1
|
Zhang T, Xu L, Guo X, Tao H, Liu Y, Liu X, Zhang Y, Meng X. The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK. J Pharm Anal 2024; 14:157-176. [PMID: 38464786 PMCID: PMC10921247 DOI: 10.1016/j.jpha.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/09/2023] [Accepted: 09/05/2023] [Indexed: 03/12/2024] Open
Abstract
Heart failure (HF) is a highly morbid syndrome that seriously affects the physical and mental health of patients and generates an enormous socio-economic burden. In addition to cardiac myocyte oxidative stress and apoptosis, which are considered mechanisms for the development of HF, alterations in cardiac energy metabolism and pathological autophagy also contribute to cardiac abnormalities and ultimately HF. Silent information regulator 1 (Sirt1) and adenosine monophosphate-activated protein kinase (AMPK) are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases and phosphorylated kinases, respectively. They play similar roles in regulating some pathological processes of the heart through regulating targets such as peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), protein 38 mitogen-activated protein kinase (p38 MAPK), peroxisome proliferator-activated receptors (PPARs), and mammalian target of rapamycin (mTOR). We summarized the synergistic effects of Sirt1 and AMPK in the heart, and listed the traditional Chinese medicine (TCM) that exhibit cardioprotective properties by modulating the Sirt1/AMPK pathway, to provide a basis for the development of Sirt1/AMPK activators or inhibitors for the treatment of HF and other cardiovascular diseases (CVDs).
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaowei Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, 620032, China
| |
Collapse
|
2
|
Ren BC, Zhang YF, Liu SS, Cheng XJ, Yang X, Cui XG, Zhao XR, Zhao H, Hao MF, Li MD, Tie YY, Qu L, Li XY. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J Cell Mol Med 2020; 24:12355-12367. [PMID: 32961025 PMCID: PMC7687015 DOI: 10.1111/jcmm.15725] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Diabetes is a disorder of glucose metabolism, and over 90% are type 2 diabetes. Diabetic cardiomyopathy (DCM) is one of the type 2 diabetes complications, usually accompanied by changes in myocardial structure and function, together with cardiomyocyte apoptosis. Our study investigated the effect of curcumin on regulating oxidative stress (OS) and apoptosis in DCM. In vivo, diabetes was induced in an experimental rat model by streptozoticin (STZ) together with high‐glucose and high‐fat (HG/HF) diet feeding. In vitro, H9c2 cardiomyocytes were cultured with high‐glucose and saturated free fatty acid palmitate. Curcumin was orally or directly administered to rats or cells, respectively. Streptozoticin ‐induced diabetic rats showed metabolism abnormalities and elevated markers of OS (superoxide dismutase [SOD], malondialdehyde [MDA], gp91phox, Cyt‐Cyto C), enhanced cell apoptosis (Bax/Bcl‐2, Cleaved caspase‐3, TUNEL‐positive cells), together with reduced Akt phosphorylation and increased Foxo1 acetylation. Curcumin attenuated the myocardial dysfunction, OS and apoptosis in the heart of diabetic rats. Curcumin treatment also enhanced phosphorylation of Akt and inhibited acetylation of Foxo1. These results strongly suggest that apoptosis was increased in the heart of diabetic rats, and curcumin played a role in diabetic cardiomyopathy treatment by modulating the Sirt1‐Foxo1 and PI3K‐Akt pathways.
Collapse
Affiliation(s)
- Bin-Cheng Ren
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu-Fei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Shan-Shan Liu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Jing Cheng
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Yang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Guang Cui
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin-Rui Zhao
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Zhao
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Min-Feng Hao
- Department of Neurology, Xi'an Central Hospital, Xi'an, China
| | - Meng-Dan Li
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan-Yuan Tie
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Qu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xue-Yi Li
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Hamed AB, Mantawy EM, El-Bakly WM, Abdel-Mottaleb Y, Azab SS. Putative anti-inflammatory, antioxidant, and anti-apoptotic roles of the natural tissue guardian methyl palmitate against isoproterenol-induced myocardial injury in rats. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00044-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
Myocardial injury is considered as a worldwide main cause of morbidity and mortality. The present study aimed to investigate the probable cardioprotective activity of the naturally occurring endogenous fatty acid ester methyl palmitate (MP) against isoproterenol (ISO)-induced myocardial injury in rats and the possible underlying molecular mechanisms. The study was carried out in two consecutive sets of experiments; the first set screened the cardioprotective dose of MP in ISO-intoxicated rats. In the second set, forty male Sprague Dawley rats received either MP (150 mg/kg, p.o) three times/week for 2 weeks and/or 2 consecutive doses of ISO separated by 24 h (85 mg/kg, s.c) on the 13th and 14th days. Different cardiotoxicity and oxidative stress markers were assessed. Furthermore, endothelial nitric oxide synthase (eNOS) levels were determined. For detection of apoptosis, Bax, Bcl-2, and caspase 3 were estimated. To assess inflammation, toll-like receptor 4 (TLR-4) and tumor necrosis factor-alpha (TNF-α) were measured using ELISA. Meanwhile, nuclear factor kappa B (NF-kB) and cyclooxygenase-2 (COX-2) were detected immunohistochemically.
