1
|
Bhavnani SK, Zhang W, Bao D, Raji M, Ajewole V, Hunter R, Kuo YF, Schmidt S, Pappadis MR, Smith E, Bokov A, Reistetter T, Visweswaran S, Downer B. Subtyping Social Determinants of Health in the "All of Us" Program: Network Analysis and Visualization Study. J Med Internet Res 2025; 27:e48775. [PMID: 39932771 PMCID: PMC11862773 DOI: 10.2196/48775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/06/2023] [Accepted: 05/13/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Social determinants of health (SDoH), such as financial resources and housing stability, account for between 30% and 55% of people's health outcomes. While many studies have identified strong associations between specific SDoH and health outcomes, little is known about how SDoH co-occur to form subtypes critical for designing targeted interventions. Such analysis has only now become possible through the All of Us program. OBJECTIVE This study aims to analyze the All of Us dataset for addressing two research questions: (1) What are the range of and responses to survey questions related to SDoH? and (2) How do SDoH co-occur to form subtypes, and what are their risks for adverse health outcomes? METHODS For question 1, an expert panel analyzed the range of and responses to SDoH questions across 6 surveys in the full All of Us dataset (N=372,397; version 6). For question 2, due to systematic missingness and uneven granularity of questions across the surveys, we selected all participants with valid and complete SDoH data and used inverse probability weighting to adjust their imbalance in demographics. Next, an expert panel grouped the SDoH questions into SDoH factors to enable more consistent granularity. To identify the subtypes, we used bipartite modularity maximization for identifying SDoH biclusters and measured their significance and replicability. Next, we measured their association with 3 outcomes (depression, delayed medical care, and emergency room visits in the last year). Finally, the expert panel inferred the subtype labels, potential mechanisms, and targeted interventions. RESULTS The question 1 analysis identified 110 SDoH questions across 4 surveys covering all 5 domains in Healthy People 2030. As the SDoH questions varied in granularity, they were categorized by an expert panel into 18 SDoH factors. The question 2 analysis (n=12,913; d=18) identified 4 biclusters with significant biclusteredness (Q=0.13; random-Q=0.11; z=7.5; P<.001) and significant replication (real Rand index=0.88; random Rand index=0.62; P<.001). Each subtype had significant associations with specific outcomes and had meaningful interpretations and potential targeted interventions. For example, the Socioeconomic barriers subtype included 6 SDoH factors (eg, not employed and food insecurity) and had a significantly higher odds ratio (4.2, 95% CI 3.5-5.1; P<.001) for depression when compared to other subtypes. The expert panel inferred implications of the results for designing interventions and health care policies based on SDoH subtypes. CONCLUSIONS This study identified SDoH subtypes that had statistically significant biclusteredness and replicability, each of which had significant associations with specific adverse health outcomes and with translational implications for targeted SDoH interventions and health care policies. However, the high degree of systematic missingness requires repeating the analysis as the data become more complete by using our generalizable and scalable machine learning code available on the All of Us workbench.
Collapse
Affiliation(s)
- Suresh K Bhavnani
- School of Public and Population Health, Department of Biostatistics & Data Science, University of Texas Medical Branch, Galveston, TX, United States
| | - Weibin Zhang
- School of Public and Population Health, Department of Biostatistics & Data Science, University of Texas Medical Branch, Galveston, TX, United States
| | - Daniel Bao
- Department of Radiology, Houston Methodist, Houston, TX, United States
| | - Mukaila Raji
- Department of Internal Medicine, Division of Geriatrics Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Veronica Ajewole
- College of Pharmacy and Health Sciences, Department of Pharmacy Practice, Texas Southern University, Houston, TX, United States
| | - Rodney Hunter
- College of Pharmacy and Health Sciences, Department of Pharmacy Practice, Texas Southern University, Houston, TX, United States
| | - Yong-Fang Kuo
- School of Public and Population Health, Department of Biostatistics & Data Science, University of Texas Medical Branch, Galveston, TX, United States
| | - Susanne Schmidt
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Monique R Pappadis
- School of Public and Population Health, Department of Population Health & Health Disparities, University of Texas Medical Branch, Galveston, TX, United States
| | - Elise Smith
- School of Public and Population Health, Department of Bioethics & Health Humanities, University of Texas Medical Branch, Galveston, TX, United States
| | - Alex Bokov
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Timothy Reistetter
- School of Health Professions, Department of Occupational Therapy, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Shyam Visweswaran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian Downer
- School of Public and Population Health, Department of Population Health & Health Disparities, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
2
|
Zhang K, Zhou HY, Baptista-Hon DT, Gao Y, Liu X, Oermann E, Xu S, Jin S, Zhang J, Sun Z, Yin Y, Razmi RM, Loupy A, Beck S, Qu J, Wu J. Concepts and applications of digital twins in healthcare and medicine. PATTERNS (NEW YORK, N.Y.) 2024; 5:101028. [PMID: 39233690 PMCID: PMC11368703 DOI: 10.1016/j.patter.2024.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The digital twin (DT) is a concept widely used in industry to create digital replicas of physical objects or systems. The dynamic, bi-directional link between the physical entity and its digital counterpart enables a real-time update of the digital entity. It can predict perturbations related to the physical object's function. The obvious applications of DTs in healthcare and medicine are extremely attractive prospects that have the potential to revolutionize patient diagnosis and treatment. However, challenges including technical obstacles, biological heterogeneity, and ethical considerations make it difficult to achieve the desired goal. Advances in multi-modal deep learning methods, embodied AI agents, and the metaverse may mitigate some difficulties. Here, we discuss the basic concepts underlying DTs, the requirements for implementing DTs in medicine, and their current and potential healthcare uses. We also provide our perspective on five hallmarks for a healthcare DT system to advance research in this field.
