1
|
Ming W, Guo X, Zhang G, Liu Y, Wang Y, Zhang H, Liang H, Yang Y. Recent advances in the precision control strategy of artificial pancreas. Med Biol Eng Comput 2024; 62:1615-1638. [PMID: 38418768 DOI: 10.1007/s11517-024-03042-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024]
Abstract
The scientific diagnosis and treatment of patients with diabetes require frequent blood glucose testing and insulin delivery to normoglycemia. Therefore, an artificial pancreas with a continuous blood glucose (BG) monitoring function is an urgent research target in the medical industry. The problem of closed-loop algorithmic control of the BG with a time delay is a key and difficult issue that needs to be overcome in the development of an artificial pancreas. Firstly, the composition, structure, and control characteristics of the artificial pancreas are introduced. Subsequently, the research progress of artificial pancreas control algorithms is reviewed, and the characteristics, advantages, and disadvantages of proportional-integral-differential control, model predictive control, and artificial intelligence control are compared and analyzed to determine whether they are suitable for the practical application of the artificial pancreas. Additionally, key advancements in areas such as blood glucose data monitoring, adaptive models, wearable devices, and fully automated artificial pancreas systems are also reviewed. Finally, this review highlights that meal prediction, control safety, integration, streamlining the optimization of control algorithms, constant temperature preservation of insulin, and dual-hormone artificial pancreas are issues that require further attention in the future.
Collapse
Affiliation(s)
- Wuyi Ming
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, 450002, Zhengzhou, China
| | - Xudong Guo
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, 450002, Zhengzhou, China
| | - Guojun Zhang
- Guangdong HUST Industrial Technology Research Institute, 523808, Dongguan, China
| | - Yinxia Liu
- Prenatal Diagnosis Center of Dongguan Kanghua Hospital, 523808, Dongguan, China
| | - Yongxin Wang
- Zhengzhou Phray Technology Co., Ltd, 450019, Zhengzhou, China
| | - Hongmei Zhang
- Zhengzhou Phray Technology Co., Ltd, 450019, Zhengzhou, China
| | - Haofang Liang
- Zhengzhou Phray Technology Co., Ltd, 450019, Zhengzhou, China
| | - Yuan Yang
- Laboratory of Regenerative Medicine in Sports Science, School of Sports Science, South China Normal University, 510631, Guangzhou, China.
| |
Collapse
|
2
|
Hobbs N, Samadi S, Rashid M, Shahidehpour A, Askari MR, Park M, Quinn L, Cinar A. A physical activity-intensity driven glycemic model for type 1 diabetes. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107153. [PMID: 36183639 DOI: 10.1016/j.cmpb.2022.107153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 06/21/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE The glucose response to physical activity for a person with type 1 diabetes (T1D) depends upon the intensity and duration of the physical activity, plasma insulin concentrations, and the individual physical fitness level. To accurately model the glycemic response to physical activity, these factors must be considered. METHODS Several physiological models describing the glycemic response to physical activity are proposed by incorporating model terms proportional to the physical activity intensity and duration describing endogenous glucose production (EGP), glucose utilization, and glucose transfer from the plasma to tissues. Leveraging clinical data of T1D during physical activity, each model fit is assessed. RESULTS The proposed model with terms accommodating EGP, glucose transfer, and insulin-independent glucose utilization allow for an improved simulation of physical activity glycemic responses with the greatest reduction in model error (mean absolute percentage error: 16.11 ± 4.82 vs. 19.49 ± 5.87, p = 0.002). CONCLUSIONS The development of a physiologically plausible model with model terms representing each major contributor to glucose metabolism during physical activity can outperform traditional models with physical activity described through glucose utilization alone. This model accurately describes the relation of plasma insulin and physical activity intensity on glucose production and glucose utilization to generate the appropriately increasing, decreasing or stable glucose response for each physical activity condition. The proposed model will enable the in silico evaluation of automated insulin dosing algorithms designed to mitigate the effects of physical activity with the appropriate relationship between the reduction in basal insulin and the corresponding glycemic excursion.
Collapse
Affiliation(s)
- Nicole Hobbs
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Sediqeh Samadi
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Perlstein Hall, Suite 127, 10 W. 33rd St., Chicago, IL 60616, USA
| | - Mudassir Rashid
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Perlstein Hall, Suite 127, 10 W. 33rd St., Chicago, IL 60616, USA
| | - Andrew Shahidehpour
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Perlstein Hall, Suite 127, 10 W. 33rd St., Chicago, IL 60616, USA
| | - Mohammad Reza Askari
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Perlstein Hall, Suite 127, 10 W. 33rd St., Chicago, IL 60616, USA
| | - Minsun Park
- College of Nursing, University of Illinois at Chicago. Chicago, IL, USA
| | - Laurie Quinn
- College of Nursing, University of Illinois at Chicago. Chicago, IL, USA
| | - Ali Cinar
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA; Department of Chemical and Biological Engineering, Illinois Institute of Technology, Perlstein Hall, Suite 127, 10 W. 33rd St., Chicago, IL 60616, USA.
