1
|
Huang QM, Long YL, Wang JN, Wu J, Tang WL, Wang XY, Zhang ZH, Zhuo YQ, Guan XH, Deng KY, Xin HB. Human amniotic MSCs-mediated anti-inflammation of CD206 hiIL-10 hi macrophages alleviates isoproterenol-induced ventricular remodeling in mice. Int Immunopharmacol 2024; 129:111660. [PMID: 38350357 DOI: 10.1016/j.intimp.2024.111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Human amniotic mesenchymal stem cells (hAMSCs) derived from amniotic membrane have multilineage differentiation, immunosuppressive, and anti-inflammation which makes them suitable for the treatment of various diseases. OBJECTIVE This study aimed to explore the therapeutic effect and molecular mechanism of hAMSCs in ventricular remodeling (VR). METHODS hAMSCs were characterized by a series of experiments such as flow cytometric analysis, immunofluorescence, differentiative induction and tumorigenicity. Mouse VR model was induced by isoproterenol (ISO) peritoneally, and the therapeutic effects and the potential mechanisms of hAMSCs transplantation were evaluated by echocardiography, carboxy fluorescein diacetate succinimidyl ester (CFSE) labeled cell tracing, histochemistry, qRT-PCR and western blot analysis. The co-culturing experiments were carried out for further exploring the mechanisms of hAMSCs-derived conditioned medium (CM) on macrophage polarization and fibroblast fibrosis in vitro. RESULTS hAMSCs transplantation significantly alleviated ISO-induced VR including cardiac hypertrophy and fibrosis with the improvements of cardiac functions. CFSE labeled hAMSCs kept an undifferentiated state in heart, indicating that hAMSCs-mediated the improvement of ISO-induced VR might be related to their paracrine effects. hAMSCs markedly inhibited ISO-induced inflammation and fibrosis, seen as the increase of M2 macrophage infiltration and the expressions of CD206 and IL-10, and the decreases of CD86, iNOS, COL3 and αSMA expressions in heart, suggesting that hAMSCs transplantation promoted the polarization of M2 macrophages and inhibited the polarization of M1 macrophages. Mechanically, hAMSCs-derived CM significantly increased the expressions of CD206, IL-10, Arg-1 and reduced the expressions of iNOS and IL-6 in RAW264.7 macrophages in vitro. Interestingly, RAW264.7-CM remarkably promoted the expressions of anti-inflammatory factors such as IL-10, IDO, and COX2 in hAMSCs. Furthermore, the CM derived from hAMSCs pretreated with RAW264.7-CM markedly inhibited the expressions of fibrogenesis genes such as αSMA and COL3 in 3T3 cells. CONCLUSION Our results demonstrated that hAMSCs effectively alleviated ISO-induced cardiac hypertrophy and fibrosis, and improved the cardiac functions in mice, and the underlying mechanisms might be related to inhibiting the inflammation and fibrosis during the ventricular remodeling through promoting the polarization of CD206hiIL-10hi macrophages in heart tissues. Our study strongly suggested that by taking the advantages of the potent immunosuppressive and anti-inflammatory effects, hAMSCs may provide an alternative therapeutic approach for prevention and treatment of VR clinically.
Collapse
Affiliation(s)
- Qi-Ming Huang
- College of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Ying-Lin Long
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jia-Nan Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jie Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Wen-Long Tang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiao-Yu Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, Nanchang 330031, Jiangxi, China
| | - Zhou-Hang Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China
| | - You-Qiong Zhuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China; School of Food Science and Technology, Nanchang University, Nanchang 330052, Jiangxi, China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China.
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China.
| | - Hong-Bo Xin
- College of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
2
|
Wu YT, Zhang GY, Hua Y, Fan HJ, Han X, Xu HL, Chen GH, Liu B, Xie LP, Zhou YC. Ferrostatin-1 suppresses cardiomyocyte ferroptosis after myocardial infarction by activating Nrf2 signaling. J Pharm Pharmacol 2023; 75:1467-1477. [PMID: 37738327 DOI: 10.1093/jpp/rgad080] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/20/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVES Ferroptosis, a new regulated cell death pathway, plays a crucial part in the development of cardiovascular disease. However, the precise underlying mechanism remains unclear. Therefore, this study aimed to elucidate this. METHODS Herein, an erastin-induced H9C2 cell ferroptosis in vitro model and a myocardial infarction murine model, which was created by ligating the left anterior descending coronary artery, were established. Ferroptosis-related indicators, myocardial injury-related indicators, and Nrf2 signaling-related proteins expression were analyzed to explore the potential mechanism underlying cardiomyocyte ferroptosis-mediated cardiovascular disease development. RESULTS We demonstrated that Nrf2 downregulation in myocardial tissue, accompanied by ferroptotic events and changes in xCT and GPX4 expressions, induced cardiomyocyte ferroptosis and myocardial injury after myocardial infarction. These events, including ferroptosis and changes in Nrf2, xCT, and GPX4 expressions, were improved by ferrostatin-1 in vivo and in vitro. Besides, Nrf2 deficiency or inhibition aggravated myocardial infarction-induced cardiomyocyte ferroptosis by decreasing xCT and GPX4 expressions in vivo and in vitro. Moreover, ferrostatin-1 directly targeted Nrf2, as evidenced by surface plasmon resonance analysis. CONCLUSIONS These results indicated that myocardial infarction is accompanied by cardiomyocyte ferroptosis and that Nrf2 signaling plays a crucial part in regulating cardiomyocyte ferroptosis after myocardial infarction.