Collapse
Affiliation(s)
- Kang Zhang
- National Clinical Eye Research Center, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
- Institute for Clinical Data Science, Wenzhou Medical University, Wenzhou 325000, China
- Institute for AI in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
- Institute for Advanced Study on Eye Health and Diseases, Wenzhou Medical University, Wenzhou 325000, China
| | - Hong-Yu Zhou
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02138, USA
| | - Daniel T. Baptista-Hon
- Institute for AI in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
- School of Medicine, University of Dundee, DD1 9SY Dundee, UK
| | - Yuanxu Gao
- Department of Big Data and Biomedical AI, College of Future Technology, Peking University, Beijing 100000, China
| | - Xiaohong Liu
- Cancer Institute, University College London, WC1E 6BT London, UK
| | - Eric Oermann
- NYU Langone Medical Center, New York University, New York, NY 10016, USA
| | - Sheng Xu
- Department of Chemical Engineering and Nanoengineering, University of California San Diego, San Diego, CA 92093, USA
| | - Shengwei Jin
- Institute for Clinical Data Science, Wenzhou Medical University, Wenzhou 325000, China
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Jian Zhang
- National Clinical Eye Research Center, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhuo Sun
- Institute for Advanced Study on Eye Health and Diseases, Wenzhou Medical University, Wenzhou 325000, China
| | - Yun Yin
- Faculty of Business and Health Science Institute, City University of Macau, Macau 999078, China
| | | | - Alexandre Loupy
- Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, 75015 Paris, France
| | - Stephan Beck
- Cancer Institute, University College London, WC1E 6BT London, UK
| | - Jia Qu
- National Clinical Eye Research Center, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
- Institute for Clinical Data Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Joseph Wu
- Cardiovascular Research Institute, Stanford University, Standford, CA 94305, USA
| | - International Consortium of Digital Twins in Medicine
- National Clinical Eye Research Center, Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
- Institute for Clinical Data Science, Wenzhou Medical University, Wenzhou 325000, China
- Institute for AI in Medicine and Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02138, USA
- Department of Big Data and Biomedical AI, College of Future Technology, Peking University, Beijing 100000, China
- Cancer Institute, University College London, WC1E 6BT London, UK
- NYU Langone Medical Center, New York University, New York, NY 10016, USA
- Department of Chemical Engineering and Nanoengineering, University of California San Diego, San Diego, CA 92093, USA
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325000, China
- Institute for Advanced Study on Eye Health and Diseases, Wenzhou Medical University, Wenzhou 325000, China
- Faculty of Business and Health Science Institute, City University of Macau, Macau 999078, China
- Zoi Capital, New York, NY 10013, USA
- Université Paris Cité, INSERM U970 PARCC, Paris Institute for Transplantation and Organ Regeneration, 75015 Paris, France
- Cardiovascular Research Institute, Stanford University, Standford, CA 94305, USA
- School of Medicine, University of Dundee, DD1 9SY Dundee, UK
| |
Collapse
|
3
|
Astărăstoae V, Rogozea LM, Leaşu F, Ioan BG. Ethical Dilemmas of Using Artificial Intelligence in Medicine. Am J Ther 2024; 31:e388-e397. [PMID: 38662923 DOI: 10.1097/mjt.0000000000001693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
BACKGROUND Artificial intelligence (AI) is considered the fourth industrial revolution that will change the evolution of humanity technically and relationally. Although the term has been around since 1956, it has only recently become apparent that AI can revolutionize technologies and has many applications in the medical field. AREAS OF UNCERTAINTY The ethical dilemmas posed by the use of AI in medicine revolve around issues related to informed consent, respect for confidentiality, protection of personal data, and last but not least the accuracy of the information it uses. DATA SOURCES A literature search was conducted through PubMed, MEDLINE, Plus, Scopus, and Web of Science (2015-2022) using combinations of keywords, including: AI, future in medicine, and machine learning plus ethical dilemma. ETHICS AND THERAPEUTIC ADVANCES The ethical analysis of the issues raised by AI used in medicine must mainly address nonmaleficence and beneficence, both in correlation with patient safety risks, ability versus inability to detect correct information from inadequate or even incorrect information. The development of AI tools that can support medical practice can increase people's access to medical information, to obtain a second opinion, for example, but it is also a source of concern among health care professionals and especially bioethicists about how confidentiality is maintained and how to maintain cybersecurity. Another major risk may be related to the dehumanization of the medical act, given that, at least for now, empathy and compassion are accessible only to human beings. CONCLUSIONS AI has not yet managed to overcome certain limits, lacking moral subjectivity, empathy, the level of critical thinking is still insufficient, but no matter who will practice preventive or curative medicine in the next period, they will not be able to ignore AI, which under human control can be an important tool in medical practice.
Collapse
Affiliation(s)
- Vasile Astărăstoae
- Faculty of Medicine, Grigore T Popa University of Medicine & Pharmacy, Iasi, Romania; and
| | - Liliana M Rogozea
- Basic, Preventive and Clinical Sciences Department, Transilvania University, Brasov, Romania
| | - Florin Leaşu
- Basic, Preventive and Clinical Sciences Department, Transilvania University, Brasov, Romania
| | - Beatrice Gabriela Ioan
- Faculty of Medicine, Grigore T Popa University of Medicine & Pharmacy, Iasi, Romania; and
| |
Collapse
|
4
|
Medhi D, Kamidi SR, Mamatha Sree KP, Shaikh S, Rasheed S, Thengu Murichathil AH, Nazir Z. Artificial Intelligence and Its Role in Diagnosing Heart Failure: A Narrative Review. Cureus 2024; 16:e59661. [PMID: 38836155 PMCID: PMC11148729 DOI: 10.7759/cureus.59661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2024] [Indexed: 06/06/2024] Open
Abstract
Heart failure (HF) is prevalent globally. It is a dynamic disease with varying definitions and classifications due to multiple pathophysiologies and etiologies. The diagnosis, clinical staging, and treatment of HF become complex and subjective, impacting patient prognosis and mortality. Technological advancements, like artificial intelligence (AI), have been significant roleplays in medicine and are increasingly used in cardiovascular medicine to transform drug discovery, clinical care, risk prediction, diagnosis, and treatment. Medical and surgical interventions specific to HF patients rely significantly on early identification of HF. Hospitalization and treatment costs for HF are high, with readmissions increasing the burden. AI can help improve diagnostic accuracy by recognizing patterns and using them in multiple areas of HF management. AI has shown promise in offering early detection and precise diagnoses with the help of ECG analysis, advanced cardiac imaging, leveraging biomarkers, and cardiopulmonary stress testing. However, its challenges include data access, model interpretability, ethical concerns, and generalizability across diverse populations. Despite these ongoing efforts to refine AI models, it suggests a promising future for HF diagnosis. After applying exclusion and inclusion criteria, we searched for data available on PubMed, Google Scholar, and the Cochrane Library and found 150 relevant papers. This review focuses on AI's significant contribution to HF diagnosis in recent years, drastically altering HF treatment and outcomes.
Collapse
Affiliation(s)
- Diptiman Medhi
- Internal Medicine, Gauhati Medical College and Hospital, Guwahati, Guwahati, IND
| | | | | | - Shifa Shaikh
- Cardiology, SMBT Institute of Medical Sciences and Research Centre, Igatpuri, IND
| | - Shanida Rasheed
- Emergency Medicine, East Sussex Healthcare NHS Trust, Eastbourne, GBR
| | | | - Zahra Nazir
- Internal Medicine, Combined Military Hospital, Quetta, Quetta, PAK
| |
Collapse
|
5
|
Ullah M, Hamayun S, Wahab A, Khan SU, Rehman MU, Haq ZU, Rehman KU, Ullah A, Mehreen A, Awan UA, Qayum M, Naeem M. Smart Technologies used as Smart Tools in the Management of Cardiovascular Disease and their Future Perspective. Curr Probl Cardiol 2023; 48:101922. [PMID: 37437703 DOI: 10.1016/j.cpcardiol.2023.101922] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. The advent of smart technologies has significantly impacted the management of CVD, offering innovative tools and solutions to improve patient outcomes. Smart technologies have revolutionized and transformed the management of CVD, providing innovative tools to improve patient care, enhance diagnostics, and enable more personalized treatment approaches. These smart tools encompass a wide range of technologies, including wearable devices, mobile applications,3D printing technologies, artificial intelligence (AI), remote monitoring systems, and electronic health records (EHR). They offer numerous advantages, such as real-time monitoring, early detection of abnormalities, remote patient management, and data-driven decision-making. However, they also come with certain limitations and challenges, including data privacy concerns, technical issues, and the need for regulatory frameworks. In this review, despite these challenges, the future of smart technologies in CVD management looks promising, with advancements in AI algorithms, telemedicine platforms, and bio fabrication techniques opening new possibilities for personalized and efficient care. In this article, we also explore the role of smart technologies in CVD management, their advantages and disadvantages, limitations, current applications, and their smart future.