| |
Collapse
|
3
|
Hettiarachchi C, Malagutti N, Nolan C, Daskalaki E, Suominen H. A Reinforcement Learning Based System for Blood Glucose Control without Carbohydrate Estimation in Type 1 Diabetes: In Silico Validation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:950-956. [PMID: 36086458 DOI: 10.1109/embc48229.2022.9871054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease, which requires the use of exogenous insulin for glucose regulation. In current hybrid closed-loop systems, meal entry is manual which adds cognitive burden to the persons living with T1D. In this study, we proposed a control system based on Proximal Policy Optimisation (PPO) that controls both basal and bolus insulin infusion and only requires meal announcement, thus eliminating the need for carbohydrate estimation. We evaluated the system on a challenging meal scenario, using an open-source simulator based on the UVA/Padova 2008 model and achieved a mean Time in Range value of 65% for the adult subject cohort, while maintaining a moderate hypoglycemic and hyperglycemic risk profile. The approach shows promise and welcomes further research towards the translation to a real-life artificial pancreas. Clinical relevance- This was an in-silico analysis towards the development of an autonomous artificial pancreas system for glucose control. The proposed system show promise in eliminating the need for estimating the carbohydrate content in meals.
Collapse
|
4
|
Ozaslan B, Brown SA, Pinnata J, Barnett CL, Carr K, Wakeman CA, Clancy-Oliveri M, Breton MD. Safety and Feasibility Evaluation of Step Count Informed Meal Boluses in Type 1 Diabetes: A Pilot Study. J Diabetes Sci Technol 2022; 16:670-676. [PMID: 33794675 PMCID: PMC9294569 DOI: 10.1177/1932296821997917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Physical activity can cause glucose fluctuations both during and after it is performed, leading to hurdles in optimal insulin dosing in people with type 1 diabetes (T1D). We conducted a pilot clinical trial assessing the safety and feasibility of a physical activity-informed mealtime insulin bolus advisor that adjusts the meal bolus according to previous physical activity, based on step count data collected through an off-the-shelf physical activity tracker. METHODS Fifteen adults with T1D, each using a continuous glucose monitor (CGM) and an insulin pump with carbohydrate counting, completed two randomized crossover daily visits. Participants performed a 30 to 45-minute brisk walk before lunch and lunchtime insulin boluses were calculated based on either their standard therapy (ST) or the physical activity-informed bolus method. Post-lunch glycemic excursions were assessed using CGM readings. RESULTS There was no significant difference between visits in the time spent in hypoglycemia in the post-lunch period (median [IQR] standard: 0 [0]% vs physical activity-informed: 0 [0]%, P = NS). Standard therapy bolus yielded a higher time spent in 70 to 180 mg/dL target range (mean ± standard: 77% ± 27% vs physical activity-informed: 59% ± 31%, P = .03) yet, it was associated with a steeper negative slope in the early postprandial phase (P = .032). CONCLUSIONS Use of step count to adjust mealtime insulin following a walking bout has proved to be safe and feasible in a cohort of 15 T1D subjects. Physical activity-informed insulin dosing of meals eaten soon after a walking bout has a potential of mitigating physical activity related glucose reduction in the early postprandial phase.
Collapse
Affiliation(s)
- Basak Ozaslan
- Department of Psychiatric &
Neurobehavioral Sciences, Center for Diabetes Technology Research, University of
Virginia, Charlottesville, VA, USA
| | - Sue A. Brown
- Department of Psychiatric &
Neurobehavioral Sciences, Center for Diabetes Technology Research, University of
Virginia, Charlottesville, VA, USA
| | - Jennifer Pinnata
- Department of Psychiatric &
Neurobehavioral Sciences, Center for Diabetes Technology Research, University of
Virginia, Charlottesville, VA, USA
| | - Charlotte L. Barnett
- Department of Psychiatric &
Neurobehavioral Sciences, Center for Diabetes Technology Research, University of
Virginia, Charlottesville, VA, USA
| | - Kelly Carr
- Department of Psychiatric &
Neurobehavioral Sciences, Center for Diabetes Technology Research, University of
Virginia, Charlottesville, VA, USA
| | - Christian A. Wakeman
- Department of Psychiatric &
Neurobehavioral Sciences, Center for Diabetes Technology Research, University of
Virginia, Charlottesville, VA, USA
| | - Mary Clancy-Oliveri
- Department of Psychiatric &
Neurobehavioral Sciences, Center for Diabetes Technology Research, University of
Virginia, Charlottesville, VA, USA
| | - Marc D. Breton
- Department of Psychiatric &
Neurobehavioral Sciences, Center for Diabetes Technology Research, University of
Virginia, Charlottesville, VA, USA
- Marc D. Breton, PhD, Department of
Psychiatric & Neurobehavioral Sciences, Center for Diabetes Technology
Research, P.O. Box 400888, Charlottesville, VA 22908-4888, USA.