Collapse
Affiliation(s)
- Yu-Ting Wu
- Binzhou Medical University Hospital, Binzhou 256603, China
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Guo-Yong Zhang
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Yue Hua
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Hui-Jie Fan
- Department of Traditional Chinese Medicine, Yangjiang People's Hospital, Yangjiang 529500, China
| | - Xin Han
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Hong-Lin Xu
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Guang-Hong Chen
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Ling-Peng Xie
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Ying-Chun Zhou
- School of Traditional Chinese Medicine, Department of Traditional Chinese Medicine, Nanfang Hospital (ZengCheng Branch), Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Wu T, Ren Y, Wang W, Cheng W, Zhou F, He S, Liu X, Li L, Tang L, Deng Q, Zhou X, Chen Y, Sun J. Left Ventricular Remodeling in Patients with Primary Aldosteronism: A Prospective Cardiac Magnetic Resonance Imaging Study. Korean J Radiol 2021; 22:1619-1627. [PMID: 34269528 PMCID: PMC8484156 DOI: 10.3348/kjr.2020.1291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/07/2021] [Accepted: 04/25/2021] [Indexed: 02/05/2023] Open
Abstract
Objective This study used cardiac magnetic resonance imaging (MRI) to compare the characteristics of left ventricular remodeling in patients with primary aldosteronism (PA) with those of patients with essential hypertension (EH) and healthy controls (HCs). Materials and Methods This prospective study enrolled 35 patients with PA, in addition to 35 age- and sex-matched patients with EH, and 35 age- and sex-matched HCs, all of whom underwent comprehensive clinical and cardiac MRI examinations. The analysis of variance was used to detect the differences in the characteristics of left ventricular remodeling among the three groups. Univariable and multivariable linear regression analyses were used to determine the relationships between left ventricular remodeling and the physiological variables. Results The left ventricular end-diastolic volume index (EDVi) (mean ± standard deviation [SD]: 85.1 ± 13.0 mL/m2 for PA, 75.9 ± 14.3 mL/m2 for EH, and 77.3 ± 12.8 mL/m2 for HC; p = 0.010), left ventricular end-systolic volume index (ESVi) (mean ± SD: 35.2 ± 9.8 mL/m2 for PA, 30.7 ± 8.1 mL/m2 for EH, and 29.5 ± 7.0 mL/m2 for HC; p = 0.013), left ventricular mass index (mean ± SD: 65.8 ± 16.5 g/m2 for PA, 56.9 ± 12.1 g/m2 for EH, and 44.1 ± 8.9 g/m2 for HC; p < 0.001), and native T1 (mean ± SD: 1224 ± 39 ms for PA, 1201 ± 47 ms for EH, and 1200 ± 44 ms for HC; p = 0.041) values were higher in the PA group compared to the EH and HC groups. Multivariable linear regression demonstrated that log (plasma aldosterone-to-renin ratio) was independently correlated with EDVi and ESVi. Plasma aldosterone was independently correlated with native T1. Conclusion Patients with PA showed a greater degree of ventricular hypertrophy and enlargement, as well as myocardial fibrosis, compared to those with EH. Cardiac MRI T1 mapping can detect left ventricular myocardial fibrosis in patients with PA.
Collapse
Affiliation(s)
- Tao Wu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Ren
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Cheng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Fangli Zhou
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Shuai He
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiumin Liu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Deng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyue Zhou
- Department of North Sichuan Medical College, Nanchong, China
| | - Yucheng Chen
- Department of MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Jiayu Sun
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
McLaughlin S, McNeill B, Podrebarac J, Hosoyama K, Sedlakova V, Cron G, Smyth D, Seymour R, Goel K, Liang W, Rayner KJ, Ruel M, Suuronen EJ, Alarcon EI. Injectable human recombinant collagen matrices limit adverse remodeling and improve cardiac function after myocardial infarction. Nat Commun 2019; 10:4866. [PMID: 31653830 PMCID: PMC6814728 DOI: 10.1038/s41467-019-12748-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/26/2019] [Indexed: 12/21/2022] Open
Abstract
Despite the success of current therapies for acute myocardial infarction (MI), many patients still develop adverse cardiac remodeling and heart failure. With the growing prevalence of heart failure, a new therapy is needed that can prevent remodeling and support tissue repair. Herein, we report on injectable recombinant human collagen type I (rHCI) and type III (rHCIII) matrices for treating MI. Injecting rHCI or rHCIII matrices in mice during the late proliferative phase post-MI restores the myocardium's mechanical properties and reduces scar size, but only the rHCI matrix maintains remote wall thickness and prevents heart enlargement. rHCI treatment increases cardiomyocyte and capillary numbers in the border zone and the presence of pro-wound healing macrophages in the ischemic area, while reducing the overall recruitment of bone marrow monocytes. Our findings show functional recovery post-MI using rHCI by promoting a healing environment, cardiomyocyte survival, and less pathological remodeling of the myocardium.