Collapse
Affiliation(s)
- Muneeb Ullah
- Department of Pharmacy, Kohat University of Science and technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485 Punjab, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science and technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan
| | - Mahboob Ur Rehman
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, 04485 Punjab, Pakistan
| | - Zia Ul Haq
- Department of Public Health, Institute of Public Health Sciences, Khyber Medical University, Peshawar 25120, Pakistan
| | - Khalil Ur Rehman
- Department of Chemistry, Institute of chemical Sciences, Gomel University, Dera Ismail Khan, KPK, Pakistan
| | - Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Aqsa Mehreen
- Department of Biological Sciences, National University of Medical Sciences (NUMS) Rawalpindi, Punjab, Pakistan
| | - Uzma A Awan
- Department of Biological Sciences, National University of Medical Sciences (NUMS) Rawalpindi, Punjab, Pakistan
| | - Mughal Qayum
- Department of Pharmacy, Kohat University of Science and technology (KUST), Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS) Rawalpindi, Punjab, Pakistan.
| |
Collapse
|
6
|
Bhavnani SK, Zhang W, Bao D, Raji M, Ajewole V, Hunter R, Kuo YF, Schmidt S, Pappadis MR, Smith E, Bokov A, Reistetter T, Visweswaran S, Downer B. Subtyping Social Determinants of Health in All of Us: Network Analysis and Visualization Approach. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.27.23285125. [PMID: 37636340 PMCID: PMC10459353 DOI: 10.1101/2023.01.27.23285125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Background Social determinants of health (SDoH), such as financial resources and housing stability, account for between 30-55% of people's health outcomes. While many studies have identified strong associations among specific SDoH and health outcomes, most people experience multiple SDoH that impact their daily lives. Analysis of this complexity requires the integration of personal, clinical, social, and environmental information from a large cohort of individuals that have been traditionally underrepresented in research, which is only recently being made available through the All of Us research program. However, little is known about the range and response of SDoH in All of Us, and how they co-occur to form subtypes, which are critical for designing targeted interventions. Objective To address two research questions: (1) What is the range and response to survey questions related to SDoH in the All of Us dataset? (2) How do SDoH co-occur to form subtypes, and what are their risk for adverse health outcomes? Methods For Question-1, an expert panel analyzed the range of SDoH questions across the surveys with respect to the 5 domains in Healthy People 2030 (HP-30), and analyzed their responses across the full All of Us data (n=372,397, V6). For Question-2, we used the following steps: (1) due to the missingness across the surveys, selected all participants with valid and complete SDoH data, and used inverse probability weighting to adjust their imbalance in demographics compared to the full data; (2) an expert panel grouped the SDoH questions into SDoH factors for enabling a more consistent granularity; (3) used bipartite modularity maximization to identify SDoH biclusters, their significance, and their replicability; (4) measured the association of each bicluster to three outcomes (depression, delayed medical care, emergency room visits in the last year) using multiple data types (surveys, electronic health records, and zip codes mapped to Medicaid expansion states); and (5) the expert panel inferred the subtype labels, potential mechanisms that precipitate adverse health outcomes, and interventions to prevent them. Results For Question-1, we identified 110 SDoH questions across 4 surveys, which covered all 5 domains in HP-30. However, the results also revealed a large degree of missingness in survey responses (1.76%-84.56%), with later surveys having significantly fewer responses compared to earlier ones, and significant differences in race, ethnicity, and age of participants of those that completed the surveys with SDoH questions, compared to those in the full All of Us dataset. Furthermore, as the SDoH questions varied in granularity, they were categorized by an expert panel into 18 SDoH factors. For Question-2, the subtype analysis (n=12,913, d=18) identified 4 biclusters with significant biclusteredness (Q=0.13, random-Q=0.11, z=7.5, P<0.001), and significant replication (Real-RI=0.88, Random-RI=0.62, P<.001). Furthermore, there were statistically significant associations between specific subtypes and the outcomes, and with Medicaid expansion, each with meaningful interpretations and potential targeted interventions. For example, the subtype Socioeconomic Barriers included the SDoH factors not employed, food insecurity, housing insecurity, low income, low literacy, and low educational attainment, and had a significantly higher odds ratio (OR=4.2, CI=3.5-5.1, P-corr<.001) for depression, when compared to the subtype Sociocultural Barriers. Individuals that match this subtype profile could be screened early for depression and referred to social services for addressing combinations of SDoH such as housing insecurity and low income. Finally, the identified subtypes spanned one or more HP-30 domains revealing the difference between the current knowledge-based SDoH domains, and the data-driven subtypes. Conclusions The results revealed that the SDoH subtypes not only had statistically significant clustering and replicability, but also had significant associations with critical adverse health outcomes, which had translational implications for designing targeted SDoH interventions, decision-support systems to alert clinicians of potential risks, and for public policies. Furthermore, these SDoH subtypes spanned multiple SDoH domains defined by HP-30 revealing the complexity of SDoH in the real-world, and aligning with influential SDoH conceptual models such as by Dahlgren-Whitehead. However, the high-degree of missingness warrants repeating the analysis as the data becomes more complete. Consequently we designed our machine learning code to be generalizable and scalable, and made it available on the All of Us workbench, which can be used to periodically rerun the analysis as the dataset grows for analyzing subtypes related to SDoH, and beyond.
Collapse
Affiliation(s)
- Suresh K. Bhavnani
- School of Public and Population Health, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Weibin Zhang
- School of Public and Population Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniel Bao
- School of Public and Population Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Mukaila Raji
- Division of Geriatric Medicine, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Veronica Ajewole
- College of Pharmacy and Health Sciences, Texas Southern University, TX, USA
| | - Rodney Hunter
- College of Pharmacy and Health Sciences, Texas Southern University, TX, USA
| | - Yong-Fang Kuo
- School of Public and Population Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Susanne Schmidt
- Department of Population Health Sciences, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Monique R. Pappadis
- School of Public and Population Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Elise Smith
- School of Public and Population Health, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Alex Bokov
- Department of Population Health Sciences, Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Timothy Reistetter
- School of Health Professions, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shyam Visweswaran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
- Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian Downer
- School of Public and Population Health, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
7
|
Alkhodari M, Xiong Z, Khandoker AH, Hadjileontiadis LJ, Leeson P, Lapidaire W. The role of artificial intelligence in hypertensive disorders of pregnancy: towards personalized healthcare. Expert Rev Cardiovasc Ther 2023; 21:531-543. [PMID: 37300317 DOI: 10.1080/14779072.2023.2223978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Guidelines advise ongoing follow-up of patients after hypertensive disorders of pregnancy (HDP) to assess cardiovascular risk and manage future patient-specific pregnancy conditions. However, there are limited tools available to monitor patients, with those available tending to be simple risk assessments that lack personalization. A promising approach could be the emerging artificial intelligence (AI)-based techniques, developed from big patient datasets to provide personalized recommendations for preventive advice. AREAS COVERED In this narrative review, we discuss the impact of integrating AI and big data analysis for personalized cardiovascular care, focusing on the management of HDP. EXPERT OPINION The pathophysiological response of women to pregnancy varies, and deeper insight into each response can be gained through a deeper analysis of the medical history of pregnant women based on clinical records and imaging data. Further research is required to be able to implement AI for clinical cases using multi-modality and multi-organ assessment, and this could expand both knowledge on pregnancy-related disorders and personalized treatment planning.