| |
Collapse
|
5
|
Hettiarachchi C, Daskalaki E, Desborough J, Nolan CJ, O'Neal D, Suominen H. Integrating Multiple Inputs Into an Artificial Pancreas System: Narrative Literature Review. JMIR Diabetes 2022; 7:e28861. [PMID: 35200143 PMCID: PMC8914747 DOI: 10.2196/28861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/07/2021] [Accepted: 01/01/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a chronic autoimmune disease in which a deficiency in insulin production impairs the glucose homeostasis of the body. Continuous subcutaneous infusion of insulin is a commonly used treatment method. Artificial pancreas systems (APS) use continuous glucose level monitoring and continuous subcutaneous infusion of insulin in a closed-loop mode incorporating a controller (or control algorithm). However, the operation of APS is challenging because of complexities arising during meals, exercise, stress, sleep, illnesses, glucose sensing and insulin action delays, and the cognitive burden. To overcome these challenges, options to augment APS through integration of additional inputs, creating multi-input APS (MAPS), are being investigated. OBJECTIVE The aim of this survey is to identify and analyze input data, control architectures, and validation methods of MAPS to better understand the complexities and current state of such systems. This is expected to be valuable in developing improved systems to enhance the quality of life of people with T1D. METHODS A literature survey was conducted using the Scopus, PubMed, and IEEE Xplore databases for the period January 1, 2005, to February 10, 2020. On the basis of the search criteria, 1092 articles were initially shortlisted, of which 11 (1.01%) were selected for an in-depth narrative analysis. In addition, 6 clinical studies associated with the selected studies were also analyzed. RESULTS Signals such as heart rate, accelerometer readings, energy expenditure, and galvanic skin response captured by wearable devices were the most frequently used additional inputs. The use of invasive (blood or other body fluid analytes) inputs such as lactate and adrenaline were also simulated. These inputs were incorporated to switch the mode of the controller through activity detection, directly incorporated for decision-making and for the development of intermediate modules for the controller. The validation of the MAPS was carried out through the use of simulators based on different physiological models and clinical trials. CONCLUSIONS The integration of additional physiological signals with continuous glucose level monitoring has the potential to optimize glucose control in people with T1D through addressing the identified limitations of APS. Most of the identified additional inputs are related to wearable devices. The rapid growth in wearable technologies can be seen as a key motivator regarding MAPS. However, it is important to further evaluate the practical complexities and psychosocial aspects associated with such systems in real life.
Collapse
Affiliation(s)
- Chirath Hettiarachchi
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
| | - Elena Daskalaki
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
| | - Jane Desborough
- Department of Health Services Research and Policy, Research School of Population Health, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Christopher J Nolan
- Australian National University Medical School, College of Health and Medicine, The Australian National University, Canberra, Australia
- John Curtin School of Medical Research, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - David O'Neal
- Department of Medicine, University of Melbourne, Melbourne, Australia
- Department of Endocrinology and Diabetes, St Vincent's Hospital Melbourne, Melbourne, Australia
| | - Hanna Suominen
- School of Computing, College of Engineering and Computer Science, The Australian National University, Canberra, Australia
- Data61, Commonwealth Industrial and Scientific Research Organisation, Canberra, Australia
- Department of Computing, University of Turku, Turku, Finland
| |
Collapse
|
6
|
An independent central point OPTICS clustering algorithm for semi-supervised outlier detection of continuous glucose measurements. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Sun X, Rashid M, Hobbs N, Askari MR, Brandt R, Shahidehpour A, Cinar A. Prior Informed Regularization of Recursively Updated Latent-Variables-Based Models with Missing Observations. CONTROL ENGINEERING PRACTICE 2021; 116:104933. [PMID: 34539101 PMCID: PMC8443145 DOI: 10.1016/j.conengprac.2021.104933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many data-driven modeling techniques identify locally valid, linear representations of time-varying or nonlinear systems, and thus the model parameters must be adaptively updated as the operating conditions of the system vary, though the model identification typically does not consider prior knowledge. In this work, we propose a new regularized partial least squares (rPLS) algorithm that incorporates prior knowledge in the model identification and can handle missing data in the independent covariates. This latent variable (LV) based modeling technique consists of three steps. First, a LV-based model is developed on the historical time series data. In the second step, the missing observations in the new incomplete data sample are estimated. Finally, the future values of the outputs are predicted as a linear combination of estimated scores and loadings. The model is recursively updated as new data