Collapse
Affiliation(s)
- Sarah McLaughlin
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H8M5, Canada
| | - Brian McNeill
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
| | - James Podrebarac
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H8M5, Canada
| | - Katsuhiro Hosoyama
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
| | - Veronika Sedlakova
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
| | - Gregory Cron
- Department of Radiology, Faculty of Medicine, University of Ottawa, 501 Smyth Road, Ottawa, ON, K1H8L6, Canada
| | - David Smyth
- Cardiac Function Laboratory, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
| | - Richard Seymour
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
| | - Keshav Goel
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
| | - Wenbin Liang
- Department of Cellular & Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H8M5, Canada
- Cardiac Electrophysiology Lab, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
| | - Katey J Rayner
- Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H8M5, Canada
| | - Marc Ruel
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada
- Department of Cellular & Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H8M5, Canada
| | - Erik J Suuronen
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada.
- Department of Cellular & Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H8M5, Canada.
| | - Emilio I Alarcon
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin street, Ottawa, ON, K1Y4W7, Canada.
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H8M5, Canada.
| |
Collapse
|
5
|
Boban M, Pesa V, Persic V, Zulj M, Malcic I, Beck N, Vcev A. Overlapping Phenotypes and Degree of Ventricular Dilatation Are Associated with Severity of Systolic Impairment and Late Gadolinium Enhancement in Non-Ischemic Cardiomyopathies. Med Sci Monit 2018; 24:5084-5092. [PMID: 30032158 PMCID: PMC6067028 DOI: 10.12659/msm.909172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Dilatation and other infrastructural rearrangements of the left ventricle are connected with poor prognosis. The aim of our study was to analyze the overlapping phenotypes and dilatation of the ventricle on impairment of systolic function and existence of late gadolinium enhancement (LGE). Material/Methods Consecutive sample of cases with dilated left ventricle due to non-ischemic cardiomyopathy and healthy controls were included from our cardiac magnetic resonance imaging (CMR) database for a period of 3 years (n=1551 exams). Results The study included 127 patients; 30 (23.6%) with dilated cardiomyopathy (DCM); 30 (23.6%) with left ventricular non-compaction (LVNC); 13 (10.2%) with hypertrophic cardiomyopathy (HCM), and 50 (39.4%) controls. Overlapping phenotypes were found in 48 (37.8%) of the studied cases. Odds for impairment of systolic function in connection with overlapping phenotypes were estimated at 7.8 (95%-CI: 3.4–17.6), (p<0.001). There were significant differences in geometric parameters for patients with overlapping phenotypes vs. controls, as follows: left ventricle end-diastolic dimension(LVEDD)=6.6±0.8 vs. 5.6±1.0 cm (p<0.001); left ventricular ejection fraction (LVEF)=39.3±14.0 vs. 52.1±16.1 (p<0.001); and existence of LGE 36 (75.0%) vs. 21 (26.6%), (p<0.001), respectively. Overlapping phenotypes correlated with LVEDD (Spearman’s-Rho-CC)=0.521, p<0.001; LVEF (Rho-CC)=−0.447, p<0.001 and LGE (Rho-CC)=0.472, p<0.001. Conclusions This study found there are many patients with overlapping phenotypes among NICMPs with dilated left ventricles. Overlapping phenotype was associated with greater LVEDD, lesser systolic function, and commonly existing LGE, which all impose increased cardiovascular risk. Linear midventricular LGE stripe was the most powerfully connected with loss of systolic function.