Results
Pretreatment with MP significantly ameliorated the cardiotoxicity and oxidative stress markers. It also markedly elevated eNOS content, decreased apoptotic marker expression, and mitigated TLR-4 activation and other inflammatory markers. Electrocardiography and histopathological examination also confirmed the cardioprotective effect of MP.
Conclusion
The findings of this study indicated that MP possesses a potent cardioprotective activity against ISO-induced myocardial injury through its significant antioxidant, anti-apoptotic, anti-inflammatory, and vasodilatation activities.
Graphical abstract
Collapse
|
4
|
Abstract
Nuclear factor-erythroid factor 2-related factor 2 (Nrf2) is a critical transcription factor that regulates the expression of over 1000 genes in the cell under normal and stressed conditions. These transcripts can be categorized into different groups with distinct functions, including antioxidative defense, detoxification, inflammatory responses, transcription factors, proteasomal and autophagic degradation, and metabolism. Nevertheless, Nrf2 has been historically considered as a crucial regulator of antioxidant defense to protect against various insult-induced organ damage and has evolved as a promising drug target for the treatment of human diseases, such as heart failure. However, burgeoning evidence has revealed a detrimental role of Nrf2 in cardiac pathological remodeling and dysfunction toward heart failure. In this mini-review, we outline recent advances in structural features of Nrf2 and regulation of Nrf2 activity and discuss the emerging dark side of Nrf2 in the heart as well as the potential mechanisms of Nrf2-mediated myocardial damage and dysfunction.
Collapse
Affiliation(s)
- Huimei Zang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Roy Oomen Mathew
- Division of Nephrology, Department of Medicine, Columbia VA Healthcare System, Columbia, SC, United States
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
5
|
Zeng C, Duan F, Hu J, Luo B, Huang B, Lou X, Sun X, Li H, Zhang X, Yin S, Tan H. NLRP3 inflammasome-mediated pyroptosis contributes to the pathogenesis of non-ischemic dilated cardiomyopathy. Redox Biol 2020; 34:101523. [PMID: 32273259 PMCID: PMC7327979 DOI: 10.1016/j.redox.2020.101523] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure, and the underlying mechanism remains largely elusive. Here we investigated whether NLRP3 inflammasome-mediated pyroptosis contributes to non-ischemic DCM and dissected the underlying mechanism. We found that hyper activated NLRP3 inflammasome with pyroptotic cell death of cardiomyocytes were presented in the myocardial tissues of DCM patients, which were negatively correlated with cardiac function. Doxorubicin (Dox)-induced DCM characterization disclosed that NLRP3 inflammasome activation and pyroptosis occurred in Dox-treated heart tissues, but were very marginal in either NLRP3-/- or caspase-1-/- mice. Mechanistically, Dox enhanced expressions of NOX1 and NOX4 and induced mitochondrial fission through dynamin-related protein 1 (Drp1) activation, leading to NLRP3 inflammasome-mediated pyroptosis in cardiomyocytes via caspase-1-dependent manner. Conversely, both inhibitions of NOX1 and NOX4 and Drp1 suppressed Dox-induced NLPR3 inflammasome activation and pyroptosis. The alterations of NOX1 and NOX4 expression, Drp1 phosphorylation and mitochondrial fission were validated in DCM patients and mice. Importantly, Dox-induced Drp1-mediated mitochondrial fission and the consequent NLRP3 inflammasome activation and pyroptosis were reversed by NOX1 and NOX4 inhibition in mice. This study demonstrates for the first time that cardiomyocyte pyroptosis triggered by NLRP3 inflammasome activation via caspase-1 causally contributes to myocardial dysfunction progression and DCM pathogenesis.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fengqi Duan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia Hu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bin Luo
- Department of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Binlong Huang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoying Lou
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Xiuting Sun
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hongyu Li
- Laboratory Animal Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xuanhong Zhang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shengli Yin
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Michałek M, Tabiś A, Pasławska U, Noszczyk-Nowak A. Antioxidant defence and oxidative stress markers in cats with asymptomatic and symptomatic hypertrophic cardiomyopathy: a pilot study. BMC Vet Res 2020; 16:26. [PMID: 32000761 PMCID: PMC6990494 DOI: 10.1186/s12917-020-2256-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/23/2020] [Indexed: 01/02/2023] Open
Abstract