are obtained from the system. The performance of the proposed rPLS and rPLS with exogenous inputs (rPLSX) algorithms are evaluated by modeling variations in glucose concentration (GC) of people with Type 1 diabetes (T1D) in response to meals and physical activities for prediction windows up to one hour, or 12 sampling instances, into the future. The proposed rPLS family of GC prediction models are evaluated with both in-silico and clinical experiment data and compared with the performance of recursive time series and kernel-based models. The root mean squared error (RMSE) with simulated subjects in the multivariable T1D simulator where physical activity effects are incorporated in GC variations are 2.52 and 5.81 mg/dL for 30 and 60 mins ahead predictions (respectively) when information for all meals and physical activities are used, increasing to 2.70 and 6.54 mg/dL (respectively) when meals and activities occurred, but the information is with-held from the modeling algorithms. The RMSE is 10.45 and 14.48 mg/dL for clinical study with prediction horizons of 30 and 60 mins, respectively. The low RMSE values demonstrate the effectiveness of the proposed rPLS approach compared to the conventional recursive modeling algorithms.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Mudassir Rashid
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Nicole Hobbs
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Mohammad Reza Askari
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Rachel Brandt
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Andrew Shahidehpour
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Ali Cinar
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| |
Collapse
|
8
|
Gautier T, Ziegler LB, Gerber MS, Campos-Náñez E, Patek SD. Artificial intelligence and diabetes technology: A review. Metabolism 2021; 124:154872. [PMID: 34480920 DOI: 10.1016/j.metabol.2021.154872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/27/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022]
Abstract
Artificial intelligence (AI) is widely discussed in the popular literature and is portrayed as impacting many aspects of human life, both in and out of the workplace. The potential for revolutionizing healthcare is significant because of the availability of increasingly powerful computational platforms and methods, along with increasingly informative sources of patient data, both in and out of clinical settings. This review aims to provide a realistic assessment of the potential for AI in understanding and managing diabetes, accounting for the state of the art in the methodology and medical devices that collect data, process data, and act accordingly. Acknowledging that many conflicting definitions of AI have been put forth, this article attempts to characterize the main elements of the field as they relate to diabetes, identifying the main perspectives and methods that can (i) affect basic understanding of the disease, (ii) affect understanding of risk factors (genetic, clinical, and behavioral) of diabetes development, (iii) improve diagnosis, (iv) improve understanding of the arc of disease (progression and personal/societal impact), and finally (v) improve treatment.
Collapse
Affiliation(s)
- Thibault Gautier
- Dexcom/TypeZero, 946 Grady Avenue, Suite 203, Charlottesville, VA 22903, United States of America.
| | - Leah B Ziegler
- Dexcom/TypeZero, 946 Grady Avenue, Suite 203, Charlottesville, VA 22903, United States of America
| | - Matthew S Gerber
- Dexcom/TypeZero, 946 Grady Avenue, Suite 203, Charlottesville, VA 22903, United States of America
| | - Enrique Campos-Náñez
- Dexcom/TypeZero, 946 Grady Avenue, Suite 203, Charlottesville, VA 22903, United States of America
| | - Stephen D Patek
- Dexcom/TypeZero, 946 Grady Avenue, Suite 203, Charlottesville, VA 22903, United States of America
| |
Collapse
|
9
|
Infante M, Baidal DA, Rickels MR, Fabbri A, Skyler JS, Alejandro R, Ricordi C. Dual-hormone artificial pancreas for management of type 1 diabetes: Recent progress and future directions. Artif Organs 2021; 45:968-986. [PMID: 34263961 PMCID: PMC9059950 DOI: 10.1111/aor.14023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
Over the last few years, technological advances have led to tremendous improvement in the management of type 1 diabetes (T1D). Artificial pancreas systems have been shown to improve glucose control compared with conventional insulin pump therapy. However, clinically significant hypoglycemic and hyperglycemic episodes still occur with the artificial pancreas. Postprandial glucose excursions and exercise-induced hypoglycemia represent major hurdles in improving glucose control and glucose variability in many patients with T1D. In this regard, dual-hormone artificial pancreas systems delivering other hormones in addition to insulin (glucagon or amylin) may better reproduce the physiology of the endocrine pancreas and have been suggested as an alternative tool to overcome these limitations in clinical practice. In addition, novel ultra-rapid-acting insulin analogs with a more physiological time-action profile are currently under investigation for use in artificial pancreas devices, aiming to address the unmet need for further improvements in postprandial glucose control. This review article aims to discuss the current progress and future outlook in the development of novel ultra-rapid insulin analogs and dual-hormone closed-loop systems, which offer the next steps to fully closing the loop in the artificial pancreas.