Collapse
Affiliation(s)
- Marko Boban
- Department of Cardiology, "Thalassotherapy Opatija" University Hospital, Medical Faculty, University of Rijeka, Rijeka, Croatia.,Department of Internal Medicine, "J.J. Strossmayer" Medical Faculty, University of Osijek, Osijek, Croatia.,Department of Internal Medicine, "J.J. Strossmayer" Dental and Health Studies Faculty, University of Osijek, Osijek, Croatia
| | - Vladimir Pesa
- Department of Cardiology, "Thalassotherapy Opatija" University Hospital, Medical Faculty, University of Rijeka, Rijeka, Croatia
| | - Viktor Persic
- Department of Cardiology, "Thalassotherapy Opatija" University Hospital, Medical Faculty, University of Rijeka, Rijeka, Croatia.,Department of Internal Medicine, "J.J. Strossmayer" Medical Faculty, University of Osijek, Osijek, Croatia.,Department of Internal Medicine, "J.J. Strossmayer" Dental and Health Studies Faculty, University of Osijek, Osijek, Croatia
| | - Marinko Zulj
- Department of Internal Medicine, "J.J. Strossmayer" Medical Faculty, University of Osijek, Osijek, Croatia.,Department of Internal Medicine, "J.J. Strossmayer" Dental and Health Studies Faculty, University of Osijek, Osijek, Croatia
| | - Ivan Malcic
- Department of Child's Cardiology, Zagreb University Hospital, Zagreb, Croatia.,Department of Pediatrics, Medical Faculty University of Zagreb, Zagreb, Croatia
| | - Natko Beck
- Department of Cardiology, "Thalassotherapy Opatija" University Hospital, Medical Faculty, University of Rijeka, Rijeka, Croatia
| | - Aleksandar Vcev
- Department of Internal Medicine, "J.J. Strossmayer" Medical Faculty, University of Osijek, Osijek, Croatia.,Department of Internal Medicine, "J.J. Strossmayer" Dental and Health Studies Faculty, University of Osijek, Osijek, Croatia
| |
Collapse
|
6
|
Ruan G, Ren H, Zhang C, Zhu X, Xu C, Wang L. Cardioprotective Effects of QiShenYiQi Dripping Pills on Transverse Aortic Constriction-Induced Heart Failure in Mice. Front Physiol 2018; 9:324. [PMID: 29666587 PMCID: PMC5891926 DOI: 10.3389/fphys.2018.00324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/15/2018] [Indexed: 12/18/2022] Open
Abstract
QiShenYiQi dripping pills (QSYQ), a traditional Chinese medicine, are commonly used to treat coronary heart disease, and QSYQ was recently approved as a complementary treatment for ischemic heart failure in China. However, only few studies reported on whether QSYQ exerts a protective effect on heart failure induced by pressure overload. In this study, we explored the role of QSYQ in a mouse model of heart failure induced by transverse aortic constriction (TAC). Twenty-eight C57BL/6J mice were divided into four groups: Sham + NS group, Sham + QSYQ group, TAC + NS group, and TAC + QSYQ group. QSYQ dissolved in normal saline (NS) was administered intragastrically (3.5 mg/100 g/day) in the Sham + QSYQ and TAC + QSYQ groups. In the Sham + NS and TAC + NS groups, NS was provided every day intragastrically. Eight weeks after TAC, echocardiography, and cardiac catheterization were performed to evaluate the cardiac function, and immunofluorescent staining with anti-actinin2 antibody was performed to determine the structure of the myocardial fibers. Moreover, TUNEL staining and Masson trichrome staining were employed to assess the effects of QSYQ on cardiac apoptosis and cardiac fibrosis. Western blots and real-time polymerase chain reaction (PCR) were used to measure the expression levels of vascular endothelial growth factor (VEGF) in the heart, and immunohistochemical staining with anti-CD31 antibody was performed to explore the role of QSYQ in cardiac angiogenesis. Results showed that TAC-induced cardiac dysfunction and disrupted structure of myocardial fibers significantly improved after QSYQ treatment. Moreover, QSYQ treatment also significantly improved cardiac apoptosis and cardiac fibrosis in TAC-induced heart failure, which was accompanied by an increase in VEGF expression levels and maintenance of microvessel density in the heart. In conclusion, QSYQ exerts a protective effect on TAC-induced heart failure, which could be attributed to enhanced cardiac angiogenesis, which is closely related to QSYQ. Thus, QSYQ may be a promising traditional Chinese medicine for the treatment of heart failure induced by pressure overload such as hypertension.
Collapse
Affiliation(s)
- Guoran Ruan
- Department of Cardiology, The Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Haojin Ren
- Department of Cardiology, The Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Chi Zhang
- Department of Cardiology, The Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaogang Zhu
- Department of Cardiology, The Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Chao Xu
- Department of Cardiology, The Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Liyue Wang
- Department of Cardiology, The Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Naveed M, Mohammad IS, Xue L, Khan S, Gang W, Cao Y, Cheng Y, Cui X, DingDing C, Feng Y, Zhijie W, Xiaohui Z. The promising future of ventricular restraint therapy for the management of end-stage heart failure. Biomed Pharmacother 2018; 99:25-32. [PMID: 29324309 DOI: 10.1016/j.biopha.2018.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/19/2017] [Accepted: 01/03/2018] [Indexed: 01/31/2023] Open
Abstract
Complicated pathophysiological syndrome associated with irregular functioning of the heart leading to insufficient blood supply to the organs is linked to congestive heart failure (CHF) which is the leading cause of death in developed countries. Numerous factors can add to heart failure (HF) pathogenesis, including myocardial infarction (MI), genetic factors, coronary artery disease (CAD), ischemia or hypertension. Presently, most of the therapies against CHF cause modest symptom relief but incapable of giving significant recovery for long-term survival outcomes. Unfortunately, there is no effective treatment of HF except cardiac transplantation but genetic variations, tissue mismatch, differences in certain immune response and socioeconomic crisis are some major concern with cardiac transplantation, suggested an alternate bridge to transplant (BTT) or destination therapies (DT). Ventricular restraint therapy (VRT) is a promising, non-transplant surgical treatment wherein the overall goal is to wrap the dilated heart with prosthetic material to mechanically restrain the heart at end-diastole, stop extra remodeling, and thereby ultimately improve patient symptoms, ventricular function and survival. Ventricular restraint devices (VRDs) are developed to treat end-stage HF and BTT, including the CorCap cardiac support device (CSD) (CSD; Acorn Cardiovascular Inc, St Paul, Minn), Paracor HeartNet (Paracor Medical, Sunnyvale, Calif), QVR (Polyzen Inc, Apex, NC) and ASD (ASD, X. Zhou). An overview of 4 restraint devices, with their precise advantages and disadvantages, will be presented. The accessible peer-reviewed literature summarized with an important considerations on the mechanism of restraint therapy and how this acquaintance can be accustomed to optimize and improve its effectiveness.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Imran Shair Mohammad
- Department of Pharmaceutics, China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Li Xue
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Sara Khan
- Department of Pharmaceutical Chemistry, University College of Pharmacy, University of the Punjab, Lahore 5400, Pakistan
| | - Wang Gang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Yanfang Cao
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Yijie Cheng
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Xingxing Cui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China
| | - Chen DingDing
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China.
