1
|
K SSNSP, Taksande A. A Review on the Impact of Bedside Echocardiography in Managing Critically Ill Children in the Pediatric Intensive Care Unit. Cureus 2024; 16:e69769. [PMID: 39429262 PMCID: PMC11490843 DOI: 10.7759/cureus.69769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Over the past three decades, a variety of non-invasive hemodynamic devices have been developed. However, none of the existing methods, such as transthoracic echocardiography, esophageal Doppler ultrasound, plethysmography, thoracic impedancemetry, or sublingual capnography, fully embody the ideal characteristics of reliability, reproducibility, rapid response, ease of use, comprehensive safety, affordability, and continuous monitoring capacity. Among these, echocardiography stands out as a particularly effective approach, meeting many of these criteria due to its widespread availability, relative ease of use, and critical role in detecting anatomical abnormalities and basic changes in myocardial function. It is frequently used in pediatric intensive care units to assess the structure and function of the heart muscle. The effectiveness of echocardiography in pediatric critical care is also constrained by the need for high-quality imaging and accurate interpretation. Currently, there is a notable lack of literature on the application of echocardiography in pediatric critical care. This study seeks to evaluate the existing scientific evidence regarding the effectiveness of echocardiography as a tool for monitoring hemodynamics in pediatric critical care settings.
Collapse
Affiliation(s)
- Sri Sita Naga Sai Priya K
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Insititute of Higher Education and Research, Wardha, IND
| | - Amar Taksande
- Pediatrics, Jawaharlal Nehru Medical College, Datta Meghe Insititute of Higher Education and Research, Wardha, IND
| |
Collapse
|
2
|
Douflé G, Dragoi L, Morales Castro D, Sato K, Donker DW, Aissaoui N, Fan E, Schaubroeck H, Price S, Fraser JF, Combes A. Head-to-toe bedside ultrasound for adult patients on extracorporeal membrane oxygenation. Intensive Care Med 2024; 50:632-645. [PMID: 38598123 DOI: 10.1007/s00134-024-07333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/20/2024] [Indexed: 04/11/2024]
Abstract
Bedside ultrasound represents a well-suited diagnostic and monitoring tool for patients on extracorporeal membrane oxygenation (ECMO) who may be too unstable for transport to other hospital areas for diagnostic tests. The role of ultrasound, however, starts even before ECMO initiation. Every patient considered for ECMO should have a thorough ultrasonographic assessment of cardiac and valvular function, as well as vascular anatomy without delaying ECMO cannulation. The role of pre-ECMO ultrasound is to confirm the indication for ECMO, identify clinical situations for which ECMO is not indicated, rule out contraindications, and inform the choice of ECMO configuration. During ECMO cannulation, the use of vascular and cardiac ultrasound reduces the risk of complications and ensures adequate cannula positioning. Ultrasound remains key for monitoring during ECMO support and troubleshooting ECMO complications. For instance, ultrasound is helpful in the assessment of drainage insufficiency, hemodynamic instability, biventricular function, persistent hypoxemia, and recirculation on venovenous (VV) ECMO. Lung ultrasound can be used to monitor signs of recovery on VV ECMO. Brain ultrasound provides valuable diagnostic and prognostic information on ECMO. Echocardiography is essential in the assessment of readiness for liberation from venoarterial (VA) ECMO. Lastly, post decannulation ultrasound mainly aims at identifying post decannulation thrombosis and vascular complications. This review will cover the role of head-to-toe ultrasound for the management of adult ECMO patients from decision to initiate ECMO to the post decannulation phase.
Collapse
Affiliation(s)
- Ghislaine Douflé
- Interdepartmental Division of Critical Care Medicine of the University of Toronto, Toronto, ON, Canada.
