1
|
Dynamic Co-Evolution of Cancer Cells and Cancer-Associated Fibroblasts: Role in Right- and Left-Sided Colon Cancer Progression and Its Clinical Relevance. BIOLOGY 2022; 11:biology11071014. [PMID: 36101394 PMCID: PMC9312176 DOI: 10.3390/biology11071014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary The versatile crosstalk between cancer cells and cancer-associated fibroblasts (CAFs) of the tumour microenvironment (TME) drives colorectal carcinogenesis and heterogeneity. Colorectal cancer (CRC) can be classified by the anatomical sites from which the cancer arises, either from the right or left colon. Although the cancer cell–CAF interaction is being widely studied, its role in the progression of cancer in the right and left colon and cancer heterogeneity are still yet to be elucidated. Further insight into the complex interaction between different cellular components in the cancer niche, their evolutionary process and their influence on cancer progression would propel the discovery of effective targeted CRC therapy. Abstract Cancer is a result of a dynamic evolutionary process. It is composed of cancer cells and the tumour microenvironment (TME). One of the major cellular constituents of TME, cancer-associated fibroblasts (CAFs) are known to interact with cancer cells and promote colorectal carcinogenesis. The accumulation of these activated fibroblasts is linked to poor diagnosis in colorectal cancer (CRC) patients and recurrence of the disease. However, the interplay between cancer cells and CAFs is yet to be described, especially in relation to the sidedness of colorectal carcinogenesis. CRC, which is the third most commonly diagnosed cancer globally, can be classified according to the anatomical region from which they originate: left-sided (LCRC) and right-sided CRC (RCR). Both cancers differ in many aspects, including in histology, evolution, and molecular signatures. Despite occurring at lower frequency, RCRC is often associated with worse diagnosis compared to LCRC. The differences in molecular profiles between RCRC and LCRC also influence the mode of treatment that can be used to specifically target these cancer entities. A better understanding of the cancer cell–CAF interplay and its association with RCRC and LRCR progression will provide better insight into potential translational aspects of targeted treatment for CRC.
Collapse
|
2
|
Tan ES, Fan W, Knepper TC, Schell MJ, Sahin IH, Fleming JB, Xie H. Prognostic and Predictive Value of PIK3CA Mutations in Metastatic Colorectal Cancer. Target Oncol 2022; 17:483-492. [PMID: 35767139 DOI: 10.1007/s11523-022-00898-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Comprehensive genomic profiling is used to guide the management of metastatic colorectal cancer (mCRC); however, the role of PIK3CA mutations, present in up to 20% of mCRCs, is unclear. OBJECTIVE This study aimed to evaluate the association of PIK3CA mutations with other common mutations in mCRC and determine the prognostic and predictive value of PIK3CA mutations. PATIENTS AND METHODS A retrospective chart review was performed on patients in the Moffitt Clinical Genomic Database with mCRC. A meta-analysis was performed to further evaluate the predictive value of PIK3CA mutations to the response to anti-epidermal growth factor receptor (EGFR) therapy. RESULTS Among 639 patients, PIK3CA was positively correlated with KRAS mutation (r = 0.11, p = 0.006) and negatively correlated with TP53 mutation (r = - 0.18, p ≤ 0.001) and ERBB2 amplification (r = - 0.08, p = 0.046). The median overall survival (OS) of patients with PIK3CA-mutant mCRC (n = 49) was 35.5 (95% confidence interval [CI] 18.7-48.1) months vs. 55.3 (95% CI 47.5-65.6) months for PIK3CA wild-type mCRC (n = 286) [p = 0.003]. This OS difference remained significant with exon 9 and exon 20 subset analyses. There was no significant difference in response rate between patients with PIK3CA wild-type (n = 97) versus mutant (n = 9) mCRC who received anti-EGFR therapy (43% vs. 56%, p = 0.61) and no significant difference in median progression-free survival (PFS) of 10.3 versus 7.2 months (p = 0.60). However, our meta-analysis of 12 studies, including ours, using a common effect model identified that PIK3CA mutations are associated with reduced response to anti-EGFR therapy, with a relative risk of 0.56 (95% CI 0.38-0.82). CONCLUSION Our study identified PIK3CA mutations as a poor prognostic factor, and our meta-analysis identified PIK3CA mutations as predictive of decreased response to anti-EGFR therapy in patients with mCRC.