Background Hypertrophic cardiomyopathy is the most common cardiovascular cause of death in cats. Although the majority of cats remain asymptomatic, some may develop signs of chronic heart failure due to diastolic failure, arterial thromboembolism (ATE) or sudden cardiac death. Therefore, it is crucial to identify individuals that are in high risk of developing cardiac complications before the onset of life-threatening signs. Oxidative stress is the imbalance between the production and neutralisation of reactive oxygen species. Uncontrolled reactive oxygen species overproduction leads to protein and lipid peroxidation and damages the DNA strands, injuring the cells and leading to their death. The aim of the study was to evaluate the oxidative state in cats with hypertrophic cardiomyopathy and healthy controls. Results In total, 30 cats divided into three groups were assessed: animals with clinically evident hypertrophic cardiomyopathy (HCM; n = 8), subclinical hypertrophic cardiomyopathy (SUB-HCM; n = 11) and healthy controls (n = 11). The activity of superoxide dismutase was statistically significantly lower in animals with symptomatic and asymptomatic hypertrophic cardiomyopathy (HCM 0.99 ± 0.35 U/mL; SUB-HCM 1.39 ± 0.4 U/mL) compared to healthy cats (2.07 ± 0.76 U/mL, p < 0.01). The activity of catalase was significantly lower in the SUB-HCM group (19.4 ± 4.2 nmol/min/mL) compared to the HCM (23.6 ± 5.9 nmol/min/mL) and the control (30 ± 7.5 nmol/min/mL, p < 0.01) group. The activity of glutathione peroxidase was 4196 ± 353 nmol/min/mL in the HCM group, 4331 ± 451 nmol/min/mL in the SUB-HCM group and 4037 ± 341 nmol/min/mL in the control group and did not differ significantly between groups. The total antioxidant capacity of plasma was 602 ± 65.5 copper reducing equivalents (CRE) in the HCM group, 605.9 ± 39.9 CRE in the SUB-HCM group and 629 ± 77.5 CRE in the healthy cats and did not differ significantly between the groups. Conclusions Activities of superoxide dismutase and catalase differed in cats with hypertrophic cardiomyopathy, however the activity of the latter was only significantly lower in asymptomatic stage of the disease. The potentially beneficial effect of antioxidative substances on the disease progression in the asymptomatic and symptomatic stage of this disease should also be examined.
Collapse
Affiliation(s)
- Marcin Michałek
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Grunwaldzki sq. 47, Wrocław, 50-366, Poland.
| | - Aleksandra Tabiś
- Department of Food Hygiene and Consumer Health, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, Wrocław, 50-375, Poland
| | - Urszula Pasławska
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Grunwaldzki sq. 47, Wrocław, 50-366, Poland
| | - Agnieszka Noszczyk-Nowak
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Grunwaldzki sq. 47, Wrocław, 50-366, Poland
| |
Collapse
|
7
|
Ren X, Johns RA, Gao WD. EXPRESS: Right Heart in Pulmonary Hypertension: From Adaptation to Failure. Pulm Circ 2019; 9:2045894019845611. [PMID: 30942134 PMCID: PMC6681271 DOI: 10.1177/2045894019845611] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/27/2019] [Indexed: 01/24/2023] Open
Abstract
Right ventricular (RV) failure (RVF) has garnered significant attention in recent years because of its negative impact on clinical outcomes in patients with pulmonary hypertension (PH). PH triggers a series of events, including activation of several signaling pathways that regulate cell growth, metabolism, extracellular matrix remodeling, and energy production. These processes render the RV adaptive to PH. However, RVF develops when PH persists, accompanied by RV ischemia, alterations in substrate and mitochondrial energy metabolism, increased free oxygen radicals, increased cell loss, downregulation of adrenergic receptors, increased inflammation and fibrosis, and pathologic microRNAs. Diastolic dysfunction is also an integral part of RVF. Emerging non-invasive technologies such as molecular or metallic imaging, cardiac MRI, and ultrafast Doppler coronary flow mapping will be valuable tools to monitor RVF, especially the transition to RVF. Most PH therapies cannot treat RVF once it has occurred. A variety of therapies are available to treat acute and chronic RVF, but they are mainly supportive, and no effective therapy directly targets the failing RV. Therapies that target cell growth, cellular metabolism, oxidative stress, and myocyte regeneration are being tested preclinically. Future research should include establishing novel RVF models based on existing models, increasing use of human samples, creating human stem cell-based in vitro models, and characterizing alterations in cardiac excitation–contraction coupling during transition from adaptive RV to RVF. More successful strategies to manage RVF will likely be developed as we learn more about the transition from adaptive remodeling to maladaptive RVF in the future.