Collapse
Affiliation(s)
- Marco Infante
- Clinical Cell Transplant Program, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Endocrinology, Metabolism and Diabetes, Department of Systems Medicine, CTO A. Alesini Hospital, Diabetes Research Institute Federation, University of Rome Tor Vergata, Rome, Italy
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - David A. Baidal
- Clinical Cell Transplant Program, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael R. Rickels
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrea Fabbri
- Division of Endocrinology, Metabolism and Diabetes, Department of Systems Medicine, CTO A. Alesini Hospital, Diabetes Research Institute Federation, University of Rome Tor Vergata, Rome, Italy
| | - Jay S. Skyler
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rodolfo Alejandro
- Clinical Cell Transplant Program, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Camillo Ricordi
- Clinical Cell Transplant Program, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
10
|
Nguyen TTP, Jacobs PG, Castle JR, Wilson LM, Kuehl K, Branigan D, Gabo V, Guillot F, Riddell MC, Haidar A, El Youssef J. Separating insulin-mediated and non-insulin-mediated glucose uptake during and after aerobic exercise in type 1 diabetes. Am J Physiol Endocrinol Metab 2021; 320:E425-E437. [PMID: 33356994 PMCID: PMC7988786 DOI: 10.1152/ajpendo.00534.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aerobic exercise in type 1 diabetes (T1D) causes rapid increase in glucose utilization due to muscle work during exercise, followed by increased insulin sensitivity after exercise. Better understanding of these changes is necessary for models of exercise in T1D. Twenty-six individuals with T1D underwent three sessions at three insulin rates (100%, 150%, 300% of basal). After 3-h run-in, participants performed 45 min aerobic exercise (moderate or intense). We determined area under the curve for endogenous glucose production (AUCEGP) and rate of glucose disappearance (AUCRd) over 45 min from exercise start. A novel application of linear regression of Rd across the three insulin sessions allowed separation of insulin-mediated from non-insulin-mediated glucose uptake before, during, and after exercise. AUCRd increased 12.45 mmol/L (CI = 10.33-14.58, P < 0.001) and 13.13 mmol/L (CI = 11.01-15.26, P < 0.001) whereas AUCEGP increased 1.66 mmol/L (CI = 1.01-2.31, P < 0.001) and 3.46 mmol/L (CI = 2.81-4.11, P < 0.001) above baseline during moderate and intense exercise, respectively. AUCEGP increased during intense exercise by 2.14 mmol/L (CI = 0.91-3.37, P < 0.001) compared with moderate exercise. There was significant effect of insulin infusion rate on AUCRd equal to 0.06 mmol/L per % above basal rate (CI = 0.05-0.07, P < 0.001). Insulin-mediated glucose uptake rose during exercise and persisted hours afterward, whereas non-insulin-mediated effect was limited to the exercise period. To our knowledge, this method of isolating dynamic insulin- and non-insulin-mediated uptake has not been previously employed during exercise. These results will be useful in informing glucoregulatory models of T1D. The study has been registered at www.clinicaltrials.gov as NCT03090451.NEW & NOTEWORTHY Separating insulin and non-insulin glucose uptake dynamically during exercise in type 1 diabetes has not been done before. We use a multistep process, including a previously described linear regression method, over three insulin infusion sessions, to perform this separation and can graph these components before, during, and after exercise for the first time.
Collapse
Affiliation(s)
- Thanh-Tin P Nguyen
- School of Medicine, Oregon Health & Science University (OHSU), Portland, Oregon
| | - Peter G Jacobs
- Department of Biomedical Engineering, Oregon Health & Science University (OHSU), Portland, Oregon
| | - Jessica R Castle
- Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon
| | - Leah M Wilson
- Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon
| | - Kerry Kuehl
- Department of Sports Medicine, Oregon Health & Science University (OHSU), Portland, Oregon
| | - Deborah Branigan
- Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon
| | - Virginia Gabo
- Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon
| | - Florian Guillot
- Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon
| | - Michael C Riddell
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Ahmad Haidar
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
| | - Joseph El Youssef
- Department of Biomedical Engineering, Oregon Health & Science University (OHSU), Portland, Oregon
- Harold Schnitzer Diabetes Health Center, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
11
|
Stolfi P, Valentini I, Palumbo MC, Tieri P, Grignolio A, Castiglione F. Potential predictors of type-2 diabetes risk: machine learning, synthetic data and wearable health devices. BMC Bioinformatics 2020; 21:508. [PMID: 33308172 PMCID: PMC7733701 DOI: 10.1186/s12859-020-03763-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The aim of a recent research project was the investigation of the mechanisms involved in the onset of type 2 diabetes in the absence of familiarity. This has led to the development of a computational model that recapitulates the aetiology of the disease and simulates the immunological and metabolic alterations linked to type-2 diabetes subjected to clinical, physiological, and behavioural features of prototypical human individuals. RESULTS We analysed the time course of 46,170 virtual subjects, experiencing different lifestyle conditions. We then set up a statistical model able to recapitulate the simulated outcomes. CONCLUSIONS The resulting machine learning model adequately predicts the synthetic dataset and can, therefore, be used as a computationally-cheaper version of the detailed mathematical model, ready to be implemented on mobile devices to allow self-assessment by informed and aware individuals. The computational model used to generate the dataset of this work is available as a web-service at the following address: http://kraken.iac.rm.cnr.it/T2DM .
