1
|
Avitzur Y, Jimenez L, Martincevic I, Acra S, Courtney-Martin G, Gray M, Hope K, Muise A, Prieto Jimenez PM, Taylor N, Thiagarajah JR, Martín MG. Diet management in congenital diarrheas and enteropathies - general concepts and disease-specific approach, a narrative review. Am J Clin Nutr 2024; 120:17-33. [PMID: 38734141 PMCID: PMC11251218 DOI: 10.1016/j.ajcnut.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Congenital diarrheas and enteropathies (CODE) are a group of rare, heterogenous, monogenic disorders that lead to chronic diarrhea in infancy. Definitive treatment is rarely available, and supportive treatment is the mainstay. Nutritional management in the form of either specialized formulas, restrictive diet, or parenteral nutrition support in CODE with poor enteral tolerance is the cornerstone of CODE treatment and long-term growth. The evidence to support the use of specific diet regimens and nutritional approaches in most CODE disorders is limited due to the rarity of these diseases and the scant published clinical experience. The goal of this review was to create a comprehensive guide for nutritional management in CODE, based on the currently available literature, disease mechanism, and the PediCODE group experience. Enteral diet management in CODE can be divided into 3 distinct conceptual frameworks: nutrient elimination, nutrient supplementation, and generalized nutrient restriction. Response to nutrient elimination or supplementation can lead to resolution or significant improvement in the chronic diarrhea of CODE and resumption of normal growth. This pattern can be seen in CODE due to carbohydrate malabsorption, defects in fat absorption, and occasionally in electrolyte transport defects. In contrast, general diet restriction is mainly supportive. However, occasionally it allows parenteral nutrition weaning or reduction over time, mainly in enteroendocrine defects and rarely in epithelial trafficking and polarity defects. Further research is required to better elucidate the role of diet in the treatment of CODE and the appropriate diet management for each disease.
Collapse
Affiliation(s)
- Yaron Avitzur
- Group for Improvement of Intestinal Function and Treatment (GIFT), Transplant and Regenerative Centre, SickKids Hospital, Toronto, ON, Canada; Division of Gastroenterology, Hepatology and Nutrition, SickKids Hospital, University of Toronto, Toronto, ON, Canada.
| | - Lissette Jimenez
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Congenital Enteropathy Program, Boston Children's Hospital, Boston, MA, United States;; Harvard Digestive Disease Center, Boston MA, United States
| | - Inez Martincevic
- Division of Gastroenterology, Hepatology and Nutrition, SickKids Hospital, University of Toronto, Toronto, ON, Canada
| | - Sari Acra
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Glenda Courtney-Martin
- Group for Improvement of Intestinal Function and Treatment (GIFT), Transplant and Regenerative Centre, SickKids Hospital, Toronto, ON, Canada; Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Megan Gray
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kayla Hope
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Aleixo Muise
- Division of Gastroenterology, Hepatology and Nutrition, SickKids Hospital, University of Toronto, Toronto, ON, Canada
| | - Paula M Prieto Jimenez
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Nancy Taylor
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; Congenital Enteropathy Program, Boston Children's Hospital, Boston, MA, United States;; Harvard Digestive Disease Center, Boston MA, United States
| | - Martín G Martín
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children's Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
2
|
Ismail FQ, Öberg S, Wozniak AB, Oggesen BT, Rosenberg J. Variation in the length of terminal ileum specimen in right hemicolectomy: a descriptive study. ANZ J Surg 2022; 93:951-955. [PMID: 36368701 DOI: 10.1111/ans.18153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
AIM The aim of this study was to clarify the length of the bowel specimen and to assess if the length was affected by certain characteristics. METHODS Eligible patients were adults who had undergone right hemicolectomy for cancer in caecum, appendix, ascending colon or transverse colon from September 2019 to September 2020 at Herlev Hospital, Denmark. Data were collected from medical records. The primary outcome was the length of the resected terminal ileum. Secondary outcomes were to assess if body mass index (BMI), surgical approach, and neoadjuvant chemotherapy affected the length of the terminal ileum specimen, and to report the length of the colon specimen subdivided on the cancer locations. RESULTS In total, 50 patients were included. The median age was 74 years (range 36-91), 30 patients (60%) were females, and BMI was median 26 (range 17-45). The variation in the length of terminal ileum specimen was median 5 cm (range 1-17). The explorative analyses showed significant positive correlation between the length of terminal ileum specimen and BMI (P = 0.050) but not surgical approach (P = 0.23) nor neoadjuvant chemotherapy (P = 0.51). The length of the colon specimen naturally differed according to the cancer location with a median length of 26 cm (range 14-90). CONCLUSION We found a variation in the length of the terminal ileum specimen without an apparent explanation for this variation. The colon specimen also varied naturally according to cancer location.