Collapse
Affiliation(s)
- Xianfeng Ren
- Department of Anesthesiology,
China-Japan
Friendship Hospital, Beijing, China
| | - Roger A. Johns
- Department of Anesthesiology and
Critical Care Medicine,
Johns
Hopkins University School of Medicine,
Baltimore, MD, USA
| | - Wei Dong Gao
- Department of Anesthesiology and
Critical Care Medicine,
Johns
Hopkins University School of Medicine,
Baltimore, MD, USA
| |
Collapse
|
8
|
Jiao Y, Wang Y, Guo S, Wang G. Glutathione peroxidases as oncotargets. Oncotarget 2017; 8:80093-80102. [PMID: 29108391 PMCID: PMC5668124 DOI: 10.18632/oncotarget.20278] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is a disturbance in the equilibrium among free radicals, reactive oxygen species, and endogenous antioxidant defense mechanisms. Oxidative stress is a result of imbalance between the production of reactive oxygen and the biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Mounting evidence has implicated oxidative stress in various physiological and pathological processes, including DNA damage, proliferation, cell adhesion, and survival of cancer cells. Glutathione peroxidases (GPxs) (EC 1.11.1.9) are an enzyme family with peroxidase activity whose main biological roles are to protect organisms from oxidative damage by reducing lipid hydroperoxides as well as free hydrogen peroxide. Currently, 8 sub-members of GPxs have been identified in humans, all capable of reducing H2O2 and soluble fatty acid hydroperoxides. A large number of publications has demonstrated that GPxs have significant roles in different stages of carcinogenesis. In this review, we will update recent progress in the study of the roles of GPxs in cancer. Better mechanistic understanding of GPxs will potentially contribute to the development and advancement of improved cancer treatment models.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Stomatology, PLA Army General Hospital, Beijing, P.R. China
| | - Yirong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, P.R. China
| | - Shanchun Guo
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| |
Collapse
|
9
|
Isaak CK, Petkau JC, Blewett H, O K, Siow YL. Lingonberry anthocyanins protect cardiac cells from oxidative-stress-induced apoptosis. Can J Physiol Pharmacol 2017; 95:904-910. [PMID: 28384410 DOI: 10.1139/cjpp-2016-0667] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lingonberry grown in northern Manitoba, Canada, contains exceptionally high levels of anthocyanins and other polyphenols. Previous studies from our lab have shown that lingonberry anthocyanins can protect H9c2 cells from ischemia-reperfusion injury and anthocyanin-rich diets have been shown to be associated with decreased cardiovascular disease and mortality. Oxidative stress can impair function and trigger apoptosis in cardiomyocytes. This study investigated the protective effects of physiologically relevant doses of lingonberry extracts and pure anthocyanins against hydrogen-peroxide-induced cell death. Apoptosis and necrosis were detected in H9c2 cells after hydrogen peroxide treatment via flow cytometry using FLICA 660 caspase 3/7 combined with YO-PRO-1 and then confirmed with Hoechst staining and fluorescence microscopy. Each of the 3 major anthocyanins found in lingonberry (cyanidin-3-galactoside, cyanidin-3-glucoside, and cyanidin-3-arabinoside) was protective against hydrogen-peroxide-induced apoptosis in H9c2 cells at 10 ng·mL-1 (20 nmol·L-1) and restored the number of viable cells to match the control group. A combination of the 3 anthocyanins was also protective and a lingonberry extract tested at 3 concentrations produced a dose-dependent protective effect. Lingonberry anthocyanins protected cardiac cells from oxidative-stress-induced apoptosis and may have cardioprotective effects as a dietary modification.
Collapse
Affiliation(s)
- Cara K Isaak
- a Agriculture and Agri-Food Canada, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,c Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Jay C Petkau
- a Agriculture and Agri-Food Canada, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Heather Blewett
- a Agriculture and Agri-Food Canada, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,c Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.,d Department of Human Nutritional Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Karmin O
- b Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,c Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.,e Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yaw L Siow
- a Agriculture and Agri-Food Canada, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,b Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,c Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
10
|
Köse O, Arabacı T, Yemenoglu H, Ozkanlar S, Kurt N, Gumussoy I, Gedikli S, Kara A. Influence of experimental periodontitis on cardiac oxidative stress in rats: a biochemical and histomorphometric study. J Periodontal Res 2016; 52:603-608. [DOI: 10.1111/jre.12428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2016] [Indexed: 02/07/2023]
Affiliation(s)
- O. Köse
- Department of Periodontology; School of Dentistry; Recep Tayyip Erdogan University; Rize Turkey
| | - T. Arabacı
- Department of Periodontology; School of Dentistry; Ataturk University; Erzurum Turkey
| | - H. Yemenoglu
- Department of Periodontology; School of Dentistry; Recep Tayyip Erdogan University; Rize Turkey
| | - S. Ozkanlar