| | - Yu Feng
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China.
| | - Wang Zhijie
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, PR China.
| | - Zhou Xiaohui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy China Pharmaceutical University, School of Pharmacy, Jiangsu Province, Nanjing 211198, PR China; Department of Heart Surgery, Nanjing Shuiximen Hospital, Jiangsu Province, Nanjing 210017, PR China; Department of Cardiothoracic Surgery, Zhongda Hospital affiliated to Southeast University, Jiangsu Province, Nanjing 210017, PR China.
| |
Collapse
|
8
|
Abstract
The health of the cardiovascular and pulmonary systems is inextricably linked to the renin-angiotensin system (RAS). Physiologically speaking, a balance between the vasodeleterious (Angiotensin-converting enzyme [ACE]/Angiotensin II [Ang II]/Ang II type 1 receptor [AT1R]) and vasoprotective (Angiotensin-converting enzyme 2 [ACE2]/Angiotensin-(1-7) [Ang-(1-7)]/Mas receptor [MasR]) components of the RAS is critical for cardiopulmonary homeostasis. Upregulation of the ACE/Ang II/AT1R axis shifts the system toward vasoconstriction, proliferation, hypertrophy, inflammation, and fibrosis, all factors that contribute to the development and progression of cardiopulmonary diseases. Conversely, stimulation of the vasoprotective ACE2/Ang-(1-7)/MasR axis produces a counter-regulatory response that promotes cardiovascular health. Current research is investigating novel strategies to augment actions of the vasoprotective RAS components, particularly ACE2, in order to treat various pathologies. Although multiple approaches to increase the activity of ACE2 have displayed beneficial effects against experimental disease models, the mechanisms behind its protective actions remain incompletely understood. Recent work demonstrating a non-catalytic role for ACE2 in amino acid transport in the gut has led us to speculate that the therapeutic effects of ACE2 can be mediated, in part, by its actions on the gastrointestinal tract and/or gut microbiome. This is consistent with emerging data which suggest that dysbiosis of the gut and lung microbiomes is associated with cardiopulmonary disease. This review highlights new developments in the protective actions of ACE2 against cardiopulmonary disorders, discusses innovative approaches to targeting ACE2 for therapy, and explores an evolving role for gut and lung microbiota in cardiopulmonary health.
Collapse
|
9
|
Dadson K, Kovacevic V, Rengasamy P, Kim GHE, Boo S, Li RK, George I, Schulze PC, Hinz B, Sweeney G. Cellular, structural and functional cardiac remodelling following pressure overload and unloading. Int J Cardiol 2016; 216:32-42. [PMID: 27140334 DOI: 10.1016/j.ijcard.2016.03.240] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/25/2016] [Accepted: 03/27/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND The cardiac remodelling process in advanced heart failure due to pressure overload has not been clearly defined but likely involves mechanisms of cardiac fibrosis and cardiomyocyte hypertrophy. The aim of this study was to examine pressure overload (PO)-induced cardiac remodelling processes and their reversibility after unloading in both humans with heart failure and a mouse model of PO induced by aortic constriction. METHODS & RESULTS Speckle tracking echocardiography showed PO-induced cardiac dysfunction in mice was reversible after removal of aortic constriction to unload. Masson's Trichrome staining suggested that PO-induced myocardial fibrosis was reversible, however detailed analysis of 3-dimensional collagen architecture by scanning electron microscopy demonstrated that matrix remodelling was not completely normalised as a disorganised network of thin collagen fibres was evident. Analysis of human left ventricular biopsy samples from HF patients revealed increased presence of large collagen fibres which were greatly reduced in paired samples from the same individuals after unloading by left ventricular assist device implantation. Again, an extensive network of small collagen fibres was still clearly seen to closely surround cardiomyocytes after unloading. Other features of PO-induced remodelling including increased myofibroblast content, cardiomyocyte disarray and hypertrophy were largely reversed upon unloading in both humans and mouse model. Previous work in humans demonstrated that receptors for adiponectin, an important mediator of cardiac fibrosis and hypertrophy, decreased in heart failure patients and returned to normal after unloading. Here we provide novel data showing a similar trend for adiponectin receptor adaptor protein APPL1, but not APPL2 isoform. CONCLUSIONS LV unloading diminishes PO-induced cardiac remodelling and improves function. These findings add new insights into the cardiac remodelling process, and provide novel targets for future pharmacologic therapies.