Collapse
Affiliation(s)
- Fatima Qays Ismail
- Center for Perioperative Optimization, Department of Surgery, Herlev and Gentofte Hospital University of Copenhagen Herlev Denmark
- The Late‐complication Clinic, Capital Region of Denmark, Department of Surgery, Herlev and Gentofte Hospital University of Copenhagen Herlev Denmark
| | - Stina Öberg
- Center for Perioperative Optimization, Department of Surgery, Herlev and Gentofte Hospital University of Copenhagen Herlev Denmark
| | - Anita Bilde Wozniak
- The Late‐complication Clinic, Capital Region of Denmark, Department of Surgery, Herlev and Gentofte Hospital University of Copenhagen Herlev Denmark
| | - Birthe Thing Oggesen
- Center for Perioperative Optimization, Department of Surgery, Herlev and Gentofte Hospital University of Copenhagen Herlev Denmark
- The Late‐complication Clinic, Capital Region of Denmark, Department of Surgery, Herlev and Gentofte Hospital University of Copenhagen Herlev Denmark
| | - Jacob Rosenberg
- Center for Perioperative Optimization, Department of Surgery, Herlev and Gentofte Hospital University of Copenhagen Herlev Denmark
- The Late‐complication Clinic, Capital Region of Denmark, Department of Surgery, Herlev and Gentofte Hospital University of Copenhagen Herlev Denmark
| |
Collapse
|
3
|
Sarathy J, Detloff SJ, Ao M, Khan N, French S, Sirajuddin H, Nair T, Rao MC. The Yin and Yang of bile acid action on tight junctions in a model colonic epithelium. Physiol Rep 2018; 5:e13294. [PMID: 28554966 PMCID: PMC5449568 DOI: 10.14814/phy2.13294] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal epithelial barrier loss due to tight junction (TJ) dysfunction and bile acid‐induced diarrhea are common in patients with inflammatory diseases. Although excess colonic bile acids are known to alter mucosal permeability, few studies have compared the effects of specific bile acids on TJ function. We report that the primary bile acid, chenodeoxycholic acid (CDCA), and its 7α‐dehydroxylated derivative, lithocholic acid (LCA) have opposite effects on epithelial integrity in human colonic T84 cells. CDCA decreased transepithelial barrier resistance (pore) and increased paracellular 10 kDa dextran permeability (leak), effects that were enhanced by proinflammatory cytokines (PiC [ng/mL]: TNFα[10] + IL‐1ß[10] + IFNγ[30]). CDCA reversed the cation selectivity of the monolayer and decreased intercellular adhesion. In contrast, LCA alone did not alter any of these parameters, but attenuated the effects of CDCA ± PiC on paracellular permeability. CDCA, but not PiC, decreased occludin and not claudin‐2 protein expression; CDCA also decreased occludin localization. LCA ± CDCA had no effects on occludin or claudin expression/localization. While PiC and CDCA increased IL‐8 production, LCA reduced both basal and PiC ± CDCA‐induced IL‐8 production. TNFα + IL1ß increased IFNγ, which was enhanced by CDCA and attenuated by LCA. CDCA±PiC increased production of reactive oxygen species (ROS) that was attenuated by LCA. Finally, scavenging ROS attenuated CDCA's leak, but not pore actions, and LCA enhanced this effect. Thus, in T84 cells, CDCA plays a role in the inflammatory response causing barrier dysfunction, while LCA restores barrier integrity. Understanding the interplay of LCA, CDCA, and PiC could lead to innovative therapeutic strategies for inflammatory and diarrheal diseases.