- Department of Biochemistry; School of Veterinary Medicine; Ataturk University; Erzurum Turkey
| | - N. Kurt
- Department of Biochemistry; School of Medicine; Ataturk University; Erzurum Turkey
| | - I. Gumussoy
- Department of Dentomaxillofacial Radiology; School of Dentistry; Recep Tayyip Erdogan University; Rize Turkey
| | - S. Gedikli
- Department of Histology and Embryology; School of Veterinary Medicine; Ataturk University; Erzurum Turkey
| | - A. Kara
- Department of Histology and Embryology; School of Veterinary Medicine; Ataturk University; Erzurum Turkey
| |
Collapse
|
11
|
The antioxidant compound tert-butylhydroquinone activates Akt in myocardium, suppresses apoptosis and ameliorates pressure overload-induced cardiac dysfunction. Sci Rep 2015; 5:13005. [PMID: 26260024 PMCID: PMC4531315 DOI: 10.1038/srep13005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/10/2015] [Indexed: 02/06/2023] Open
Abstract
Tert-butylhydroquinone (TBHQ) is an antioxidant compound which shows multiple cytoprotective actions. We evaluated the effects of TBHQ on pathological cardiac remodeling and dysfunction induced by chronic overload. Pressure overload was created by transverse aortic constriction (TAC) in male C57BL/6 mice. TBHQ was incorporated in the diet and administered for 4 weeks. TBHQ treatment prevented left ventricular dilatation and cardiac dysfunction induced by TAC, and decreased the prevalence of myocardial apoptosis. The beneficial effects of TBHQ were associated with an increase in Akt activation, but not related to activations of Nrf2 or AMP-activated protein kinase. TBHQ-induced Akt activation was accompanied by increased phosphorylation of Bad, glycogen synthase kinase-3β (GSK-3β) and mammalian target of rapamycin (mTOR). Mechanistically, we showed that in cultured H9c2 cells and primary cardiac myocytes, TBHQ stimulated Akt phosphorylation and suppressed oxidant-induced apoptosis; this effect was abolished by wortmannin or an Akt inhibitor. Blockade of the Akt pathway in vivo accelerated cardiac dysfunction, and abrogated the protective effects of TBHQ. TBHQ also reduced the reactive aldehyde production and protein carbonylation in stressed myocardium. We suggest that TBHQ treatment may represent a novel strategy for timely activation of the cytoprotective Akt pathway in stressed myocardium.
Collapse
|
12
|
Glutathione suppresses cerebral infarct volume and cell death after ischemic injury: involvement of FOXO3 inactivation and Bcl2 expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:426069. [PMID: 25722793 PMCID: PMC4334940 DOI: 10.1155/2015/426069] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/18/2015] [Accepted: 01/27/2015] [Indexed: 01/27/2023]
Abstract
Ischemic stroke interrupts the flow of blood to the brain and subsequently results in cerebral infarction and neuronal cell death, leading to severe pathophysiology. Glutathione (GSH) is an antioxidant with cellular protective functions, including reactive oxygen species (ROS) scavenging in the brain. In addition, GSH is involved in various cellular survival pathways in response to oxidative stress. In the present study, we examined whether GSH reduces cerebral infarct size after middle cerebral artery occlusion in vivo and the signaling mechanisms involved in the promotion of cell survival after GSH treatment under ischemia/reperfusion conditions in vitro. To determine whether GSH reduces the extent of cerebral infarction, cell death after ischemia, and reperfusion injury, we measured infarct size in ischemic brain tissue and the expression of claudin-5 associated with brain infarct formation. We also examined activation of the PI3K/Akt pathway, inactivation of FOXO3, and expression of Bcl2 to assess the role of GSH in promoting cell survival in response to ischemic injury. Based on our results, we suggest that GSH might improve the pathogenesis of ischemic stroke by attenuating cerebral infarction and cell death.
Collapse
|
13
|
Heart failure and mitochondrial dysfunction: the role of mitochondrial fission/fusion abnormalities and new therapeutic strategies. J Cardiovasc Pharmacol 2014; 63:196-206. [PMID: 23884159 DOI: 10.1097/01.fjc.0000432861.55968.a6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The treatment of heart failure (HF) has evolved during the past 30 years with the recognition of neurohormonal activation and the effectiveness of its inhibition in improving the quality of life and survival. Over the past 20 years, there has been a revolution in the investigation of the mitochondrion with the development of new techniques and the finding that mitochondria are connected in networks and undergo constant division (fission) and fusion, even in cardiac myocytes. This has led to new molecular and cellular discoveries in HF, which offer the potential for the development of new molecular-based therapies. Reactive oxygen species are an important cause of mitochondrial and cellular injury in HF, but there are other abnormalities, such as depressed mitochondrial fusion, that may eventually become the targets of at least episodic treatment. The overall need for mitochondrial fission/fusion balance may preclude sustained change in either fission or fusion. In this review, we will discuss the current HF therapy and its impact on the mitochondria. In addition, we will review some of the new drug targets under development. There is potential for effective, novel therapies for HF to arise from new molecular understanding.