Collapse
Affiliation(s)
- Paola Stolfi
- Institute for Applied Mathematics, National Research Council of Italy, Rome, Italy
| | | | | | - Paolo Tieri
- Institute for Applied Mathematics, National Research Council of Italy, Rome, Italy
| | - Andrea Grignolio
- Research Ethics and Integrity Interdepartmental Center, National Research Council of Italy, Rome, Italy
- Medical Humanities - International MD Program, Vita-Salute San Raffaele University, Milan, Italy
| | - Filippo Castiglione
- Institute for Applied Mathematics, National Research Council of Italy, Rome, Italy
| |
Collapse
|
12
|
Yu X, Sun X, Zhao Y, Liu J, Li H. Fault detection of continuous glucose measurements based on modified k-medoids clustering algorithm. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-05432-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Taylor KA, Forlenza GP. Use of Machine Learning and Hybrid Closed Loop Insulin Delivery at Diabetes Camps. Diabetes Technol Ther 2020; 22:535-537. [PMID: 32058821 DOI: 10.1089/dia.2020.0026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Rashid M, Samadi S, Sevil M, Hajizadeh I, Kolodziej P, Hobbs N, Maloney Z, Brandt R, Feng J, Park M, Quinn L, Cinar A. Simulation Software for Assessment of Nonlinear and Adaptive Multivariable Control Algorithms: Glucose - Insulin Dynamics in Type 1 Diabetes. Comput Chem Eng 2019; 130:106565. [PMID: 32863472 PMCID: PMC7449052 DOI: 10.1016/j.compchemeng.2019.106565] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A simulator for testing automatic control algorithms for nonlinear systems with time-varying parameters, variable time delays, and uncertainties is developed. It is based on simulation of virtual patients with Type 1 diabetes (T1D). Nonlinear models are developed to describe glucose concentration (GC) variations based on user-defined scenarios for meal consumption, insulin administration, and physical activity. They compute GC values and physiological variables, such as heart rate, skin temperature, accelerometer, and energy expenditure, that are indicative of physical activities affecting GC dynamics. This is the first simulator designed for assessment of multivariable controllers that consider supplemental physiological variables in addition to GC measurements to improve glycemic control. Virtual patients are generated from distributions of identified model parameters using clinical data. The simulator will enable testing and evaluation of new control algorithms proposed for automated insulin delivery as well as various control algorithms for nonlinear systems with uncertainties, time-varying parameters and delays.
Collapse
Affiliation(s)
- Mudassir Rashid
- Dept of Chemical and Biological Engineering, Illinois Institute of Technology, 10 W 33rd Street, Chicago, IL, USA, 60616
| | - Sediqeh Samadi
- Dept of Chemical and Biological Engineering, Illinois Institute of Technology, 10 W 33rd Street, Chicago, IL, USA, 60616
| | - Mert Sevil
- Dept of Biomedical Engineering, Illinois Institute of Technology, 10 W 33rd Street, Chicago, IL, USA, 606016
| | - Iman Hajizadeh
- Dept of Chemical and Biological Engineering, Illinois Institute of Technology, 10 W 33rd Street, Chicago, IL, USA, 60616
| | - Paul Kolodziej
- Dept of Chemical and Biological Engineering, Illinois Institute of Technology, 10 W 33rd Street, Chicago, IL, USA, 60616
| | - Nicole Hobbs
- Dept of Biomedical Engineering, Illinois Institute of Technology, 10 W 33rd Street, Chicago, IL, USA, 606016
| | - Zacharie Maloney
- Dept of Biomedical Engineering, Illinois Institute of Technology, 10 W 33rd Street, Chicago, IL, USA, 606016
| | - Rachel Brandt
- Dept of Biomedical Engineering, Illinois Institute of Technology, 10 W 33rd Street, Chicago, IL, USA, 606016
| | - Jianyuan Feng
- Dept of Chemical and Biological Engineering, Illinois Institute of Technology, 10 W 33rd Street, Chicago, IL, USA, 60616
| | - Minsun Park
- College of Nursing, University of Illinois at Chicago, Chicago, IL, USA, 60612
| | - Laurie Quinn
- College of Nursing, University of Illinois at Chicago, Chicago, IL, USA, 60612
| | - Ali Cinar
- Dept of Chemical and Biological Engineering, Illinois Institute of Technology, 10 W 33rd Street, Chicago, IL, USA, 60616
- Dept of Biomedical Engineering, Illinois Institute of Technology, 10 W 33rd Street, Chicago, IL, USA, 606016
| |
Collapse
|
15
|
Abstract
IN BRIEF Automated insulin delivery (AID; also known as artificial pancreas) has improved the regulation of blood glucose concentrations, reduced the frequency of hyperglycemic and hypoglycemic episodes, and improved the quality of life of people with diabetes and their families. Three different types of algorithms-proportional-integral-derivative control, model predictive control, and fuzzy-logic knowledge-based systems-have been used in AID control systems. This article will highlight the foundations of these algorithms and discuss their strengths and limitations. Multivariable artificial pancreas and dual-hormone (insulin and glucagon) systems will be introduced.