Collapse
Affiliation(s)
- Jayashree Sarathy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois.,Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Sally Jo Detloff
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Mei Ao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Nabihah Khan
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Sydney French
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Hafsa Sirajuddin
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Tanushree Nair
- Department of Biological Sciences, Benedictine University, Lisle, Illinois
| | - Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
4
|
Ao M, Domingue JC, Khan N, Javed F, Osmani K, Sarathy J, Rao MC. Lithocholic acid attenuates cAMP-dependent Cl- secretion in human colonic epithelial T84 cells. Am J Physiol Cell Physiol 2016; 310:C1010-23. [PMID: 27076617 DOI: 10.1152/ajpcell.00350.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/12/2016] [Indexed: 01/14/2023]
Abstract
Bile acids (BAs) play a complex role in colonic fluid secretion. We showed that dihydroxy BAs, but not the monohydroxy BA lithocholic acid (LCA), stimulate Cl(-) secretion in human colonic T84 cells (Ao M, Sarathy J, Domingue J, Alrefai WA, Rao MC. Am J Physiol Cell Physiol 305: C447-C456, 2013). In this study, we explored the effect of LCA on the action of other secretagogues in T84 cells. While LCA (50 μM, 15 min) drastically (>90%) inhibited FSK-stimulated short-circuit current (Isc), it did not alter carbachol-stimulated Isc LCA did not alter basal Isc, transepithelial resistance, cell viability, or cytotoxicity. LCA's inhibitory effect was dose dependent, acted faster from the apical membrane, rapid, and not immediately reversible. LCA also prevented the Isc stimulated by the cAMP-dependent secretagogues 8-bromo-cAMP, lubiprostone, or chenodeoxycholic acid (CDCA). The LCA inhibitory effect was BA specific, since CDCA, cholic acid, or taurodeoxycholic acid did not alter FSK or carbachol action. While LCA alone had no effect on intracellular cAMP concentration ([cAMP]i), it decreased FSK-stimulated [cAMP]i by 90%. Although LCA caused a small increase in intracellular Ca(2+) concentration ([Ca(2+)]i), chelation by BAPTA-AM did not reverse LCA's effect on Isc LCA action does not appear to involve known BA receptors, farnesoid X receptor, vitamin D receptor, muscarinic acetylcholine receptor M3, or bile acid-specific transmembrane G protein-coupled receptor 5. LCA significantly increased ERK1/2 phosphorylation, which was completely abolished by the MEK inhibitor PD-98059. Surprisingly PD-98059 did not reverse LCA's effect on Isc Finally, although LCA had no effect on basal Isc, nystatin permeabilization studies showed that LCA both stimulates an apical cystic fibrosis transmembrane conductance regulator Cl(-) current and inhibits a basolateral K(+) current. In summary, 50 μM LCA greatly inhibits cAMP-stimulated Cl(-) secretion, making low doses of LCA of potential therapeutic interest for diarrheal diseases.
Collapse
Affiliation(s)
- Mei Ao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Jada C Domingue
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Nabihah Khan
- Department of Biology, Benedictine University, Lisle, Illinois
| | - Fatima Javed
- Department of Biology, Benedictine University, Lisle, Illinois
| | - Kashif Osmani
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Jayashree Sarathy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; Department of Biology, Benedictine University, Lisle, Illinois
| | - Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
5
|
Ao M, Sarathy J, Domingue J, Alrefai WA, Rao MC. Chenodeoxycholic acid stimulates Cl(-) secretion via cAMP signaling and increases cystic fibrosis transmembrane conductance regulator phosphorylation in T84 cells. Am J Physiol Cell Physiol 2013; 305:C447-56. [PMID: 23761628 DOI: 10.1152/ajpcell.00416.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
High levels of chenodeoxycholic acid (CDCA) and deoxycholic acid stimulate Cl(-) secretion in mammalian colonic epithelia. While different second messengers have been implicated in this action, the specific signaling pathway has not been fully delineated. Using human colon carcinoma T84 cells, we elucidated this cascade assessing Cl(-) transport by measuring I(-) efflux and short-circuit current (Isc). CDCA (500 μM) rapidly increases I(-) efflux, and we confirmed by Isc that it elicits a larger response when added to the basolateral vs. apical surface. However, preincubation with cytokines increases the monolayer responsiveness to apical addition by 55%. Nystatin permeabilization studies demonstrate that CDCA stimulates an eletrogenic apical Cl(-) but not a basolateral K(+) current. Furthermore, CDCA-induced Isc was inhibited (≥67%) by bumetanide, BaCl2, and the cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTRinh-172. CDCA-stimulated Isc was decreased 43% by the adenylate cyclase inhibitor MDL12330A and CDCA increases intracellular cAMP concentration. The protein kinase A inhibitor H89 and the microtubule disrupting agent nocodazole, respectively, cause 94 and 47% reductions in CDCA-stimulated Isc. Immunoprecipitation with CFTR antibodies, followed by sequential immunoblotting with Pan-phospho and CFTR antibodies, shows that CDCA increases CFTR phosphorylation by approximately twofold. The rapidity and side specificity of the response to CDCA imply a membrane-mediated process. While CDCA effects are not blocked by the muscarinic receptor antagonist atropine, T84 cells possess transcript and protein for the bile acid G protein-coupled receptor TGR5. These results demonstrate for the first time that CDCA activates CFTR via a cAMP-PKA pathway involving microtubules and imply that this occurs via a basolateral membrane receptor.