Collapse
Affiliation(s)
- Mohanad Alkhodari
- Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Healthcare Engineering Innovation Center (HEIC), Department of Biomedical Engineering, Khalifa University of Science and Tehcnology, Abu Dhabi, UAE
| | - Zhaohan Xiong
- Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ahsan H Khandoker
- Healthcare Engineering Innovation Center (HEIC), Department of Biomedical Engineering, Khalifa University of Science and Tehcnology, Abu Dhabi, UAE
| | - Leontios J Hadjileontiadis
- Healthcare Engineering Innovation Center (HEIC), Department of Biomedical Engineering, Khalifa University of Science and Tehcnology, Abu Dhabi, UAE
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paul Leeson
- Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Winok Lapidaire
- Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Lovis C, Zhang W, Visweswaran S, Raji M, Kuo YF. A Framework for Modeling and Interpreting Patient Subgroups Applied to Hospital Readmission: Visual Analytical Approach. JMIR Med Inform 2022; 10:e37239. [PMID: 35537203 PMCID: PMC9773032 DOI: 10.2196/37239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 05/02/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND A primary goal of precision medicine is to identify patient subgroups and infer their underlying disease processes with the aim of designing targeted interventions. Although several studies have identified patient subgroups, there is a considerable gap between the identification of patient subgroups and their modeling and interpretation for clinical applications. OBJECTIVE This study aimed to develop and evaluate a novel analytical framework for modeling and interpreting patient subgroups (MIPS) using a 3-step modeling approach: visual analytical modeling to automatically identify patient subgroups and their co-occurring comorbidities and determine their statistical significance and clinical interpretability; classification modeling to classify patients into subgroups and measure its accuracy; and prediction modeling to predict a patient's risk of an adverse outcome and compare its accuracy with and without patient subgroup information. METHODS The MIPS framework was developed using bipartite networks to identify patient subgroups based on frequently co-occurring high-risk comorbidities, multinomial logistic regression to classify patients into subgroups, and hierarchical logistic regression to predict the risk of an adverse outcome using subgroup membership compared with standard logistic regression without subgroup membership. The MIPS framework was evaluated for 3 hospital readmission conditions: chronic obstructive pulmonary disease (COPD), congestive heart failure (CHF), and total hip arthroplasty/total knee arthroplasty (THA/TKA) (COPD: n=29,016; CHF: n=51,550; THA/TKA: n=16,498). For each condition, we extracted cases defined as patients readmitted within 30 days of hospital discharge. Controls were defined as patients not readmitted within 90 days of discharge, matched by age, sex, race, and Medicaid eligibility. RESULTS In each condition, the visual analytical model identified patient subgroups that were statistically significant (Q=0.17, 0.17, 0.31; P<.001, <.001, <.05), significantly replicated (Rand Index=0.92, 0.94, 0.89; P<.001, <.001, <.01), and clinically meaningful to clinicians. In each condition, the classification model had high accuracy in classifying patients into subgroups (mean accuracy=99.6%, 99.34%, 99.86%). In 2 conditions (COPD and THA/TKA), the hierarchical prediction model had a small but statistically significant improvement in discriminating between readmitted and not readmitted patients as measured by net reclassification improvement (0.059, 0.11) but not as measured by the C-statistic or integrated discrimination improvement. CONCLUSIONS Although the visual analytical models identified statistically and clinically significant patient subgroups, the results pinpoint the need to analyze subgroups at different levels of granularity for improving the interpretability of intra- and intercluster associations. The high accuracy of the classification models reflects the strong separation of patient subgroups, despite the size and density of the data sets. Finally, the small improvement in predictive accuracy suggests that comorbidities alone were not strong predictors of hospital readmission, and the need for more sophisticated subgroup modeling methods. Such advances could improve the interpretability and predictive accuracy of patient subgroup models for reducing the risk of hospital readmission, and beyond.
Collapse
Affiliation(s)
| | - Weibin Zhang
- School of Public and Population Health, University of Texas Medical Branch, Galveston, TX, United States
| | - Shyam Visweswaran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mukaila Raji
- Division of Geriatric Medicine, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Yong-Fang Kuo
- School of Public and Population Health, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
9
|
Earl CC, Soslow JH, Markham LW, Goergen CJ. Myocardial strain imaging in Duchenne muscular dystrophy. Front Cardiovasc Med 2022; 9:1031205. [PMID: 36505382 PMCID: PMC9727102 DOI: 10.3389/fcvm.2022.1031205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cardiomyopathy (CM) is the leading cause of death for individuals with Duchenne muscular dystrophy (DMD). While DMD CM progresses rapidly and fatally for some in teenage years, others can live relatively symptom-free into their thirties or forties. Because CM progression is variable, there is a critical need for biomarkers to detect early onset and rapid progression. Despite recent advances in imaging and analysis, there are still no reliable methods to detect the onset or progression rate of DMD CM. Cardiac strain imaging is a promising technique that has proven valuable in DMD CM assessment, though much more work has been done in adult CM patients. In this review, we address the role of strain imaging in DMD, the mechanical and functional parameters used for clinical assessment, and discuss the gaps where emerging imaging techniques could help better characterize CM progression in DMD. Prominent among these emerging techniques are strain assessment from 3D imaging and development of deep learning algorithms for automated strain assessment. Improved techniques in tracking the progression of CM may help to bridge a crucial gap in optimizing clinical treatment for this devastating disease and pave the way for future research and innovation through the definition of robust imaging biomarkers and clinical trial endpoints.
Collapse
Affiliation(s)
- Conner C. Earl
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jonathan H. Soslow
- Division of Pediatric Cardiology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Larry W. Markham
- Division of Pediatric Cardiology, Riley Children's Hospital, Indiana University Health, Indianapolis, IN, United States
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
10
|
Karatzia L, Aung N, Aksentijevic D. Artificial intelligence in cardiology: Hope for the future and power for the present. Front Cardiovasc Med 2022; 9:945726. [PMID: 36312266 PMCID: PMC9608631 DOI: 10.3389/fcvm.2022.945726] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular disease (CVD) is the principal cause of mortality and morbidity globally. With the pressures for improved care and translation of the latest medical advances and knowledge to an actionable plan, clinical decision-making for cardiologists is challenging. Artificial Intelligence (AI) is a field in computer science that studies the design of intelligent agents which take the best feasible action in a situation. It incorporates the use of computational algorithms which simulate and perform tasks that traditionally require human intelligence such as problem solving and learning. Whilst medicine is arguably the last to apply AI in its everyday routine, cardiology is at the forefront of AI revolution in the medical field. The development of AI methods for accurate prediction of CVD outcomes, non-invasive diagnosis of coronary artery disease (CAD), detection of malignant arrythmias through wearables, and diagnosis, treatment strategies and prediction of outcomes for heart failure (HF) patients, demonstrates the potential of AI in future cardiology. With the advancements of AI, Internet of Things (IoT) and the promotion of precision medicine, the future of cardiology will be heavily based on these innovative digital technologies. Despite this, ethical dilemmas regarding the implementation of AI technologies in real-world are still unaddressed.