Collapse
|
14
|
Lin CH, Lin CC, Ting WJ, Pai PY, Kuo CH, Ho TJ, Kuo WW, Chang CH, Huang CY, Lin WT. Resveratrol enhanced FOXO3 phosphorylation via synergetic activation of SIRT1 and PI3K/Akt signaling to improve the effects of exercise in elderly rat hearts. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9705. [PMID: 25158994 PMCID: PMC4453936 DOI: 10.1007/s11357-014-9705-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 08/05/2014] [Indexed: 05/29/2023]
Abstract
Exercise training is considered a benefit to heart function, but the benefit in aging hearts remains unknown. Activation of the PI3K-Akt survival pathway and suppression of Fas/FADD/caspase-8 apoptotic signaling by exercise training in hearts from young subjects have been described in our previous studies. However, the mechanisms are still unclear and need to be explored in aging hearts. Thus, 18-month-old rats were used as a model and underwent swimming exercise training, resveratrol treatment (15 mg/kg/day), or exercise training with resveratrol treatment for 1 month. The results showed that heart function in each group improved. However, the 18-month-old rats in the exercise-only group experienced the slightly inevitable impact of increased TNF-α, cell apoptosis, and fibrosis. In the protein analysis, the PI3K-Akt pathway was slightly increased with exercise training and resveratrol treatment, but Sirtuin 1 (SIRT1) was only highly activated with resveratrol treatment in the aged rat hearts. Moreover, the exercise training plus resveratrol group benefited from SIRT1 and PI3K-Akt dual pathways and blocked FOXO3 accumulation. Our experimental results strongly suggest that resveratrol treatment improves the beneficial effects of exercise training in aging rat hearts.
Collapse
Affiliation(s)
- Chih-Hsueh Lin
- />Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
- />School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- />Ph.D. Program for Aging, China Medical University, Taichung, Taiwan
| | - Cheng-Chieh Lin
- />Department of Family Medicine, China Medical University Hospital, Taichung, Taiwan
- />School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- />Ph.D. Program for Aging, China Medical University, Taichung, Taiwan
| | - Wei-Jen Ting
- />Graduate Institute of Basic Medical Science, China Medical University, No 91, Hsueh-Shih Road, 404 Taichung, Taiwan
| | - Pei-Ying Pai
- />Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hua Kuo
- />Laboratory of Exercise Biochemistry, Taipei Physical Education College, Taipei, Taiwan
| | - Tsung-Jung Ho
- />School of Chinese Medicine, China Medical University, Taichung, Taiwan
- />Chinese Medicine Department, China Medical University Beigang Hospital, Beigang, Taiwan
| | - Wei-Wen Kuo
- />Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chung-Ho Chang
- />Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town, Taiwan
| | - Chih-Yang Huang
- />Graduate Institute of Basic Medical Science, China Medical University, No 91, Hsueh-Shih Road, 404 Taichung, Taiwan
- />School of Chinese Medicine, China Medical University, Taichung, Taiwan
- />Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Wan-Teng Lin
- />Department of Hospitality Management, College of Agriculture, Tunghai University, No. 181, Sec. 3, Taichung Port Rd., Situn District, 40704 Taichung City, Taiwan
| |
Collapse
|
15
|
Loss of NOX2 (gp91phox) prevents oxidative stress and progression to advanced heart failure. Clin Sci (Lond) 2014; 127:331-40. [PMID: 24624929 DOI: 10.1042/cs20130787] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oxidative stress plays a key pathogenic role in experimental and human heart failure. However, the source of ROS (reactive oxygen species) is a key determinant of the cardiac adaptation to pathological stressors. In the present study, we have shown that human dilated cardiomyopathy is associated with increased NOX2 (NADPH oxidase 2) levels, increased oxidative stress with adverse myocardial remodelling and activation of MAPKs (mitogen-activated protein kinases). Advanced heart failure in mice was also associated with increased NOX2 levels. Furthermore, we have utilized the pressure-overload model to examine the role of NOX2 in advanced heart failure. Increased cardiomyocyte hypertrophy and myocardial fibrosis in response to pressure overload correlated with increased oxidative stress, and loss of NOX2 prevented the increase in oxidative stress, development of cardiomyocyte hypertrophy, myocardial fibrosis and increased myocardial MMP (matrix metalloproteinase) activity in response to pressure overload. Consistent with these findings, expression of disease markers revealed a marked suppression of atrial natriuretic factor, β-myosin heavy chain, B-type natriuretic peptide and α-skeletal actin expression in pressure-overloaded hearts from NOX2-deficient mice. Activation of MAPK signalling, a well-known mediator of pathological remodelling, was lowered in hearts from NOX2-deficient mice in response to pressure overload. Functional assessment using transthoracic echocardiography and invasive pressure-volume loop analysis showed a marked protection in diastolic and systolic dysfunction in pressure-overloaded hearts from NOX2-deficient mice. Loss of NOX2 prevented oxidative stress in heart disease and resulted in sustained protection from the progression to advanced heart failure. Our results support a key pathogenic role of NOX2 in murine and human heart failure, and specific therapy antagonizing NOX2 activity may have therapeutic effects in advanced heart failure.