Collapse
Affiliation(s)
- Keith Dadson
- Department of Biology, York University, Toronto, Canada
| | | | | | | | - Stellar Boo
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Ren-Ke Li
- Division of Cardiovascular Surgery and Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Isaac George
- Department of Internal Medicine I, Division of Cardiology, Friedrich Schiller University Jena, Jena, Germany; Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, USA
| | - P Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, Friedrich Schiller University Jena, Jena, Germany; Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, USA
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Canada.
| |
Collapse
|
10
|
Ruiz-Zamora I, Rodriguez-Capitan J, Guerrero-Molina A, Morcillo-Hidalgo L, Rodriguez-Bailon I, Gomez-Doblas JJ, de Teresa-Galvan E, Garcia-Pinilla JM. Incidence and prognosis implications of long term left ventricular reverse remodeling in patients with dilated cardiomyopathy. Int J Cardiol 2016; 203:1114-21. [DOI: 10.1016/j.ijcard.2015.11.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 11/08/2015] [Accepted: 11/16/2015] [Indexed: 01/22/2023]
|
11
|
Pagliaro P, Penna C. Redox signalling and cardioprotection: translatability and mechanism. Br J Pharmacol 2015; 172:1974-95. [PMID: 25303224 DOI: 10.1111/bph.12975] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/24/2014] [Accepted: 09/30/2014] [Indexed: 12/13/2022] Open
Abstract
The morbidity and mortality from coronary artery disease (CAD) remain significant worldwide. The treatment for acute myocardial infarction has improved over the past decades, including early reperfusion of culprit coronary arteries. Although it is mandatory to reperfuse the ischaemic territory as soon as possible, paradoxically this leads to additional myocardial injury, namely ischaemia/reperfusion (I/R) injury, in which redox stress plays a pivotal role and for which no effective therapy is currently available. In this review, we report evidence that the redox environment plays a pivotal role not only in I/R injury but also in cardioprotection. In fact, cardioprotective strategies, such as pre- and post-conditioning, result in a robust reduction in infarct size in animals and the role of redox signalling is of paramount importance in these conditioning strategies. Nitrosative signalling and cysteine redox modifications, such as S-nitrosation/S-nitrosylation, are also emerging as very important mechanisms in conditioning cardioprotection. The reasons for the switch from protective oxidative/nitrosative signalling to deleterious oxidative/nitrosative/nitrative stress are not fully understood. The complex regulation of this switch is, at least in part, responsible for the diminished or lack of cardioprotection induced by conditioning protocols observed in ageing animals and with co-morbidities as well as in humans. Therefore, it is important to understand at a mechanistic level the reasons for these differences before proposing a safe and useful transition of ischaemic or pharmacological conditioning. Indeed, more mechanistic novel therapeutic strategies are required to protect the heart from I/R injury and to improve clinical outcomes in patients with CAD.
Collapse
Affiliation(s)
- P Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, 10043, Orbassano, Turin, Italy
| | | |
Collapse
|
12
|
Bellera N, Barba I, Rodriguez-Sinovas A, Ferret E, Asín MA, Gonzalez-Alujas MT, Pérez-Rodon J, Esteves M, Fonseca C, Toran N, Garcia Del Blanco B, Pérez A, Garcia-Dorado D. Single intracoronary injection of encapsulated antagomir-92a promotes angiogenesis and prevents adverse infarct remodeling. J Am Heart Assoc 2014; 3:e000946. [PMID: 25240056 PMCID: PMC4323815 DOI: 10.1161/jaha.114.000946] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Small and large preclinical animal models have shown that antagomir‐92a‐based therapy reduces early postischemic loss of function, but its effect on postinfarction remodeling is not known. In addition, the reported remote miR‐92a inhibition in noncardiac organs prevents the translation of nonvectorized miR‐targeted therapy to the clinical setting. We investigated whether a single intracoronary administration of antagomir‐92a encapsulated in microspheres could prevent deleterious remodeling of myocardium 1 month after acute myocardial infarction AUTHOR: Should “acute” be added before “myocardial infarction” (since abbreviation is AMI)? Also check at first mention in main text (AMI) without adverse effects. Methods and Results In a percutaneous pig model of reperfused AMI, a single intracoronary administration of antagomir‐92a encapsulated in specific microspheres (9 μm poly‐d,‐lactide‐co‐glycolide [PLGA]) inhibited miR‐92a in a local, selective, and sustained manner (n=3 pigs euthanized 1, 3, and 10 days after treatment; 8×, 2×, and 5×‐fold inhibition at 1, 3, and 10 days). Downregulation of miR‐92a resulted in significant vessel growth (n=27 adult minipigs randomly allocated to blind receive encapsulated antagomir‐92a, encapsulated placebo, or saline [n=8, 9, 9]; P=0.001), reduced regional wall‐motion dysfunction (P=0.03), and prevented adverse remodeling in the infarct area 1 month after injury (P=0.03). Intracoronary injection of microspheres had no significant adverse effect in downstream myocardium in healthy pigs (n=2), and fluorescein isothiocyanate albumin‐PLGA microspheres were not found in myocardium outside the left anterior descending coronary artery territory (n=4) or in other organs (n=2). Conclusions Early single intracoronary administration of encapsulated antagomir‐92a in an adult pig model of reperfused AMI prevents left ventricular remodeling with no local or distant adverse effects, emerging as a promising therapeutic approach to translate to patients who suffer a large AMI.