Collapse
Affiliation(s)
- Loucia Karatzia
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nay Aung
- Centre for Advanced Cardiovascular Imaging, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom,National Institute for Health and Care Research (NIHR) Barts Biomedical Research Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Dunja Aksentijevic
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom,*Correspondence: Dunja Aksentijevic,
| |
Collapse
|
11
|
Health digital twins as tools for precision medicine: Considerations for computation, implementation, and regulation. NPJ Digit Med 2022; 5:150. [PMID: 36138125 PMCID: PMC9500019 DOI: 10.1038/s41746-022-00694-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Health digital twins are defined as virtual representations (“digital twin”) of patients (“physical twin”) that are generated from multimodal patient data, population data, and real-time updates on patient and environmental variables. With appropriate use, HDTs can model random perturbations on the digital twin to gain insight into the expected behavior of the physical twin—offering groundbreaking applications in precision medicine, clinical trials, and public health. Main considerations for translating HDT research into clinical practice include computational requirements, clinical implementation, as well as data governance, and product oversight.
Collapse
|
12
|
Coorey G, Figtree GA, Fletcher DF, Snelson VJ, Vernon ST, Winlaw D, Grieve SM, McEwan A, Yang JYH, Qian P, O'Brien K, Orchard J, Kim J, Patel S, Redfern J. The health digital twin to tackle cardiovascular disease-a review of an emerging interdisciplinary field. NPJ Digit Med 2022; 5:126. [PMID: 36028526 PMCID: PMC9418270 DOI: 10.1038/s41746-022-00640-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Potential benefits of precision medicine in cardiovascular disease (CVD) include more accurate phenotyping of individual patients with the same condition or presentation, using multiple clinical, imaging, molecular and other variables to guide diagnosis and treatment. An approach to realising this potential is the digital twin concept, whereby a virtual representation of a patient is constructed and receives real-time updates of a range of data variables in order to predict disease and optimise treatment selection for the real-life patient. We explored the term digital twin, its defining concepts, the challenges as an emerging field, and potentially important applications in CVD. A mapping review was undertaken using a systematic search of peer-reviewed literature. Industry-based participants and patent applications were identified through web-based sources. Searches of Compendex, EMBASE, Medline, ProQuest and Scopus databases yielded 88 papers related to cardiovascular conditions (28%, n = 25), non-cardiovascular conditions (41%, n = 36), and general aspects of the health digital twin (31%, n = 27). Fifteen companies with a commercial interest in health digital twin or simulation modelling had products focused on CVD. The patent search identified 18 applications from 11 applicants, of which 73% were companies and 27% were universities. Three applicants had cardiac-related inventions. For CVD, digital twin research within industry and academia is recent, interdisciplinary, and established globally. Overall, the applications were numerical simulation models, although precursor models exist for the real-time cyber-physical system characteristic of a true digital twin. Implementation challenges include ethical constraints and clinical barriers to the adoption of decision tools derived from artificial intelligence systems.
Collapse
Affiliation(s)
- Genevieve Coorey
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia.
- The George Institute for Global Health, Sydney, NSW, Australia.
| | - Gemma A Figtree
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
| | - David F Fletcher
- University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW, Australia
| | - Victoria J Snelson
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia
- University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia
| | - Stephen Thomas Vernon
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
- Department of Cardiology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - David Winlaw
- Cincinnati Children's Hospital Medical Cente, Cincinnati, OH, USA
| | - Stuart M Grieve
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia
- University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia
| | - Alistair McEwan
- The University of Sydney, School of Biomedical Engineering, Sydney, NSW, Australia
| | - Jean Yee Hwa Yang
- University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia
| | - Pierre Qian
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia
- Westmead Applied Research Centre, Westmead Hospital, Sydney, NSW, Australia
| | - Kieran O'Brien
- Siemens Healthcare Pty Ltd; and Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - Jessica Orchard
- University of Sydney, Charles Perkins Centre, Sydney, NSW, Australia
| | - Jinman Kim
- University of Sydney, School of Computer Science, Sydney, NSW, Australia
| | - Sanjay Patel
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Heart Research Institute, Sydney, NSW, Australia
| | - Julie Redfern
- University of Sydney, Faculty of Medicine and Health, Sydney, NSW, Australia
| |
Collapse
|
13
|
Frost EK, Bosward R, Aquino YSJ, Braunack-Mayer A, Carter SM. Public views on ethical issues in healthcare artificial intelligence: protocol for a scoping review. Syst Rev 2022; 11:142. [PMID: 35841073 PMCID: PMC9288036 DOI: 10.1186/s13643-022-02012-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, innovations in artificial intelligence (AI) have led to the development of new healthcare AI (HCAI) technologies. Whilst some of these technologies show promise for improving the patient experience, ethicists have warned that AI can introduce and exacerbate harms and wrongs in healthcare. It is important that HCAI reflects the values that are important to people. However, involving patients and publics in research about AI ethics remains challenging due to relatively limited awareness of HCAI technologies. This scoping review aims to map how the existing literature on publics' views on HCAI addresses key issues in AI ethics and governance. METHODS We developed a search query to conduct a comprehensive search of PubMed, Scopus, Web of Science, CINAHL, and Academic Search Complete from January 2010 onwards. We will include primary research studies which document publics' or patients' views on machine learning HCAI technologies. A coding framework has been designed and will be used capture qualitative and quantitative data from the articles. Two reviewers will code a proportion of the included articles and any discrepancies will be discussed amongst the team, with changes made to the coding framework accordingly. Final results will be reported quantitatively and qualitatively, examining how each AI ethics issue has been addressed by the included studies. DISCUSSION Consulting publics and patients about the ethics of HCAI technologies and innovations can offer important insights to those seeking to implement HCAI ethically and legitimately. This review will explore how ethical issues are addressed in literature examining publics' and patients' views on HCAI, with the aim of determining the extent to which publics' views on HCAI ethics have been addressed in existing research. This has the potential to support the development of implementation processes and regulation for HCAI that incorporates publics' values and perspectives.