Collapse
Affiliation(s)
- Elaine S Tan
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Wenyi Fan
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Todd C Knepper
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL, USA
| | - Michael J Schell
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Ibrahim H Sahin
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Hao Xie
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
3
|
Borakati A, Froghi F, Shetye A, Fusai GK, Davidson BR, Mirnezami R. Assessing the Impact of Primary Tumour Location on Survival After Resection of Colorectal Liver Metastases: A Propensity Weighted Retrospective Cohort Study. World J Surg 2022; 46:1734-1755. [PMID: 35325347 DOI: 10.1007/s00268-022-06514-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Right-sided colonic tumours appear to have poorer survival after resection of colorectal liver metastases, although this may be confounded by various factors including advanced stage and emergency presentation. METHODS Medical records of consecutive patients undergoing resection of colorectal liver metastases at a single centre from 2008 to 2015 were retrospectively reviewed. Cases were categorised by primary tumour location (right colon, left colon, rectum). Each primary location was weighted using propensity scores to balance covariates, including staging and mode of presentation. Cox regression was then applied to derive multivariable hazard ratios (HR) of survival after liver resection. Primary outcomes were 10-year overall survival (OS) and 5-year disease-free survival (DFS) after liver resection based on PTL. RESULTS 414 patients were included in the analysis. Left colonic tumours were significantly associated with higher rates of bilobar liver metastasis (36.2% vs. 20.1% and 30.1%) and larger maximum size of liver metastases compared with rectal and right-sided tumours, respectively. There was no difference in rates of extra-hepatic metastases, recurrence in the liver after resection or RAS, BRAF or p53 mutational status. After propensity weighting and Cox-regression, right-sided tumours were independently associated with significantly reduced 10 year OS (HR 1.56, 95% CI 1.03-2.36, p = 0.04) but not 5 year DFS (HR 1.36, 95% CI 0.89-2.08, p = 0.15). CONCLUSIONS Compared with left colonic and rectal tumours, right-sided colonic tumours are independently associated with inferior OS after resection of CRLM. This is despite higher rates of bilobar liver metastases and larger metastases with left-sided tumours.
Collapse
Affiliation(s)
- Aditya Borakati
- University Department of Surgery, Royal Free Hospital, Pond Street, London, NW3 2QG, UK.,Division of Surgery and Interventional Science, University College London, London, UK
| | - Farid Froghi
- University Department of Surgery, Royal Free Hospital, Pond Street, London, NW3 2QG, UK.,Division of Surgery and Interventional Science, University College London, London, UK
| | - Alysha Shetye
- University Department of Surgery, Royal Free Hospital, Pond Street, London, NW3 2QG, UK
| | - Giuseppe K Fusai
- University Department of Surgery, Royal Free Hospital, Pond Street, London, NW3 2QG, UK.,Division of Surgery and Interventional Science, University College London, London, UK
| | - Brian R Davidson
- University Department of Surgery, Royal Free Hospital, Pond Street, London, NW3 2QG, UK.,Division of Surgery and Interventional Science, University College London, London, UK
| | - Reza Mirnezami
- University Department of Surgery, Royal Free Hospital, Pond Street, London, NW3 2QG, UK.
| |
Collapse
|
4
|
Promsorn J, Chadbunchachai P, Somsap K, Paonariang K, Sa-ngaimwibool P, Apivatanasiri C, Lahoud RM, Harisinghani M. Imaging features associated with survival outcomes among colorectal cancer patients with and without KRAS mutation. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-020-00393-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Background
Mutations in Kirsten rat sarcoma proto-oncogene (KRAS) have been shown to be associated with advanced-stage colorectal cancer (CRC), negative disease outcomes, and poor response to treatment. The purpose of this study was to investigate which CT features are biomarkers for KRAS gene mutation and impact the survival outcomes of colorectal cancer patients.