Collapse
Affiliation(s)
- Neus Bellera
- Laboratory of Experimental and Molecular Cardiocirculatory Pathology, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain (N.B., I.B., A.R.S., D.G.D.) Department of Cardiology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain (N.B., T.G.A., J.R., B.G.B., D.G.D.)
| | - Ignasi Barba
- Laboratory of Experimental and Molecular Cardiocirculatory Pathology, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain (N.B., I.B., A.R.S., D.G.D.)
| | - Antonio Rodriguez-Sinovas
- Laboratory of Experimental and Molecular Cardiocirculatory Pathology, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain (N.B., I.B., A.R.S., D.G.D.)
| | - Eulalia Ferret
- I+D Pierre-Fabre Ibérica S.A., Cerdanyola del Vallès, Spain (E.F., M.A.A., A.)
| | - Miguel Angel Asín
- I+D Pierre-Fabre Ibérica S.A., Cerdanyola del Vallès, Spain (E.F., M.A.A., A.)
| | - M Teresa Gonzalez-Alujas
- Department of Cardiology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain (N.B., T.G.A., J.R., B.G.B., D.G.D.)
| | - Jordi Pérez-Rodon
- Department of Cardiology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain (N.B., T.G.A., J.R., B.G.B., D.G.D.)
| | - Marielle Esteves
- Department of Animal Housing, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain (M.E., C.F.)
| | - Carla Fonseca
- Department of Animal Housing, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain (M.E., C.F.)
| | - Nuria Toran
- Department of Anatomical Pathology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain (N.T.)
| | - Bruno Garcia Del Blanco
- Department of Cardiology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain (N.B., T.G.A., J.R., B.G.B., D.G.D.)
| | - Amadeo Pérez
- I+D Pierre-Fabre Ibérica S.A., Cerdanyola del Vallès, Spain (E.F., M.A.A., A.)
| | - David Garcia-Dorado
- Laboratory of Experimental and Molecular Cardiocirculatory Pathology, Institut de Recerca, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain (N.B., I.B., A.R.S., D.G.D.) Department of Cardiology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain (N.B., T.G.A., J.R., B.G.B., D.G.D.)
| |
Collapse
|
13
|
Li C, Wang Y, Qiu Q, Shi T, Wu Y, Han J, Chai X, Wang W. Qishenyiqi protects ligation-induced left ventricular remodeling by attenuating inflammation and fibrosis via STAT3 and NF-κB signaling pathway. PLoS One 2014; 9:e104255. [PMID: 25122164 PMCID: PMC4133204 DOI: 10.1371/journal.pone.0104255] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 07/11/2014] [Indexed: 12/02/2022] Open
Abstract
AIM Qi-shen-yi-qi (QSYQ), a formula used for the routine treatment of heart failure (HF) in China, has been demonstrated to improve cardiac function through down-regulating the activation of the Renin-Angiotensin-Aldosterone System (RAAS). However, the mechanisms governing its therapeutic effects are largely unknown. The present study aims to demonstrate that QSYQ treatment can prevent left ventricular remodeling in heart failure by attenuating oxidative stress and inhabiting inflammation. METHODS Sprague-Dawley (SD) rats were randomly divided into 6 groups: sham group, model group (LAD coronary artery ligation), QSYQ group with high dosage, middle dosage and low dosage (LAD ligation and treated with QSYQ), and captopril group (LAD ligation and treated with captopril as the positive drug). Indicators of fibrosis (Masson, MMPs, and collagens) and inflammation factors were detected 28 days after surgery. RESULTS Results of hemodynamic alterations (dp/dt value) in the model group as well as other ventricular remodeling (VR) markers, such as MMP-2, MMP-9, collagen I and III elevated compared with sham group. VR was accompanied by activation of RAAS (angiotensin II and NADPHoxidase). Levels of pro-inflammatory cytokines (TNF-α, IL-6) in myocardial tissue were also up-regulated. Treatment of QSYQ improved cardiac remodeling through counter-acting the aforementioned events. The improvement of QSYQ was accompanied with a restoration of angiotensin II-NADPHoxidase-ROS-MMPs pathways. In addition, "therapeutic" QSYQ administration can reduce both TNF-α-NF-B and IL-6-STAT3 pathways, respectively, which further proves the beneficial effects of QSYQ. CONCLUSIONS Our study demonstrated that QSYQ protected LAD ligation-induced left VR via attenuating AngII -NADPH oxidase pathway and inhabiting inflammation. These findings provide evidence as to the cardiac protective efficacy of QSYQ to HF and explain the beneficial effects of QSYQ in the clinical application for HF.
