1
|
Chen X, Li R, Hou X, Wang Y, Pan M, Kang N, Yuchi Y, Liao W, Liu X, Mao Z, Huo W, Wang C, Hou J. Mediation Effect of Platelet Traits on Associations of Central Obesity with Aging Biomarkers in Rural Adults of Henan, China. Nutrients 2022; 14:3597. [PMID: 36079858 PMCID: PMC9460072 DOI: 10.3390/nu14173597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To assess the associations of platelet traits and obesity indices with aging biomarkers (telomere length (TL) and mitochondrial DNA copy number (mtDNA-CN)). METHODS A cross-sectional study was performed among 5091 rural Chinese adults. Obesity indices (waist circumference (WC), waist-to-hip ratio (WHR) and waist-to-height ratio (WHtR)) and platelet traits (plateletcrit (PCT), platelet large cell ratio (P-LCR), mean platelet volume (MPV) and platelet distribution width (PDW)) were collected by physical examination. The aging biomarkers were determined by quantitative real-time polymerase chain reaction. Generalized linear regression models and mediation analysis were applied to explore the relationships between platelet traits, obesity indices, and aging biomarkers. RESULTS The mean age of the participants was 56 years (range: 18-79). Each one-unit increment in WC, WHR and WHtR were related to a 0.316 (95% confidence interval (CI): -0.437, -0.196), 0.323 (95% CI: -0.513, -0.134) and 0.277 (95% CI: -0.400, -0.153) decrease in relative TL; or a 0.102 (95% CI: -0.197, -0.007), 0.109 (95% CI: -0.258, -0.041) and 0.101 (95% CI: -0.199, -0.004) decrease in relative mtDNA-CN. The proportions of obesity indices with aging biomarkers mediated by platelet indices ranged from 2.85% to 10.10%. CONCLUSIONS Increased central obesity indices in relation to shortened relative TL or decreased mtDNA-CN were mediated by platelet traits, indicating that obesity in association with the accelerated aging process may be partially attributable to abnormal platelet activity.
Collapse
Affiliation(s)
- Xinwei Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyu Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuqin Wang
- Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Mingming Pan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Kang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yinghao Yuchi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Liao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Bianciardi G, Tanganelli I. Fractal analysis of circulating platelets in type 2 diabetic patients. Clin Hemorheol Microcirc 2015; 61:91-7. [DOI: 10.3233/ch-141910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- G. Bianciardi
- Department of Medical Biotechnology, Universitá di Siena, Via delle Scotte, Siena, Italy
| | - I. Tanganelli
- Department of Odontostomatology, Diabetology Section, Universitá di Siena, Viale Bracci, Siena, Italy
| |
Collapse
|
3
|
Bianciardi G, Aglianò M, Volpi N, Stefanutti C. Geometric complexity identifies platelet activation in familial hypercholesterolemic patients. Microsc Res Tech 2015; 78:519-22. [PMID: 25877374 DOI: 10.1002/jemt.22503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 12/11/2022]
Abstract
Familial hypercholesterolemia (FH), a genetic disease, is associated with a severe incidence of athero-thrombotic events, related, also, to platelet hyperreactivity. A plethora of methods have been proposed to identify those activated circulating platelets, none of these has proved really effective. We need efficient methods to identify the circulating platelet status in order to follow the patients after therapeutic procedures. We propose the use of computerized fractal analysis for an objective characterization of the complexity of circulating platelet shapes observed by means of transmission electron microscopy in order to characterize the in vivo hyperactivated platelets of familial hypercholesterolemic patients, distinguishing them from the in vivo resting platelets of healthy individuals. Platelet boundaries were extracted by means of automatically image analysis. Geometric complexity (fractal dimension, D) by box counting was automatically calculated. The platelet boundary observed by electron microscopy is fractal, the shape of the circulating platelets is more complex in FH (n = 6) than healthy subjects (n = 5, P < 0.01), with 100% correct classification in selected individuals. In vitro activated platelets from healthy subjects show an analogous increase of D. The observed high D in the platelet boundary in FH originates from the in vivo platelet activation. Computerized fractal analysis of platelet shape observed by transmission electron microscopy can provide accurate, quantitative data to study platelet activation in familial hypercholesterolemia and after administration of drugs or other therapeutic procedures.