Collapse
Affiliation(s)
- Emma Kellie Frost
- Australian Centre for Health Engagement, Evidence and Values, School of Health and Society, Faculty of the Arts, Social Sciences, and Humanities, University of Wollongong, Northfields Ave, Wollongong, NSW 2522 Australia
| | - Rebecca Bosward
- Australian Centre for Health Engagement, Evidence and Values, School of Health and Society, Faculty of the Arts, Social Sciences, and Humanities, University of Wollongong, Northfields Ave, Wollongong, NSW 2522 Australia
| | - Yves Saint James Aquino
- Australian Centre for Health Engagement, Evidence and Values, School of Health and Society, Faculty of the Arts, Social Sciences, and Humanities, University of Wollongong, Northfields Ave, Wollongong, NSW 2522 Australia
| | - Annette Braunack-Mayer
- Australian Centre for Health Engagement, Evidence and Values, School of Health and Society, Faculty of the Arts, Social Sciences, and Humanities, University of Wollongong, Northfields Ave, Wollongong, NSW 2522 Australia
| | - Stacy M. Carter
- Australian Centre for Health Engagement, Evidence and Values, School of Health and Society, Faculty of the Arts, Social Sciences, and Humanities, University of Wollongong, Northfields Ave, Wollongong, NSW 2522 Australia
| |
Collapse
|
14
|
Lu H, Yao Y, Wang L, Yan J, Tu S, Xie Y, He W. Research Progress of Machine Learning and Deep Learning in Intelligent Diagnosis of the Coronary Atherosclerotic Heart Disease. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3016532. [PMID: 35516452 PMCID: PMC9064517 DOI: 10.1155/2022/3016532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022]
Abstract
The coronary atherosclerotic heart disease is a common cardiovascular disease with high morbidity, disability, and societal burden. Early, precise, and comprehensive diagnosis of the coronary atherosclerotic heart disease is of great significance. The rise of artificial intelligence technologies, represented by machine learning and deep learning, provides new methods to address the above issues. In recent years, artificial intelligence has achieved an extraordinary progress in multiple aspects of coronary atherosclerotic heart disease diagnosis, including the construction of intelligent diagnostic models based on artificial intelligence algorithms, applications of artificial intelligence algorithms in coronary angiography, coronary CT angiography, intravascular imaging, cardiac magnetic resonance, and functional parameters. This paper presents a comprehensive review of the technical background and current state of research on the application of artificial intelligence in the diagnosis of the coronary atherosclerotic heart disease and analyzes recent challenges and perspectives in this field.
Collapse
Affiliation(s)
- Haoxuan Lu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yudong Yao
- Research Institute of Medical and Biological Engineering, Ningbo University, Ningbo 315211, China
| | - Li Wang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Jianing Yan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Shuangshuang Tu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yanqing Xie
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Wenming He
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| |
Collapse
|
15
|
Nam S, Kim D, Jung W, Zhu Y. Understanding the Research Landscape of Deep Learning in Biomedical Science: Scientometric Analysis. J Med Internet Res 2022; 24:e28114. [PMID: 35451980 PMCID: PMC9077503 DOI: 10.2196/28114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/30/2021] [Accepted: 02/20/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Advances in biomedical research using deep learning techniques have generated a large volume of related literature. However, there is a lack of scientometric studies that provide a bird's-eye view of them. This absence has led to a partial and fragmented understanding of the field and its progress. OBJECTIVE This study aimed to gain a quantitative and qualitative understanding of the scientific domain by analyzing diverse bibliographic entities that represent the research landscape from multiple perspectives and levels of granularity. METHODS We searched and retrieved 978 deep learning studies in biomedicine from the PubMed database. A scientometric analysis was performed by analyzing the metadata, content of influential works, and cited references. RESULTS In the process, we identified the current leading fields, major research topics and techniques, knowledge diffusion, and research collaboration. There was a predominant focus on applying deep learning, especially convolutional neural networks, to radiology and medical imaging, whereas a few studies focused on protein or genome analysis. Radiology and medical imaging also appeared to be the most significant knowledge sources and an important field in knowledge diffusion, followed by computer science and electrical engineering. A coauthorship analysis revealed various collaborations among engineering-oriented and biomedicine-oriented clusters of disciplines. CONCLUSIONS This study investigated the landscape of deep learning research in biomedicine and confirmed its interdisciplinary nature. Although it has been successful, we believe that there is a need for diverse applications in certain areas to further boost the contributions of deep learning in addressing biomedical research problems. We expect the results of this study to help researchers and communities better align their present and future work.
Collapse
Affiliation(s)
- Seojin Nam
- Department of Library and Information Science, Sungkyunkwan University, Seoul, Republic of Korea
| | - Donghun Kim
- Department of Library and Information Science, Sungkyunkwan University, Seoul, Republic of Korea
| | - Woojin Jung
- Department of Library and Information Science, Sungkyunkwan University, Seoul, Republic of Korea
| | - Yongjun Zhu
- Department of Library and Information Science, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Martinez DSL, Noseworthy PA, Akbilgic O, Herrmann J, Ruddy KJ, Hamid A, Maddula R, Singh A, Davis R, Gunturkun F, Jefferies JL, Brown SA. Artificial intelligence opportunities in cardio-oncology: Overview with spotlight on electrocardiography. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2022; 15:100129. [PMID: 35721662 PMCID: PMC9202996 DOI: 10.1016/j.ahjo.2022.100129] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 01/21/2023]
Abstract
Cardiovascular disease is a leading cause of death among cancer survivors, second only to cancer recurrence or development of new tumors. Cardio-oncology has therefore emerged as a relatively new specialty focused on prevention and management of cardiovascular consequences of cancer therapies. Yet challenges remain regarding precision and accuracy with predicting individuals at highest risk for cardiotoxicity. Barriers such as access to care also limit screening and early diagnosis to improve prognosis. Thus, developing innovative approaches for prediction and early detection of cardiovascular illness in this population is critical. In this review, we provide an overview of the present state of machine learning applications in cardio-oncology. We begin by outlining some factors that should be considered while utilizing machine learning algorithms. We then examine research in which machine learning has been applied to improve prediction of cardiac dysfunction in cancer survivors. We also highlight the use of artificial intelligence (AI) in conjunction with electrocardiogram (ECG) to predict cardiac malfunction and also atrial fibrillation (AF), and we discuss the potential role of wearables. Additionally, the article summarizes future prospects and critical takeaways for the application of machine learning in cardio-oncology. This study is the first in a series on artificial intelligence in cardio-oncology, and complements our manuscript on echocardiography and other forms of imaging relevant to cancer survivors cared for in cardiology clinical practice.
Collapse
Affiliation(s)
- Daniel Sierra-Lara Martinez
- Coronary Care Unit, National Institute of Cardiology/Instituto Nacional de Cardiologia, Ciudad de Mexico, Mexico
| | | | - Oguz Akbilgic
- Department of Health Informatics and Data Science, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, USA
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Wake Forest, NC, USA
| | - Joerg Herrmann
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Ashima Singh
- Institute of Health and Equity, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert Davis
- Center for Biomedical Informatics, University of Tennessee Health Sciences Center, USA
| | - Fatma Gunturkun
- Center for Biomedical Informatics, University of Tennessee Health Sciences Center, USA
| | - John L. Jefferies
- Division of Cardiovascular Diseases, University of Tennessee Health Sciences Center, USA
- Department of Epidemiology, St. Jude Children's Research Hospital, USA
| | - Sherry-Ann Brown
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
- Cardio-Oncology Program, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
17
|
Qin C, Hu W, Wang X, Ma X. Application of Artificial Intelligence in Diagnosis of Craniopharyngioma. Front Neurol 2022; 12:752119. [PMID: 35069406 PMCID: PMC8770750 DOI: 10.3389/fneur.2021.752119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
Craniopharyngioma is a congenital brain tumor with clinical characteristics of hypothalamic-pituitary dysfunction, increased intracranial pressure, and visual field disorder, among other injuries. Its clinical diagnosis mainly depends on radiological examinations (such as Computed Tomography, Magnetic Resonance Imaging). However, assessing numerous radiological images manually is a challenging task, and the experience of doctors has a great influence on the diagnosis result. The development of artificial intelligence has brought about a great transformation in the clinical diagnosis of craniopharyngioma. This study reviewed the application of artificial intelligence technology in the clinical diagnosis of craniopharyngioma from the aspects of differential classification, prediction of tissue invasion and gene mutation, prognosis prediction, and so on. Based on the reviews, the technical route of intelligent diagnosis based on the traditional machine learning model and deep learning model were further proposed. Additionally, in terms of the limitations and possibilities of the development of artificial intelligence in craniopharyngioma diagnosis, this study discussed the attentions required in future research, including few-shot learning, imbalanced data set, semi-supervised models, and multi-omics fusion.