Collapse
|
16
|
Koerner MM, El-Banayosy A, Eleuteri K, Kline C, Stephenson E, Pae W, Ghodsizad A. Neurohormonal Regulation and Improvement in Blood Glucose Control: Reduction of Insulin Requirement in Patients with a Nonpulsatile Ventricular Assist Device. Heart Surg Forum 2014; 17:E98-102. [DOI: 10.1532/hsf98.2013323] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
<p><b>Background:</b> Heart failure is associated with prolonged stress and inflammation characterized by elevated levels of cortisol and circulating catecholamines. Persistent sympathetic stimulation secondary to the stress of heart failure causes an induced insulin resistance, which creates a need for higher doses of insulin to adequately manage hyperglycemia in this patient population. We hypothesized that cortisol and catecholamine levels would be elevated in end-stage heart failure patients, however, would be reduced after the implantation of a left ventricular assist device (LVAD). Insulin requirements would therefore be reduced post LVAD implant and control of diabetes improved as compared with pre-implant.</p><p><b>Methods:</b> Pre- and postoperative cortisol, catecholamine, glycated hemoglobin, and blood glucose levels were evaluated retrospectively in 99 LVAD patients at a single center from January 2007 through November 2011. Serum was collected before LVAD implantation and monthly after implantation for 12 months consecutively. Results were evaluated and compared to insulin requirements, if any, before and after implant. Plasma levels were measured by ELISA.</p><p><b>Results:</b> There were a total of 99 patients (81 men and 18 women). Two patients were implanted twice due to pump dysfunction. Mean age was 59 years, � 10, with a median of 63 years. Of those patients, 64 had ischemic cardiomyopathy and 35 had dilated cardiomyopathy. The total patient years of LVAD support were 92.5 years. All patients received a continuous flow left ventricular assist device. Type II diabetes mellitus was diagnosed in 28 patients. Of those patients, 24 required daily insulin with an average dose of 45 units/day. Average preoperative glycated hemoglobin (HbA1c) levels were 6.8% with fasting blood glucose measurements of 136 mg/dL. Mean cortisol levels were measured at 24.3 ?g/dL before LVAD implantation, with mean plasma catecholamine levels of 1824 ?g/mL. Post operatively, average HbA1c levels were 5.38% with fasting blood glucose measurements of 122 mg/dL. Mean cortisol levels were measured at 10.9 ?g/dL with average plasma catecholamine levels were 815 ?g/mL. There was a significant decrease in both cortisol levels post LVAD implant (<i>P</i> = 0.012) as well as catecholamine levels (<i>P</i> = 0.044). The average insulin requirements post LVAD implant were significantly reduced to 13 units/day (<i>P</i> = 0.001). Six patients no longer required any insulin after implant.</p><p><b>Conclusion:</b> Implantation of nonpulsatile LVADs has become a viable option for the treatment of end-stage heart failure, helping to improve patient quality of life by decreasing clinical symptoms associated with poor end-organ perfusion. Frequently, diabetes is a comorbid condition that exists among heart failure patients and with the reduction of the systemic inflammatory and stress response produced by the support of a nonpulsatile LVAD, many patients may benefit from a reduction in their blood glucose levels, as well as insulin requirements.</p>
Collapse
|
17
|
Activation of intracellular matrix metalloproteinase-2 by reactive oxygen–nitrogen species: Consequences and therapeutic strategies in the heart. Arch Biochem Biophys 2013; 540:82-93. [DOI: 10.1016/j.abb.2013.09.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/20/2013] [Accepted: 09/30/2013] [Indexed: 12/27/2022]
|
18
|
Kim YA, Kim MY, Jung YS. Glutathione Depletion by L-Buthionine-S,R-Sulfoximine Induces Apoptosis of Cardiomyocytes through Activation of PKC-δ. Biomol Ther (Seoul) 2013; 21:358-63. [PMID: 24244823 PMCID: PMC3825199 DOI: 10.4062/biomolther.2013.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/16/2013] [Accepted: 09/23/2013] [Indexed: 01/08/2023] Open
Abstract
In the present study, we investigated the effect of intracellular glutathione (GSH) depletion in heart-derived H9c2 cells and its mechanism. L-buthionine-S,R-sulfoximine (BSO) induced the depletion of cellular GSH, and BSO-induced reactive oxygen species (ROS) production was inhibited by glutathione monoethyl ester (GME). Additionally, GME inhibited BSO-induced caspase-3 activation, annexin V-positive cells, and annexin V-negative/propidium iodide (PI)-positive cells. Treatment with rottlerin completely blocked BSO-induced cell death and ROS generation. BSO-induced GSH depletion caused a translocation of PKC-δ from the cytosol to the membrane fraction, which was inhibited by treatment with GME. From these results, it is suggested that BSO-induced depletion of cellular GSH causes an activation of PKC-δ and, subsequently, generation of ROS, thereby inducing H9c2 cell death.