Collapse
Affiliation(s)
- Giorgio Bianciardi
- Department of Medical Biotechnologies, Anatomia Patologica, University of Siena, Siena, Italy
| | - Margherita Aglianò
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Nila Volpi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Claudia Stefanutti
- Department of Molecular Medicine, University of Rome "Sapienza", Roma, Italy
| |
Collapse
|
4
|
Lannan KL, Sahler J, Kim N, Spinelli SL, Maggirwar SB, Garraud O, Cognasse F, Blumberg N, Phipps RP. Breaking the mold: transcription factors in the anucleate platelet and platelet-derived microparticles. Front Immunol 2015; 6:48. [PMID: 25762994 PMCID: PMC4327621 DOI: 10.3389/fimmu.2015.00048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/26/2015] [Indexed: 01/15/2023] Open
Abstract
Platelets are small anucleate blood cells derived from megakaryocytes. In addition to their pivotal roles in hemostasis, platelets are the smallest, yet most abundant, immune cells and regulate inflammation, immunity, and disease progression. Although platelets lack DNA, and thus no functional transcriptional activities, they are nonetheless rich sources of RNAs, possess an intact spliceosome, and are thus capable of synthesizing proteins. Previously, it was thought that platelet RNAs and translational machinery were remnants from the megakaryocyte. We now know that the initial description of platelets as "cellular fragments" is an antiquated notion, as mounting evidence suggests otherwise. Therefore, it is reasonable to hypothesize that platelet transcription factors are not vestigial remnants from megakaryocytes, but have important, if only partly understood functions. Proteins play multiple cellular roles to minimize energy expenditure for maximum cellular function; thus, the same can be expected for transcription factors. In fact, numerous transcription factors have non-genomic roles, both in platelets and in nucleated cells. Our lab and others have discovered the presence and non-genomic roles of transcription factors in platelets, such as the nuclear factor kappa β (NFκB) family of proteins and peroxisome proliferator-activated receptor gamma (PPARγ). In addition to numerous roles in regulating platelet activation, functional transcription factors can be transferred to vascular and immune cells through platelet microparticles. This method of transcellular delivery of key immune molecules may be a vital mechanism by which platelet transcription factors regulate inflammation and immunity. At the very least, platelets are an ideal model cell to dissect out the non-genomic roles of transcription factors in nucleated cells. There is abundant evidence to suggest that transcription factors in platelets play key roles in regulating inflammatory and hemostatic functions.
Collapse
Affiliation(s)
- Katie L Lannan
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Julie Sahler
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA ; Department of Biological and Environmental Engineering, Cornell University , Ithaca, NY , USA
| | - Nina Kim
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Sherry L Spinelli
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Olivier Garraud
- Faculté de Médecine, Université de Lyon , Saint-Etienne , France
| | - Fabrice Cognasse
- Faculté de Médecine, Université de Lyon , Saint-Etienne , France ; Etablissement Français du Sang Auvergne-Loire , Saint-Etienne , France
| | - Neil Blumberg
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| | - Richard P Phipps
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA ; Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA ; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry , Rochester, NY , USA
| |
Collapse
|
5
|
Viswanathan GN, Zaman AG. Cardiovascular disease in patients with type 2 diabetes mellitus: vulnerable plaques and vulnerable blood. Clin Med (Lond) 2012. [DOI: 10.7861/clinmedicine.12-6-s47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Smith JP, Haddad EV, Taylor MB, Oram D, Blakemore D, Chen Q, Boutaud O, Oates JA. Suboptimal inhibition of platelet cyclooxygenase-1 by aspirin in metabolic syndrome. Hypertension 2012; 59:719-25. [PMID: 22311905 DOI: 10.1161/hypertensionaha.111.181404] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interindividual variation in the ability of aspirin to inhibit platelet cyclooxygenase-1 (COX-1) could account for some on-treatment cardiovascular events. Here, we sought to determine whether there are clinical phenotypes that are associated with a suboptimal pharmacological effect of aspirin. In a prospective, 2-week study, we evaluated the effect of aspirin (81 mg) on platelet COX-1 in 135 patients with stable coronary artery disease by measuring serum thromboxane B(2) (sTxB(2)) as an indicator of inhibition of platelet COX-1. A nested randomized study compared enteric-coated with immediate-release formulations of aspirin. We found that sTxB(2) was systematically higher among the 83 patients with metabolic syndrome than among the 52 patients without (median: 4.0 versus 3.02 ng/mL; P=0.013). Twelve patients (14%) with metabolic syndrome, but none without metabolic syndrome, had sTxB(2) levels consistent with inadequate inhibition of COX (sTxB(2) ≥13 ng/mL). In linear regression models, metabolic syndrome (but none of its individual components) significantly associated with higher levels of log-transformed sTxB(2) (P=0.006). Higher levels of sTxB(2) associated with greater residual platelet function measured by aggregometry-based methods. Among the randomized subset, sTxB(2) levels were systematically higher among patients receiving enteric-coated aspirin. Last, urinary 11-dehydro thromboxane B(2) did not correlate with sTxB(2), suggesting that the former should not be used to quantitate aspirin's pharmacological effect on platelets. In conclusion, metabolic syndrome, which places patients at high risk for thrombotic cardiovascular events, strongly and uniquely associates with less effective inhibition of platelet COX-1 by aspirin.