Collapse
Affiliation(s)
- Ali Cinar
- Departments of Chemical and Biological Engineering and Biomedical Engineering, Engineering Center for Diabetes Research and Education, Illinois Institute of Technology, Chicago, IL
| |
Collapse
|
16
|
Kovatchev B. A Century of Diabetes Technology: Signals, Models, and Artificial Pancreas Control. Trends Endocrinol Metab 2019; 30:432-444. [PMID: 31151733 DOI: 10.1016/j.tem.2019.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/14/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022]
Abstract
Arguably, diabetes mellitus is one of the best-quantified human conditions: elaborate in silico models describe the action of the human metabolic system; real-time signals such as continuous glucose monitoring are readily available; insulin delivery is being automated; and control algorithms are capable of optimizing blood glucose fluctuation in patients' natural environments. The transition of the artificial pancreas (AP) to everyday clinical use is happening now, and is contingent upon seamless concerted work of devices encompassing the patient in a digital treatment ecosystem. This review recounts briefly the story of diabetes technology, which began a century ago with the discovery of insulin, progressed through glucose monitoring and subcutaneous insulin delivery, and is now rapidly advancing towards fully automated clinically viable AP systems.
Collapse
Affiliation(s)
- Boris Kovatchev
- University of Virginia School of Medicine, UVA Center for Diabetes Technology, Ivy Translational Research Building, 560 Ray C. Hunt Drive, Charlottesville, VA 22903-2981, USA.
| |
Collapse
|
17
|
Adadi A, Adadi S, Berrada M. Gastroenterology Meets Machine Learning: Status Quo and Quo Vadis. Adv Bioinformatics 2019; 2019:1870975. [PMID: 31065266 PMCID: PMC6466966 DOI: 10.1155/2019/1870975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/24/2019] [Indexed: 12/16/2022] Open
Abstract
Machine learning has undergone a transition phase from being a pure statistical tool to being one of the main drivers of modern medicine. In gastroenterology, this technology is motivating a growing number of studies that rely on these innovative methods to deal with critical issues related to this practice. Hence, in the light of the burgeoning research on the use of machine learning in gastroenterology, a systematic review of the literature is timely. In this work, we present the results gleaned through a systematic review of prominent gastroenterology literature using machine learning techniques. Based on the analysis of 88 journal articles, we delimit the scope of application, we discuss current limitations including bias, lack of transparency, accountability, and data availability, and we put forward future avenues.
Collapse
Affiliation(s)
- Amina Adadi
- Computer and Interdisciplinary Physics Laboratory, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| | - Safae Adadi
- Service of Hepatology and Gastroenterology, Hassan II University Hospital of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Berrada
- Computer and Interdisciplinary Physics Laboratory, Sidi Mohamed Ben Abdellah University, Fez 30050, Morocco
| |
Collapse
|
18
|
Vettoretti M, Facchinetti A. Combining continuous glucose monitoring and insulin pumps to automatically tune the basal insulin infusion in diabetes therapy: a review. Biomed Eng Online 2019; 18:37. [PMID: 30922295 PMCID: PMC6440103 DOI: 10.1186/s12938-019-0658-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
For individuals affected by Type 1 diabetes (T1D), a chronic disease in which the pancreas does not produce any insulin, maintaining the blood glucose (BG) concentration as much as possible within the safety range (70–180 mg/dl) allows avoiding short- and long-term complications. The tuning of exogenous insulin infusion can be difficult, especially because of the inter- and intra-day variability of physiological and behavioral factors. Continuous glucose monitoring (CGM) sensors, which monitor glucose concentration in the subcutaneous tissue almost continuously, allowed improving the detection of critical hypo- and hyper-glycemic episodes. Moreover, their integration with insulin pumps for continuous subcutaneous insulin infusion allowed developing algorithms that automatically tune insulin dosing based on CGM measurements in order to mitigate the incidence of critical episodes. In this work, we aim at reviewing the literature on methods for CGM-based automatic attenuation or suspension of basal insulin with a focus on algorithms, their implementation in commercial devices and clinical evidence of their effectiveness and safety.
Collapse
Affiliation(s)
- Martina Vettoretti
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131, Padova, Italy
| | - Andrea Facchinetti
- Department of Information Engineering, University of Padova, Via G. Gradenigo 6/B, 35131, Padova, Italy.