Collapse
Affiliation(s)
- Young-Ae Kim
- Department of Pathophysiology, College of Pharmacy ; Brain Korea 21 for Molecular Science and Technology
| | | | | |
Collapse
|
19
|
Guellich A, Damy T, Conti M, Claes V, Samuel JL, Pineau T, Lecarpentier Y, Coirault C. Tempol prevents cardiac oxidative damage and left ventricular dysfunction in the PPAR-α KO mouse. Am J Physiol Heart Circ Physiol 2013; 304:H1505-12. [PMID: 23542920 DOI: 10.1152/ajpheart.00669.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-α deletion induces a profound decrease in MnSOD activity, leading to oxidative stress and left ventricular (LV) dysfunction. We tested the hypothesis that treatment of PPAR-α knockout (KO) mice with the SOD mimetic tempol prevents the heart from pathological remodelling and preserves LV function. Twenty PPAR-α KO mice and 20 age-matched wild-type mice were randomly treated for 8 wk with vehicle or tempol in the drinking water. LV contractile parameters were determined both in vivo using echocardiography and ex vivo using papillary muscle mechanics. Translational and posttranslational modifications of myosin heavy chain protein as well as the expression and activity of major antioxidant enzymes were measured. Tempol treatment did not affect LV function in wild-type mice; however, in PPAR-α KO mice, tempol prevented the decrease in LV ejection fraction and restored the contractile parameters of papillary muscle, including maximum shortening velocity, maximum extent of shortening, and total tension. Moreover, compared with untreated PPAR-α KO mice, myosin heavy chain tyrosine nitration and anion superoxide production were markedly reduced in PPAR-α KO mice after treatment. Tempol also significantly increased glutathione peroxidase and glutathione reductase activities (~ 50%) in PPAR-α KO mice. In conclusion, these findings demonstrate that treatment with the SOD mimetic tempol can prevent cardiac dysfunction in PPAR-α KO mice by reducing the oxidation of contractile proteins. In addition, we show that the beneficial effects of tempol in PPAR-α KO mice involve activation of the glutathione peroxidase/glutathione reductase system.
Collapse
Affiliation(s)
- Aziz Guellich
- Unité (U)69, Institut National de la Santé et de la Recherche Médicale (INSERM), Labex-Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, Université Paris Sud, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Popolo A, Autore G, Pinto A, Marzocco S. Oxidative stress in patients with cardiovascular disease and chronic renal failure. Free Radic Res 2013; 47:346-56. [PMID: 23438723 DOI: 10.3109/10715762.2013.779373] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Oxidative response regulates many physiological response in human health, but if not properly regulated it could also lead to a number of deleterious effects. The importance of oxidative stress injury depends on the molecular target, the severity of the stress, and the mechanism by which the oxidative stress is imposed: it has been implicated in several diseases including cancer, neurodegenerative diseases, malaria, rheumatoid arthritis and cardiovascular and kidney disease. Most of the common diseases, such as hypertension, atherosclerosis, heart failure, and renal dysfunction, are associated with vascular functional and structural alterations including endothelial dysfunction, altered contractility, and vascular remodeling. Common to these processes is increased bioavailability of reactive oxygen species (ROS), decreased nitric oxide (NO) levels, and reduced antioxidant capacity. Oxidative processes are up-regulated also in patients with chronic renal failure (CRF) and seem to be a cause of elevated risk of morbidity and mortality in these patients. In this review, we highlight the role of oxidative stress in cardiovascular and renal disease.
Collapse
Affiliation(s)
- A Popolo
- Department of Pharmacy, School of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | | | | | | |
Collapse
|
21
|
Brioschi M, Polvani G, Fratto P, Parolari A, Agostoni P, Tremoli E, Banfi C. Redox proteomics identification of oxidatively modified myocardial proteins in human heart failure: implications for protein function. PLoS One 2012; 7:e35841. [PMID: 22606238 PMCID: PMC3351458 DOI: 10.1371/journal.pone.0035841] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 03/27/2012] [Indexed: 12/13/2022] Open
Abstract
Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF). The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n = 14) and non-failing human hearts (n = 13) were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS), the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01). We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK), whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF.
Collapse
Affiliation(s)
| | - Gianluca Polvani
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Science, University of Milan, Milan, Italy
| | | | - Alessandro Parolari
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Science, University of Milan, Milan, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Science, University of Milan, Milan, Italy
- Department of Clinical Care and Respiratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Elena Tremoli
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- * E-mail:
| |
Collapse
|