Collapse
Affiliation(s)
- James P Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Russo I. The prothrombotic tendency in metabolic syndrome: focus on the potential mechanisms involved in impaired haemostasis and fibrinolytic balance. SCIENTIFICA 2012; 2012:525374. [PMID: 24278711 PMCID: PMC3820496 DOI: 10.6064/2012/525374] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/27/2012] [Indexed: 05/09/2023]
Abstract
The metabolic syndrome is a clinical disorder characterized by impairment of glucose metabolism, increased arterial blood pressure, and abdominal obesity. The presence of these clinical features exposes patients to a high risk of atherothrombotic cardiovascular events. The pathogenesis of atherothrombosis in the metabolic syndrome is multifactorial, requiring a close relationship among the main components of the metabolic syndrome, including insulin resistance, alterations of glycaemic and lipid pattern, haemodynamic impairment, and early appearance of endothelial dysfunction. Furthermore, haemostatic alterations involving coagulation balance, fibrinolysis, and platelet function play a relevant role both in the progression of the arterial wall damage and in acute vascular events. The mechanisms linking abdominal obesity with prothrombotic changes in the metabolic syndrome have been identified and partially elucidated on the basis of alterations of each haemostatic variable and defined through the evidence of peculiar dysfunctions in the endocrine activity of adipose tissue responsible of vascular impairment, prothrombotic tendency, and low-grade chronic inflammation. This paper will focus on the direct role of adipose tissue on prothrombotic tendency in patients affected by metabolic syndrome, with adipocytes being able to produce and/or release cytokines and adipokines which deeply influence haemostatic/fibrinolytic balance, platelet function, and proinflammatory state.
Collapse
Affiliation(s)
- Isabella Russo
- Internal Medicine and Metabolic Disease Unit, Department of Clinical and Biological Sciences of the Turin University, San Luigi Gonzaga Hospital, 10043 Orbassano, Italy
- *Isabella Russo:
| |
Collapse
|
8
|
The PPAR-Platelet Connection: Modulators of Inflammation and Potential Cardiovascular Effects. PPAR Res 2011; 2008:328172. [PMID: 18288284 PMCID: PMC2233896 DOI: 10.1155/2008/328172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 11/06/2007] [Indexed: 01/08/2023] Open
Abstract
Historically, platelets were viewed as simple anucleate cells responsible for initiating thrombosis and maintaining
hemostasis, but clearly they are also key mediators of inflammation and immune cell activation. An emerging body of
evidence links platelet function and thrombosis to vascular inflammation. peroxisome proliferator-activated receptors
(PPARs) play a major role in modulating inflammation and, interestingly, PPARs (PPARβ/δ and PPARγ) were recently
identified in platelets. Additionally, PPAR agonists attenuate platelet activation; an important discovery for two reasons.
First, activated platelets are formidable antagonists that initiate and prolong a cascade of events that contribute to
cardiovascular disease (CVD) progression. Dampening platelet release of proinflammatory mediators, including
CD40 ligand (CD40L, CD154), is essential to hinder this cascade. Second, understanding the biologic importance
of platelet PPARs and the mechanism(s) by which PPARs regulate platelet activation will be imperative in designing
therapeutic strategies lacking the deleterious or unwanted side effects of current treatment options.