- Department of Anesthesia and Pain Management, Toronto General Hospital, 585 University Avenue, Toronto, ON, M5G 2N2, Canada.
| | - Laura Dragoi
- Interdepartmental Division of Critical Care Medicine of the University of Toronto, Toronto, ON, Canada
| | - Diana Morales Castro
- Interdepartmental Division of Critical Care Medicine of the University of Toronto, Toronto, ON, Canada
| | - Kei Sato
- Critical Care Research Group, The Prince Charles Hospital, Level 3 Clinical Sciences Building, Chermside, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Dirk W Donker
- Intensive Care Center, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
- Cardiovascular and Respiratory Physiology, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Nadia Aissaoui
- Service de Médecine intensive-réanimation, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine of the University of Toronto, Toronto, ON, Canada
| | - Hannah Schaubroeck
- Department of Intensive Care Medicine, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Susanna Price
- Departments of Cardiology and Intensive Care, Royal Brompton & Harefield NHS Foundation Trust, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Level 3 Clinical Sciences Building, Chermside, QLD, 4032, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Alain Combes
- Service de Médecine Intensive-Réanimation, Institut de Cardiologie, APHP Sorbonne Université, Hôpital Pitié Salpêtrière, Paris, France
- Institute of Cardiometabolism and Nutrition, Sorbonne Université, INSERM, UMRS_1166-ICAN, Paris, France
| |
Collapse
|
3
|
Bianzina S, Singh Y, Iacobelli R, Amodeo A, Guner Y, Di Nardo M. Use of point-of-care ultrasound (POCUS) to monitor neonatal and pediatric extracorporeal life support. Eur J Pediatr 2024; 183:1509-1524. [PMID: 38236403 DOI: 10.1007/s00431-023-05386-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Extracorporeal membrane oxygenation (ECMO) is an invasive life support technique that requires a blood pump, an artificial membrane lung, and vascular cannulae to drain de-oxygenated blood, remove carbon dioxide, oxygenate, and return it to the patient. ECMO is generally used to provide advanced and prolonged cardiopulmonary support in patients with refractory acute cardiac and/or respiratory failure. After its first use in 1975 to manage a severe form of meconium aspiration syndrome with resultant pulmonary hypertension, the following years were dominated by the use of ECMO to manage neonatal respiratory failure and limited to a few centers across the world. In the 1990s, evidence for neonatal respiratory ECMO support increased; however, the number of cases began to decline with the use of newer pharmacologic therapies (e.g., inhaled nitric oxide, exogenous surfactant, and high-frequency oscillatory ventilation). On the contrary, pediatric ECMO sustained steady growth. Combined advances in ECMO technology and bedside medical management have improved general outcomes, although ECMO-related complications remain challenging. Point-of-care ultrasound (POCUS) is an essential tool to monitor all phases of neonatal and pediatric ECMO: evaluation of ECMO candidacy, ultrasound-guided ECMO cannulation, daily evaluation of heart and lung function and brain perfusion, detection and management of major complications, and weaning from ECMO support. Conclusion: Based on these considerations and on the lack of specific guidelines for the use of POCUS in the neonatal and pediatric ECMO setting, the aim of this paper is to provide a systematic overview for the application of POCUS during ECMO support in these populations. What is Known: • Extracorporeal membrane oxygenation (ECMO) provides advanced cardiopulmonary support for patients with refractory acute cardiac and/or respiratory failure and requires appropriate monitoring. • Point-of-care ultrasound (POCUS) is an accessible and adaptable tool to assess neonatal and pediatric cardiac and/or respiratory failure at bedside. What is New: • In this review, we discussed the use of POCUS to monitor and manage at bedside neonatal and pediatric patients supported with ECMO. • We explored the potential use of POCUS during all phases of ECMO support: pre-ECMO assessment, ECMO candidacy evaluation, daily evaluation of heart, lung and brain function, detection and troubleshooting of major complications, and weaning from ECMO support.