Collapse
Affiliation(s)
- Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- Basic Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Qiu
- Anzhen Hospital of Capital Medical University, Beijing, China
| | - Tianjiao Shi
- Basic Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Wu
- Basic Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Han
- Basic Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Xingyun Chai
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- Basic Medical College, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Derosa G, Maffioli P. Assessment and management of left ventricular hypertrophy in Type 2 diabetes patients with high blood pressure. Expert Rev Cardiovasc Ther 2014; 11:719-28. [PMID: 23750681 DOI: 10.1586/erc.13.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes is associated with left ventricular hypertrophy (LVH). This article reviews the assessment and management of LVH in Type 2 diabetic patients and the available evidence on blood-pressure management in these patients in order to reduce LVH. The best treatment of LVH starts with early identification and rapid implementation of adequate treatment, especially in populations at higher risk. Angiotensin II receptor antagonists and angiotensin-converting enzyme inhibitors should be the first-line therapy, because they are proven to be the most effective in reducing LVH in Type 2 diabetic patients. In patients where angiotensin II receptor antagonists and angiotensin-converting enzyme inhibitors are contraindicated or not tolerated, calcium-channel blockers should be the second option.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Fondazione IRCCS Policlinico S. Matteo, P.le Golgi, 2-27100, Pavia, Italy.
| | | |
Collapse
|
15
|
Sivaraman V, Yellon DM. Pharmacologic therapy that simulates conditioning for cardiac ischemic/reperfusion injury. J Cardiovasc Pharmacol Ther 2013; 19:83-96. [PMID: 24038018 DOI: 10.1177/1074248413499973] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cardiovascular disease remains a leading cause of deaths due to noncommunicable diseases, of which ischemic heart disease forms a large percentage. The main therapeutic strategy to treat ischemic heart disease is reperfusion that could either be medical or surgical. However, reperfusion following ischemia is known to increase the infarct size further. Newer strategies such as ischemic preconditioning (IPC), ischemic postconditioning, and remote IPC have been shown to condition the myocardium to ischemia-reperfusion injury and thus reduce the final infarct size. Research over the past 3 decades has deepened our understanding of cellular and subcellular pathways that mediate ischemia-reperfusion injury. This in turn has resulted in the development of several pharmacological agents that act as conditioning agents, which reduce the final myocardial infarct size following ischemia-reperfusion. This review discusses many of these agents, their mechanisms of action, and the animal and clinical evidence behind them.
Collapse
Affiliation(s)
- Vivek Sivaraman
- 1The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | | |
Collapse
|
16
|
Effect of wenxin granule on ventricular remodeling and myocardial apoptosis in rats with myocardial infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:967986. [PMID: 23997803 PMCID: PMC3755410 DOI: 10.1155/2013/967986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 07/01/2013] [Accepted: 07/12/2013] [Indexed: 01/16/2023]
Abstract
Aim. To determine the effect of a Chinese herbal compound named Wenxin Granule on ventricular remodeling and myocardial apoptosis in rats with myocardial infarction (MI). Methods. Male Sprague-Dawley (SD) rats were randomly divided into four groups: the control group, the model group, the metoprolol group, and the Wenxin Granule group (WXKL group) with sample size (n) of 7 rats in each group. An MI model was established in all rats by occlusion of the left anterior descending coronary artery (the control group was without occlusion). Wenxin Granule (1.35 g/kg/day), metoprolol (12 mg/kg/day), and distilled water (5 mL/kg/day for the control and model groups) were administered orally for 4 weeks. Ultrasonic echocardiography was used to examine cardiac structural and functional parameters. Myocardial histopathological changes were observed using haematoxylin and eosin (H&E) dyeing. Myocardial apoptosis was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining. Serum angiotensin II (Ang II) concentration was measured using the enzyme-linked immunosorbent assay (ELISA). Results. It was found that Wenxin Granule could partially reverse ventricular remodeling, improve heart function, alleviate the histopathological damage, inhibit myocardial apoptosis, and reduce Ang II concentration in rats with MI. Conclusions. The results of the current study suggest that Wenxin Granule may be a potential alternative and complementary medicine for the treatment of MI.
Collapse
|