Results
Of the 113 CRC patients included in the study, 46 had KRAS mutations (40.71%) and 67 had no mutations (59.29%). Regional lymph node necrosis was the only imaging feature significantly associated with KRAS mutation (P = 0.011). Higher T staging and liver, lung, and distant metastasis were prognostic factors for CRC (P = 0.014, P < 0.001, P = 0.022, P < 0.001, respectively). There were no significant differences in overall survival between patients with KRAS mutations and those without (P = 0.159). However, in patients with no KRAS mutation, those with CRC on the left side had a significantly higher rate of survival than those with CRC on the right (P = 0.005).
Conclusion
Regional lymph node necrosis may be an imaging biomarker of CRC with KRAS mutation, possibly indicating poor prognosis.
Collapse
|
5
|
Díez-Obrero V, Dampier CH, Moratalla-Navarro F, Devall M, Plummer SJ, Díez-Villanueva A, Peters U, Bien S, Huyghe JR, Kundaje A, Ibáñez-Sanz G, Guinó E, Obón-Santacana M, Carreras-Torres R, Casey G, Moreno V. Genetic Effects on Transcriptome Profiles in Colon Epithelium Provide Functional Insights for Genetic Risk Loci. Cell Mol Gastroenterol Hepatol 2021; 12:181-197. [PMID: 33601062 PMCID: PMC8102177 DOI: 10.1016/j.jcmgh.2021.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND & AIMS The association of genetic variation with tissue-specific gene expression and alternative splicing guides functional characterization of complex trait-associated loci and may suggest novel genes implicated in disease. Here, our aims were as follows: (1) to generate reference profiles of colon mucosa gene expression and alternative splicing and compare them across colon subsites (ascending, transverse, and descending), (2) to identify expression and splicing quantitative trait loci (QTLs), (3) to find traits for which identified QTLs contribute to single-nucleotide polymorphism (SNP)-based heritability, (4) to propose candidate effector genes, and (5) to provide a web-based visualization resource. METHODS We collected colonic mucosal biopsy specimens from 485 healthy adults and performed bulk RNA sequencing. We performed genome-wide SNP genotyping from blood leukocytes. Statistical approaches and bioinformatics software were used for QTL identification and downstream analyses. RESULTS We provided a complete quantification of gene expression and alternative splicing across colon subsites and described their differences. We identified thousands of expression and splicing QTLs and defined their enrichment at genome-wide regulatory regions. We found that part of the SNP-based heritability of diseases affecting colon tissue, such as colorectal cancer and inflammatory bowel disease, but also of diseases affecting other tissues, such as psychiatric conditions, can be explained by the identified QTLs. We provided candidate effector genes for multiple phenotypes. Finally, we provided the Colon Transcriptome Explorer web application. CONCLUSIONS We provide a large characterization of gene expression and splicing across colon subsites. Our findings provide greater etiologic insight into complex traits and diseases influenced by transcriptomic changes in colon tissue.
Collapse
Affiliation(s)
- Virginia Díez-Obrero
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Christopher H Dampier
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia; Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Ferran Moratalla-Navarro
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Matthew Devall
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Sarah J Plummer
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Anna Díez-Villanueva
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Ulrike Peters
- Epidemiology Department, University of Washington, Seattle, Washington; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephanie Bien
- Epidemiology Department, University of Washington, Seattle, Washington; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jeroen R Huyghe
- Epidemiology Department, University of Washington, Seattle, Washington; Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California
| | - Gemma Ibáñez-Sanz
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain; Gastroenterology Department, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Elisabeth Guinó
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Mireia Obón-Santacana
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Robert Carreras-Torres
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia.
| | - Víctor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology, L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology (ONCOBELL) Program, Bellvitge Biomedical Research Institute, Spain; Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|