Collapse
Affiliation(s)
- Mei Ao
- Department of Physiology and Biophysics, University of Illinois, Chicago, Illinois
| | | | | | | | | |
Collapse
|
6
|
Annaba F, Sarwar Z, Gill RK, Ghosh A, Saksena S, Borthakur A, Hecht GA, Dudeja PK, Alrefai WA. Enteropathogenic Escherichia coli inhibits ileal sodium-dependent bile acid transporter ASBT. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1216-22. [PMID: 22403793 PMCID: PMC3362099 DOI: 10.1152/ajpgi.00017.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apical sodium-dependent bile acid transporter (ASBT) is responsible for the absorption of bile acids from the intestine. A decrease in ASBT function and expression has been implicated in diarrhea associated with intestinal inflammation. Whether infection with pathogenic microorganisms such as the enteropathogenic Escherichia coli (EPEC) affect ASBT activity is not known. EPEC is a food-borne enteric pathogen that translocates bacterial effector molecules via type three secretion system (TTSS) into host cells and is a major cause of infantile diarrhea. We investigated the effects of EPEC infection on ileal ASBT function utilizing human intestinal Caco2 cells and HEK-293 cells stably transfected with ASBT-V5 fusion protein (2BT cells). ASBT activity was significantly inhibited following 60 min infection with EPEC but not with nonpathogenic E. coli. Mutations in bacterial escN, espA, espB, and espD, the genes encoding for the elements of bacterial TTSS, ablated EPEC inhibitory effect on ASBT function. Furthermore, mutation in the bacterial BFP gene encoding for bundle-forming pili abrogated the inhibition of ASBT by EPEC, indicating the essential role for bacterial aggregation and the early attachment. The inhibition by EPEC was associated with a significant decrease in the V(max) of the transporter and a reduction in the level of ASBT on the plasma membrane. The inhibition of ASBT by EPEC was blocked in the presence of protein tyrosine phosphatase inhibitors. Our studies provide novel evidence for the alterations in the activity of ASBT by EPEC infection and suggest a possible effect for EPEC in influencing intestinal bile acid homeostasis.
Collapse
Affiliation(s)
- Fadi Annaba
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and
| | - Zaheer Sarwar
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and
| | - Ravinder K. Gill
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and
| | - Amit Ghosh
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and
| | - Seema Saksena
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and
| | - Alip Borthakur
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and
| | - Gail A. Hecht
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and ,2Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Pradeep K. Dudeja
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and ,2Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Waddah A. Alrefai
- 1Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and ,2Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
7
|
Abstract
According to the World Health Organization, there are approximately 2 billion annual cases of diarrhea worldwide. Diarrhea is the leading cause of death in children younger than 5 years and kills 1.5 million children each year. It is especially prevalent in the developing world, where mortality is related to dehydration, electrolyte disturbance, and the resultant acidosis, and in 2001, it accounted for 1.78 million deaths (3.7% of total deaths) in low- and middle-income countries. However, diarrhea is also a common problem in the developed world, with 211 million to 375 million episodes of infectious diarrheal illnesses in the United States annually, resulting in 73 million physician consultations, 1.8 million hospitalizations, and 3100 deaths. Furthermore, 4% to 5% of the Western population suffers from chronic diarrhea. Given the high prevalence of diarrhea, research has been directed at learning more about the cellular mechanisms underlying diarrheal illnesses in order to develop new medications directed at novel cellular targets. These cellular mechanisms and targets are discussed in this article.