Collapse
Affiliation(s)
- Caijie Qin
- Institute of Information Engineering, Sanming University, Sanming, China
| | - Wenxing Hu
- University of New South Wales, Sydney, NSW, Australia
| | - Xinsheng Wang
- School of Information Science and Engineering, Harbin Institute of Technology at Weihai, Weihai, China
| | - Xibo Ma
- CBSR & NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Coorey G, Figtree GA, Fletcher DF, Redfern J. The health digital twin: advancing precision cardiovascular medicine. Nat Rev Cardiol 2021; 18:803-804. [PMID: 34642446 DOI: 10.1038/s41569-021-00630-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Genevieve Coorey
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- The George Institute for Global Health, Sydney, New South Wales, Australia
| | - Gemma A Figtree
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - David F Fletcher
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Julie Redfern
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.
- The George Institute for Global Health, Sydney, New South Wales, Australia.
| |
Collapse
|
19
|
Cheng X, Manandhar I, Aryal S, Joe B. Application of Artificial Intelligence in Cardiovascular Medicine. Compr Physiol 2021; 11:2455-2466. [PMID: 34558666 DOI: 10.1002/cphy.c200034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The advent of advances in machine learning (ML)-based techniques has popularized wide applications of artificial intelligence (AI) in various fields ranging from robotics to medicine. In recent years, there has been a surge in the application of AI to research in cardiovascular medicine, which is largely driven by the availability of large-scale clinical and multi-omics datasets. Such applications are providing a new perspective for a better understanding of cardiovascular disease (CVD), which could be used to develop novel diagnostic and therapeutic strategies. For example, studies have shown that ML has a substantial potential for early diagnosis of different types of CVD, prediction of adverse disease outcomes such as heart failure, and development of newer and personalized treatments. In this article, we provide an overview and discuss the current status of a wide range of AI applications, including machine learning, reinforcement learning, and deep learning, in cardiovascular medicine. © 2021 American Physiological Society. Compr Physiol 11:1-12, 2021.
Collapse
Affiliation(s)
- Xi Cheng
- Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Ishan Manandhar
- Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Sachin Aryal
- Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Bina Joe
- Bioinformatics & Artificial Intelligence Laboratory, Center for Hypertension and Precision Medicine, Program in Physiological Genomics, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
20
|
Gahungu N, Shariar A, Playford D, Judkins C, Gabbay E. Transfer learning artificial intelligence for automated detection of atrial fibrillation in patients undergoing evaluation for suspected obstructive sleep apnoea: a feasibility study. Sleep Med 2021; 85:166-171. [PMID: 34340198 DOI: 10.1016/j.sleep.2021.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Individuals with obstructive sleep apnoea (OSA) experience a higher burden of atrial fibrillation (AF) than the general population, and many cases of AF remain undetected. We tested the feasibility of an artificial intelligence (AI) approach to opportunistic detection of AF from single-lead electrocardiograms (ECGs) which are routinely recorded during in-laboratory polysomnographic sleep studies. METHODS Using transfer learning, an existing ECG AI model was applied to 1839 single-lead ECG traces recorded during in-laboratory sleep studies without any training of the algorithm. Manual review of all traces was performed by two trained clinicians who were blinded to each other's review. Discrepancies between the two investigators were resolved by two cardiologists who were also unaware of each other's scoring. The diagnostic accuracy of the AI algorithm was calculated against the results of the manual ECG review which were considered gold standard. RESULTS Manual review identified AF in 144 of the 1839 single-lead ECGs (7.8%). The AI detected all cases of manually confirmed AF (sensitivity = 100%, 95% CI: 97.5-100.0). The AI model misclassified many ECGs with artefacts as AF, resulting in a specificity of 76.0 (95% CI: 73.9-78.0), and an overall diagnostic accuracy of 77.9% (95% CI: 75.9%-97.8%). CONCLUSION Transfer learning AI, without additional training, can be successfully applied to disparate ECG signals, with excellent negative predictive values, and can exclude AF among patients undergoing evaluation for suspected OSA. Further signal-specific training is likely to improve the AI's specificity and decrease the need for manual verification.
Collapse
Affiliation(s)
- Nestor Gahungu
- School of Medicine, The University of Notre Dame Australia, 21 Henry St., Fremantle, WA, 6160, Australia; Department of Medicine, Royal Perth Hospital, 197 Wellington Street, Perth, WA, 6000, Australia.
| | - Afsin Shariar
- Department of Medicine, Royal Perth Hospital, 197 Wellington Street, Perth, WA, 6000, Australia
| | - David Playford
- School of Medicine, The University of Notre Dame Australia, 21 Henry St., Fremantle, WA, 6160, Australia
| | - Christopher Judkins
- School of Medicine, The University of Notre Dame Australia, 21 Henry St., Fremantle, WA, 6160, Australia; Department of Cardiology, Mount Hospital, 150 Mounts Bay Rd, Perth, WA, 6000, Australia
| | - Eli Gabbay
- School of Medicine, The University of Notre Dame Australia, 21 Henry St., Fremantle, WA, 6160, Australia; Bendat Respiratory Research and Development Fund, SJOG Subiaco, WA, 6008, Australia
| |
Collapse
|
21
|
Taking the leap between analytical chemistry and artificial intelligence: A tutorial review. Anal Chim Acta 2021; 1161:338403. [DOI: 10.1016/j.aca.2021.338403] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/01/2023]
|
22
|
Mathur P, Srivastava S, Xu X, Mehta JL. Artificial Intelligence, Machine Learning, and Cardiovascular Disease. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2020; 14:1179546820927404. [PMID: 32952403 PMCID: PMC7485162 DOI: 10.1177/1179546820927404] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
Artificial intelligence (AI)-based applications have found widespread
applications in many fields of science, technology, and medicine. The use of
enhanced computing power of machines in clinical medicine and diagnostics has
been under exploration since the 1960s. More recently, with the advent of
advances in computing, algorithms enabling machine learning, especially deep
learning networks that mimic the human brain in function, there has been renewed
interest to use them in clinical medicine. In cardiovascular medicine, AI-based
systems have found new applications in cardiovascular imaging, cardiovascular
risk prediction, and newer drug targets. This article aims to describe different
AI applications including machine learning and deep learning and their
applications in cardiovascular medicine. AI-based applications have enhanced our
understanding of different phenotypes of heart failure and congenital heart
disease. These applications have led to newer treatment strategies for different
types of cardiovascular diseases, newer approach to cardiovascular drug therapy
and postmarketing survey of prescription drugs. However, there are several
challenges in the clinical use of AI-based applications and interpretation of
the results including data privacy, poorly selected/outdated data, selection
bias, and unintentional continuance of historical biases/stereotypes in the data
which can lead to erroneous conclusions. Still, AI is a transformative
technology and has immense potential in health care.