| |
Collapse
|
19
|
Forlenza GP, Cameron FM, Ly TT, Lam D, Howsmon DP, Baysal N, Kulina G, Messer L, Clinton P, Levister C, Patek SD, Levy CJ, Wadwa RP, Maahs DM, Bequette BW, Buckingham BA. Fully Closed-Loop Multiple Model Probabilistic Predictive Controller Artificial Pancreas Performance in Adolescents and Adults in a Supervised Hotel Setting. Diabetes Technol Ther 2018; 20:335-343. [PMID: 29658779 PMCID: PMC5963546 DOI: 10.1089/dia.2017.0424] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Initial Food and Drug Administration-approved artificial pancreas (AP) systems will be hybrid closed-loop systems that require prandial meal announcements and will not eliminate the burden of premeal insulin dosing. Multiple model probabilistic predictive control (MMPPC) is a fully closed-loop system that uses probabilistic estimation of meals to allow for automated meal detection. In this study, we describe the safety and performance of the MMPPC system with announced and unannounced meals in a supervised hotel setting. RESEARCH DESIGN AND METHODS The Android phone-based AP system with remote monitoring was tested for 72 h in six adults and four adolescents across three clinical sites with daily exercise and meal challenges involving both three announced (manual bolus by patient) and six unannounced (no bolus by patient) meals. Safety criteria were predefined. Controller aggressiveness was adapted daily based on prior hypoglycemic events. RESULTS Mean 24-h continuous glucose monitor (CGM) was 157.4 ± 14.4 mg/dL, with 63.6 ± 9.2% of readings between 70 and 180 mg/dL, 2.9 ± 2.3% of readings <70 mg/dL, and 9.0 ± 3.9% of readings >250 mg/dL. Moderate hyperglycemia was relatively common with 24.6 ± 6.2% of readings between 180 and 250 mg/dL, primarily within 3 h after a meal. Overnight mean CGM was 139.6 ± 27.6 mg/dL, with 77.9 ± 16.4% between 70 and 180 mg/dL, 3.0 ± 4.5% <70 mg/dL, 17.1 ± 14.9% between 180 and 250 mg/dL, and 2.0 ± 4.5%> 250 mg/dL. Postprandial hyperglycemia was more common for unannounced meals compared with announced meals (4-h postmeal CGM 197.8 ± 44.1 vs. 140.6 ± 35.0 mg/dL; P < 0.001). No participants met safety stopping criteria. CONCLUSIONS MMPPC was safe in a supervised setting despite meal and exercise challenges. Further studies are needed in a less supervised environment.
Collapse
Affiliation(s)
| | - Faye M. Cameron
- Department of Chemical and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Trang T. Ly
- Division of Pediatric Endocrinology, Stanford University, Palo Alto, California
| | - David Lam
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Daniel P. Howsmon
- Department of Chemical and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Nihat Baysal
- Department of Chemical and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Georgia Kulina
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Laurel Messer
- Division of Pediatric Endocrinology, Barbara Davis Center, Aurora, Colorado
| | - Paula Clinton
- Division of Pediatric Endocrinology, Stanford University, Palo Alto, California
| | - Camilla Levister
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Stephen D. Patek
- Center for Diabetes Technology, University of Virginia, Charlottesville, Virginia
| | - Carol J. Levy
- Division of Endocrinology, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - R. Paul Wadwa
- Division of Pediatric Endocrinology, Barbara Davis Center, Aurora, Colorado
| | - David M. Maahs
- Division of Pediatric Endocrinology, Barbara Davis Center, Aurora, Colorado
- Division of Pediatric Endocrinology, Stanford University, Palo Alto, California
| | - B. Wayne Bequette
- Department of Chemical and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Bruce A. Buckingham
- Division of Pediatric Endocrinology, Stanford University, Palo Alto, California
| |
Collapse
|
20
|
Samadi S, Rashid M, Turksoy K, Feng J, Hajizadeh I, Hobbs N, Lazaro C, Sevil M, Littlejohn E, Cinar A. Automatic Detection and Estimation of Unannounced Meals for Multivariable Artificial Pancreas System. Diabetes Technol Ther 2018; 20:235-246. [PMID: 29406789 PMCID: PMC5867514 DOI: 10.1089/dia.2017.0364] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Automatically attenuating the postprandial rise in the blood glucose concentration without manual meal announcement is a significant challenge for artificial pancreas (AP) systems. In this study, a meal module is proposed to detect the consumption of a meal and to estimate the amount of carbohydrate (CHO) intake. METHODS The meals are detected based on qualitative variables describing variation of continuous glucose monitoring (CGM) readings. The CHO content of the meals/snacks is estimated by a fuzzy system using CGM and subcutaneous insulin delivery data. The meal bolus amount is computed according to the patient's insulin to CHO ratio. Integration of the meal module into a multivariable AP system allows revision of estimated CHO based on knowledge about physical activity, sleep, and the risk of hypoglycemia before the final decision for a meal bolus is made. RESULTS The algorithm is evaluated by using 117 meals/snacks in retrospective data from 11 subjects with type 1 diabetes. Sensitivity, defined as the percentage of correctly detected meals and snacks, is 93.5% for meals and 68.0% for snacks. The percentage of false positives, defined as the proportion of false detections relative to the total number of detected meals and snacks, is 20.8%. CONCLUSIONS Integration of a meal detection module in an AP system is a further step toward an automated AP without manual entries. Detection of a consumed meal/snack and infusion of insulin boluses using an estimate of CHO enables the AP system to automatically prevent postprandial hyperglycemia.
Collapse
Affiliation(s)
- Sediqeh Samadi
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Mudassir Rashid
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Kamuran Turksoy
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Jianyuan Feng
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Iman Hajizadeh
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Nicole Hobbs
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Caterina Lazaro
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Mert Sevil
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Elizabeth Littlejohn
- Department of Pediatrics and Medicine, Kovler Diabetes Center, University of Chicago, Chicago, Illinois
| | - Ali Cinar
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| |
Collapse
|