Collapse
Affiliation(s)
- Alexandra J Kent
- Department of Gastroenterology, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | | |
Collapse
|
8
|
Sarwar Z, Annaba F, Dwivedi A, Saksena S, Gill RK, Alrefai WA. Modulation of ileal apical Na+-dependent bile acid transporter ASBT by protein kinase C. Am J Physiol Gastrointest Liver Physiol 2009; 297:G532-8. [PMID: 19571234 PMCID: PMC2739819 DOI: 10.1152/ajpgi.00052.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ileal apical Na(+)-dependent bile acid transporter (ASBT) is responsible for reabsorbing the majority of bile acids from the intestinal lumen. Rapid adaptation of ASBT function in response to physiological and pathophysiological stimuli is essential for the maintenance of bile acid homeostasis. However, not much is known about molecular mechanisms responsible for acute posttranscriptional regulation of ileal ASBT. The protein kinase C (PKC)-dependent pathway represents a major cell signaling mechanism influencing intestinal epithelial functions. The present studies were, therefore, undertaken to investigate ASBT regulation in intestinal Caco-2 monolayers by the well-known PKC activator phorbol 12-myristate 13-acetate (PMA). Our results showed that Na(+)-dependent [(3)H]taurocholic acid uptake in Caco-2 cells was significantly inhibited in response to 2 h incubation with 100 nM PMA compared with incubation with 4alpha-PMA (inactive form). The inhibitory effect of PMA was blocked in the presence of 5 microM bisindolylmaleimide I (PKC inhibitor) but not 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM (Ca(2+) chelator) or LY-294002 (phosphatidylinositol 3-kinase inhibitor). PMA inhibition of ASBT function was also abrogated in the presence of myristoylated PKCzeta pseudosubstrate peptide, indicating involvement of the atypical PKCzeta isoform. The inhibition by PMA was associated with a significant decrease in the maximal velocity of the transporter and a reduction in ASBT plasma membrane content, suggesting a modulation by vesicular recycling. Our novel findings demonstrate a posttranscriptional modulation of ileal ASBT function and membrane expression by phorbol ester via a PKCzeta-dependent pathway.
Collapse
Affiliation(s)
- Zaheer Sarwar
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinios
| | - Fadi Annaba
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinios
| | - Alka Dwivedi
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinios
| | - Seema Saksena
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinios
| | - Ravinder K. Gill
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinios
| | - Waddah A. Alrefai
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinios
| |
Collapse
|
9
|
Abstract
Acute and chronic diarrheal disorders are common problems at all ages. It has been estimated that 5% to 7% of the population has an episode of acute diarrhea each year and that 3% to 5% have chronic diarrhea that lasts more than 4 weeks. It is likely that the prevalence of diarrhea is similar in older individuals. This article reviews the impact of diarrhea in the elderly, many of whom are less fit physiologically to withstand the effect of diarrhea on fluid balance and nutritional balance.
Collapse
Affiliation(s)
- Lawrence R Schiller
- Digestive Health Associates of Texas, 712 North Washington Avenue, #200, Dallas, TX 75246, USA.
| |
Collapse
|
10
|
Duerksen DR, Fallows G, Bernstein CN. Vitamin B12 malabsorption in patients with limited ileal resection. Nutrition 2006; 22:1210-3. [PMID: 17095407 DOI: 10.1016/j.nut.2006.08.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 07/24/2006] [Accepted: 08/28/2006] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Patients with Crohn's disease who have terminal ileal resections are at risk for vitamin B12 malabsorption. Our aim was to determine whether the length of terminal ileum resected correlated with an abnormal Schilling test result. METHODS Patients with a history of ileal resection had the length of small bowel removed determined by review of their pathology report. Patients who had a Schilling test within 3 mo of surgery or who had a documented normal terminal ileum at the time of the Schilling test were included in the study. RESULTS Fifty-six patients were included in the study. Patients who had <20 cm of terminal ileum resected (n = 14) did not develop abnormal Schilling test results; 52% of the remainder (n = 42) had abnormal Schilling test results and there was no clear correlation between resection length and abnormal Schilling test result. CONCLUSIONS Patients with Crohn's disease and terminal ileal resections <20 cm are not at risk of developing vitamin B12 deficiency. For patients with resections of 20-60 cm, options include doing a Schilling test and treating those with abnormal results, empirically treating patients on the presumption that they are at high risk of developing deficiency, or monitoring for biochemical evidence of deficiency. Further studies are needed to determine whether oral supplementation is effective in these patients.
Collapse
|