Collapse
Affiliation(s)
- Pankaj Mathur
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shweta Srivastava
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Xiaowei Xu
- Department of Information Science, University of Arkansas at Little Rock, Little Rock, AR USA
| | - Jawahar L Mehta
- Division of Cardiology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
23
|
Artificial Intelligence Applications to Improve Risk Prediction Tools in Electrophysiology. CURRENT CARDIOVASCULAR RISK REPORTS 2020. [DOI: 10.1007/s12170-020-00649-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Carter RE, Attia ZI, Geske JR, Conners AL, Whaley DH, Hunt KN, O'Connor MK, Rhodes DJ, Hruska CB. Classification of Background Parenchymal Uptake on Molecular Breast Imaging Using a Convolutional Neural Network. JCO Clin Cancer Inform 2020; 3:1-11. [PMID: 30807208 DOI: 10.1200/cci.18.00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Background parenchymal uptake (BPU), which describes the level of radiotracer uptake in normal fibroglandular tissue on molecular breast imaging (MBI), has been identified as a breast cancer risk factor. Our objective was to develop and validate a deep learning model using image convolution to automatically categorize BPU on MBI. METHODS MBI examinations obtained for clinical and research purposes from 2004 to 2015 were reviewed to classify the BPU pattern using a standardized five-category scale. Two expert radiologists provided interpretations that were used as the reference standard for modeling. The modeling consisted of training and validating a convolutional neural network to predict BPU. Model performance was summarized in data reserved to test the performance of the algorithm at the per-image and per-breast levels. RESULTS Training was performed on 24,639 images from 3,133 unique patients. The model performance on the withheld testing data (6,172 images; 786 patients) was evaluated. Using direct matching on the predicted classification resulted in an accuracy of 69.4% (95% CI, 67.4% to 71.3%), and if prediction within one category was considered, accuracy increased to 96.0% (95% CI, 95.2% to 96.7%). When considering the breast-level prediction of BPU, the accuracy remained strong, with 70.3% (95% CI, 68.0% to 72.6%) and 96.2% (95% CI, 95.3% to 97.2%) for the direct match and allowance for one category, respectively. CONCLUSION BPU provided a robust target for training a convolutional neural network. A validated computer algorithm will allow for objective, reproducible encoding of BPU to foster its integration into risk-stratification algorithms.
Collapse
|
25
|
Hirose J, Wakata Y, Tagi M, Tamaki Y. The role of medical informatics in the management of medical information. THE JOURNAL OF MEDICAL INVESTIGATION 2020; 67:27-29. [PMID: 32378614 DOI: 10.2152/jmi.67.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
With progress in information and communication technology, medical information has been converted to digital formats and stored and managed using computer systems. The construction, management, and operation of medical information systems and regional medical liaison systems are the main components of the clinical tasks of medical informatics departments. Research using medical information accumulated in these systems is also a task for medical informatics department. Recently, medical real-world data (RWD) accumulated in medical information systems has become a focus not only for primary use but also for secondary uses of medical information. However, there are many problems, such as standardization, collection, cleaning, and analysis of them. The internet of things and artificial intelligence are also being applied in the collection and analysis of RWD and in resolving the above problems. Using these new technologies, progress in medical care and clinical research is about to enter a new era. J. Med. Invest. 67 : 27-29, February, 2020.
Collapse
Affiliation(s)
- Jun Hirose
- Department of Medical Informatics, Tokushima University Graduate School of Biomedical Sciences, Tokushima Japan.,Medical IT Center, Tokushima University Hospital, Tokushima Japan
| | - Yoshifumi Wakata
- Medical IT Center, Tokushima University Hospital, Tokushima Japan
| | - Masato Tagi
- Department of Medical Informatics, Tokushima University Graduate School of Biomedical Sciences, Tokushima Japan.,Medical IT Center, Tokushima University Hospital, Tokushima Japan
| | - Yu Tamaki
- Medical IT Center, Tokushima University Hospital, Tokushima Japan
| |
Collapse
|
26
|
Coronary artery calcium score quantification using a deep-learning algorithm. Clin Radiol 2020; 75:237.e11-237.e16. [DOI: 10.1016/j.crad.2019.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022]
|
27
|
Gahungu N, Trueick R, Bhat S, Sengupta PP, Dwivedi G. Current Challenges and Recent Updates in Artificial Intelligence and Echocardiography. CURRENT CARDIOVASCULAR IMAGING REPORTS 2020. [DOI: 10.1007/s12410-020-9529-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Big Data in Cardiovascular Disease. CURR EPIDEMIOL REP 2019. [DOI: 10.1007/s40471-019-00209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Nguyen AH, Marsh P, Schmiess-Heine L, Burke PJ, Lee A, Lee J, Cao H. Cardiac tissue engineering: state-of-the-art methods and outlook. J Biol Eng 2019; 13:57. [PMID: 31297148 PMCID: PMC6599291 DOI: 10.1186/s13036-019-0185-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to assess the state-of-the-art fabrication methods, advances in genome editing, and the use of machine learning to shape the prospective growth in cardiac tissue engineering. Those interdisciplinary emerging innovations would move forward basic research in this field and their clinical applications. The long-entrenched challenges in this field could be addressed by novel 3-dimensional (3D) scaffold substrates for cardiomyocyte (CM) growth and maturation. Stem cell-based therapy through genome editing techniques can repair gene mutation, control better maturation of CMs or even reveal its molecular clock. Finally, machine learning and precision control for improvements of the construct fabrication process and optimization in tissue-specific clonal selections with an outlook of cardiac tissue engineering are also presented.
Collapse
Affiliation(s)
- Anh H. Nguyen
- Electrical and Computer Engineering Department, University of Alberta, Edmonton, Alberta Canada
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
| | - Paul Marsh
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
| | - Lauren Schmiess-Heine
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
| | - Peter J. Burke
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
- Biomedical Engineering Department, University of California Irvine, Irvine, CA USA
- Chemical Engineering and Materials Science Department, University of California Irvine, Irvine, CA USA
| | - Abraham Lee
- Biomedical Engineering Department, University of California Irvine, Irvine, CA USA
- Mechanical and Aerospace Engineering Department, University of California Irvine, Irvine, CA USA
| | - Juhyun Lee
- Bioengineering Department, University of Texas at Arlington, Arlington, TX USA
| | - Hung Cao
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
- Biomedical Engineering Department, University of California Irvine, Irvine, CA USA
- Henry Samueli School of Engineering, University of California, Irvine, USA
| |
Collapse
|