine
| |
Collapse
|