Collapse
|
9
|
Anfossi G, Russo I, Trovati M. Platelet dysfunction in central obesity. Nutr Metab Cardiovasc Dis 2009; 19:440-449. [PMID: 19346117 DOI: 10.1016/j.numecd.2009.01.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 01/13/2009] [Accepted: 01/22/2009] [Indexed: 12/23/2022]
Abstract
Central obesity is a relevant risk factor for major cardiovascular events due to the atherosclerotic involvement of coronary, cerebral and lower limb arterial vessels. A major role in the increased cardiovascular risk is played by platelets, which show an increased activation and a reduced sensitivity to the physiological and pharmacological antiaggregating agents. This review focuses on platelet dysfunction in central obesity. The mechanisms involved are related to: i) the reduced sensitivity to insulin and other substances acting via intracellular cyclic nucleotides, such as nitrates and prostacyclin; ii) the altered intracellular ionic milieu with elevated cytosolic Ca(2+); and iii) the increased oxidative stress, which elicits isoprostane production from arachidonic acid. Therapeutic guidelines recommend a multifactorial prevention of cardiovascular disease including antiplatelet drugs in high risk patients, even though, at present, the protective effect of antiplatelet therapy in obese, insulin resistant subjects has not been evaluated by specific trials. Some reports, however, suggest a decreased sensitivity to the antiaggregating effects of both acetylsalicylic acid (aspirin) and thienopyridines in human obesity. Platelet defects may play a pivotal role in the reduced efficacy of antiplatelet therapy in obese subjects in the setting of cardiovascular prevention and acute coronary syndrome treatment. Thus, a specifically tailored antiaggregating therapy is likely necessary in obese, insulin resistant subjects, especially in the presence of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- G Anfossi
- Diabetes Unit, Department of Clinical and Biological Sciences of the Turin University, San Luigi Gonzaga Hospital, Orbassano I-10043, Turin, Italy
| | | | | |
Collapse
|
10
|
Abstract
Patients with diabetes mellitus (DM) have accelerated atherothrombotic disease of coronary, cerebral, leg, and other vessels. The major cause of death is cardiovascular, and the risk for a myocardial infarction (MI) in a patient with DM who has never had a MI is the same as a nondiabetic individual who has already had one. In this paper, we review the major reasons for a prothrombotic state in patients with DM: alterations in the intrinsic coagulation and fibrinolytic systems and many abnormalities of platelet function. Increased platelet thromboxane production as well as activation of platelet receptors for fibrinogen and or adenosine diphosphate (ADP) are often present, and can be treated with aspirin (acetylsalicylic acid) and/or receptor blockers. Review of the major primary prevention trials in DM indicates that a significantly reduced risk for MI or major cardiovascular events may be obtained by enteric-coated aspirin, 81-325 mg/day. There is emerging consensus that this is recommended strategy in adult (aged >30 years) patients with DM who are at high vascular risk. Surveys suggest that this includes virtually every patient with type 2 DM in the US, as well as many patients with complicated type 1 DM. These recommendations are also appropriate for secondary prevention. Data supporting the use of clopidogrel as an alternative drug in the case of aspirin allergy or other contraindications are reviewed. Evidence is presented in support of using aspirin plus clopidogrel in acute coronary syndromes (ACS), and a meta-analysis of six trials of platelet glycoprotein (GP) IIb/IIIa inhibitors and aspirin in diabetic patients with ACS establishes this regimen as an effective choice. Although bleeding episodes are more common with combined antiplatelet therapy for ACS than for aspirin alone, the benefit of a significant reduction in 30-day mortality appears to outweigh the risk of major bleeding. It is concluded that major advances in our understanding of the prothrombotic state in DM have been made. Evidence from controlled clinical trials supports the use of enteric-coated aspirin, 81-325 mg/day, as a primary and a secondary prevention strategy in adults with DM with high vascular risk. In ACS, combination therapy with aspirin plus clopidogrel or alternatively, aspirin plus a platelet GP IIb/IIIa inhibitor is supported by prospective trial data. These approaches should be added to the other multifactorial preventive strategies directed at lowering the risk for major vascular events in patients with DM.
Collapse
Affiliation(s)
- John A Colwell
- Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|