Collapse
Affiliation(s)
- Stefania Bianzina
- Pediatric Anaesthesia and Intensive Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Yogen Singh
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Roberta Iacobelli
- Area of Cardiac Surgery, Cardiology, Heart and Lung Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Amodeo
- Heart Failure, Transplantation and Cardio-Respiratory Mechanical Assistance Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Yigit Guner
- Pediatric Surgery, Children's Hospital of Orange County and University of California Irvine, Orange, CA, USA
| | - Matteo Di Nardo
- Pediatric Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
4
|
Pergola V, Cameli M, Mattesi G, Mushtaq S, D’Andrea A, Guaricci AI, Pastore MC, Amato F, Dellino CM, Motta R, Perazzolo Marra M, Dellegrottaglie S, Pedrinelli R, Iliceto S, Nodari S, Perrone Filardi P, Pontone G, on behalf of the Cluster Imaging of Italian Society of Cardiology (SIC). Multimodality Imaging in Advanced Heart Failure for Diagnosis, Management and Follow-Up: A Comprehensive Review. J Clin Med 2023; 12:7641. [PMID: 38137711 PMCID: PMC10743799 DOI: 10.3390/jcm12247641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Advanced heart failure (AHF) presents a complex landscape with challenges spanning diagnosis, management, and patient outcomes. In response, the integration of multimodality imaging techniques has emerged as a pivotal approach. This comprehensive review delves into the profound significance of these imaging strategies within AHF scenarios. Multimodality imaging, encompassing echocardiography, cardiac magnetic resonance imaging (CMR), nuclear imaging and cardiac computed tomography (CCT), stands as a cornerstone in the care of patients with both short- and long-term mechanical support devices. These techniques facilitate precise device selection, placement, and vigilant monitoring, ensuring patient safety and optimal device functionality. In the context of orthotopic cardiac transplant (OTC), the role of multimodality imaging remains indispensable. Echocardiography offers invaluable insights into allograft function and potential complications. Advanced methods, like speckle tracking echocardiography (STE), empower the detection of acute cell rejection. Nuclear imaging, CMR and CCT further enhance diagnostic precision, especially concerning allograft rejection and cardiac allograft vasculopathy. This comprehensive imaging approach goes beyond diagnosis, shaping treatment strategies and risk assessment. By harmonizing diverse imaging modalities, clinicians gain a panoramic understanding of each patient's unique condition, facilitating well-informed decisions. The aim is to highlight the novelty and unique aspects of recently published papers in the field. Thus, this review underscores the irreplaceable role of multimodality imaging in elevating patient outcomes, refining treatment precision, and propelling advancements in the evolving landscape of advanced heart failure management.
Collapse
Affiliation(s)
- Valeria Pergola
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Matteo Cameli
- Department of Cardiovascular Diseases, University of Sienna, 53100 Siena, Italy; (M.C.); (M.C.P.)
| | - Giulia Mattesi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (C.M.D.); (G.P.)
| | | | - Andrea Igoren Guaricci
- University Cardiology Unit, Interdisciplinary Department of Medicine, Policlinic University Hospital, 70121 Bari, Italy;
| | - Maria Concetta Pastore
- Department of Cardiovascular Diseases, University of Sienna, 53100 Siena, Italy; (M.C.); (M.C.P.)
| | - Filippo Amato
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Carlo Maria Dellino
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (C.M.D.); (G.P.)
| | - Raffaella Motta
- Unit of Radiology, Department of Medicine, Medical School, University of Padua, 35122 Padua, Italy;
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Santo Dellegrottaglie
- Division of Cardiology, Ospedale Medico-Chirurgico Accreditato Villa dei Fiori, 80011 Acerra, Italy;
| | - Roberto Pedrinelli
- Cardiac, Thoracic and Vascular Department, University of Pisa, 56126 Pisa, Italy;
| | - Sabino Iliceto
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, Via Giustiniani 2, 35128 Padova, Italy; (G.M.); (F.A.); (M.P.M.); (S.I.)
| | - Savina Nodari
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Institute of Cardiology, University of Brescia, 25123 Brescia, Italy;
| | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, Federico II University of Naples, 80138 Naples, Italy;
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.M.); (C.M.D.); (G.P.)
- Department of Biomedical, Surgical and Sciences, University of Milan, 20122 Milan, Italy
| | | |
Collapse
|