1
|
Kim BJ, Thomas JD. Echocardiographic Parameters of the Right Ventricle in Patients With Pulmonary Hypertension: A Review. Korean Circ J 2025; 55:259-274. [PMID: 40097283 PMCID: PMC12046298 DOI: 10.4070/kcj.2024.0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Accepted: 12/23/2024] [Indexed: 03/19/2025] Open
Abstract
To diagnose pulmonary hypertension (PH) and assess its severity, accurate measurement of pulmonary artery (PA) pressure is crucial. However, there can be significant discrepancies between echocardiography (Echo) and invasive catheterization. The right ventricle (RV) has a complex structure, and its remodeling in PH is diverse, making it challenging to evaluate RV physiology with a single imaging modality. While right heart catheterization is the gold standard, its practicality in clinical settings is limited. Cardiac magnetic resonance imaging (MRI) is valuable for RV evaluation, with 4-dimensional flow MRI showing promise, yet accessibility remains a concern. Thus, in PH patient management, Echo plays a central role as a practical decision-making tool. This review aims to elucidate Echo parameters in PH patients, highlighting differences in PA systolic pressure measurements, RV-PA coupling, RV remodeling patterns crucial for understanding PH progression, and clinical evidence regarding RV strain. Additionally, it aims to introduce new Echo parameters that help understand RV in PH.
Collapse
Affiliation(s)
- Bong-Joon Kim
- Division of Cardiology, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
- Division of Cardiology, Center for Heart Valve Disease, Bluhm Cardiovascular Institute, Northwestern Memorial Hospital, Chicago, IL, USA
| | - James D Thomas
- Division of Cardiology, Center for Heart Valve Disease, Bluhm Cardiovascular Institute, Northwestern Memorial Hospital, Chicago, IL, USA.
| |
Collapse
|
2
|
Rojas SF, Nattel S, Hiram R, Khairy P. Right Ventricular Electrophysiology and Arrhythmias in Adults With Congenital Heart Disease: Scientific Basis for Management. Can J Cardiol 2025:S0828-282X(25)00103-5. [PMID: 39920991 DOI: 10.1016/j.cjca.2025.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 02/10/2025] Open
Abstract
Right ventricular (RV) dysfunction and arrhythmias are major concerns in adults with congenital heart disease (CHD). The relationship between RV dysfunction and arrhythmogenesis is bidirectional, with structural and electrical remodeling contributing to arrhythmia development and, conversely, arrhythmias exacerbating RV failure. In addition to an RV in the standard subpulmonary position failing because of pressure and/or volume overload, other phenotypes associated with RV dysfunction in CHD include transposition of the great arteries with a systemic (subaortic) RV and univentricular hearts with a predominant RV morphology. The RV is better suited for low-pressure workloads. When it supports the systemic circulation, the RV undergoes remodeling changes that promote arrhythmias, which can provoke a cycle of worsening dysfunction and arrhythmogenesis. Arrhythmias can worsen RV dysfunction by impairing hemodynamic stability, reducing cardiac output, provoking dyssynchrony, and inducing tachycardia-induced cardiomyopathy. Cellular mechanisms, including myocardial fibrosis, dysregulation of ion channels, and abnormal gap junction function, are central to this process, facilitating both re-entrant and triggered arrhythmias. Conduction disturbances, whether inherent or caused by fibrosis or pacing, compound these effects, aggravating both RV dysfunction and arrhythmia perpetuation. Management strategies must be comprehensive and include pre-emptive approaches to minimize arrhythmias, alongside early detection. Individualized therapies may include catheter ablation and cardiac implantable electronic devices, with treatment tailored to the specific RV phenotype and arrhythmia type. In this review we emphasize the importance of personalized interventions to prevent the vicious cycle of RV dysfunction and arrhythmias in CHD. Further research is essential to optimize therapeutic strategies and address care-limiting knowledge gaps.
Collapse
Affiliation(s)
| | - Stanley Nattel
- Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Roddy Hiram
- Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Paul Khairy
- Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
3
|
Das BB. Novel Therapies for Right Ventricular Failure. Curr Cardiol Rep 2025; 27:26. [PMID: 39825962 DOI: 10.1007/s11886-024-02157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2024] [Indexed: 01/20/2025]
Abstract
PURPOSE OF REVIEW Traditionally viewed as a passive player in circulation, the right ventricle (RV) has become a pivotal force in hemodynamics. RV failure (RVF) is a recognized complication of primary cardiac and pulmonary vascular disorders and is associated with a poor prognosis. Unlike treatments for left ventricular failure (LVF), strategies such as adrenoceptor signaling inhibition and renin-angiotensin system modulation have shown limited success in RVF. This review aims to reassure about the progress in RVF treatment by exploring the potential of contemporary therapies for heart failure, including angiotensin receptor and neprilysin inhibitors, sodium-glucose co-transporter 2 inhibitors, and soluble guanylate cyclase stimulators, which may be beneficial for treating RV failure, particularly when associated with left heart failure. Additionally, it examines novel therapies currently in the pipeline. RECENT FINDINGS Over the past decade, a new wave of RVF therapies has emerged, both pharmacological and device-centered. Novel pharmacological interventions targeting metabolism, calcium homeostasis, oxidative stress, extracellular matrix remodeling, endothelial function, and inflammation have shown significant promise in preclinical studies. There is also a burgeoning interest in the potential of epigenetic modifications as therapeutic targets for RVF. Undoubtedly, a deeper understanding of the mechanisms underlying RV failure, both with and without pulmonary hypertension, is urgently needed. This knowledge is not just a theoretical pursuit, but a crucial step that could lead to the development of pharmacological and cell-based therapeutic options that directly target the RV and pulmonary vasculature, aligning with the principles of precision medicine.
Collapse
Affiliation(s)
- Bibhuti B Das
- Pediatric Advanced Heart Failure and Heart Transplant Program, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.
| |
Collapse
|
4
|
Shelburne NJ, Nian H, Beck GJ, Casanova NG, Desai AA, DuBrock HM, Erzurum S, Frantz RP, Hassoun PM, Hill NS, Horn EM, Jacob MS, Jellis CL, Joseloff E, Kwon DH, Brett Larive A, Leopold JA, Park MM, Rischard FP, Rosenzweig EB, Vanderpool RR, Yu C, Hemnes AR. Association of Male Sex With Worse Right Ventricular Function and Survival in Pulmonary Hypertension in the Redefining Pulmonary Hypertension Through Pulmonary Vascular Disease Phenomics Cohort. CHEST PULMONARY 2024; 2:100046. [PMID: 39524046 PMCID: PMC11548889 DOI: 10.1016/j.chpulm.2024.100046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND Sex-based differences are important in the development and progression of pulmonary arterial hypertension. However, it is not established whether these differences are generalizable to all forms of pulmonary hypertension (PH). RESEARCH QUESTION What are the sex-based differences in right ventricle (RV) function and transplant-free survival in patients with PH from the Redefining Pulmonary Hypertension Through Pulmonary Vascular Disease Phenomics (PVDOMICS) cohort? STUDY DESIGN AND METHODS Patients with PH enrolled in the PVDOMICS cohort study underwent right heart catheterization, cardiac MRI, and echocardiography. A multivariable linear regression model was used to investigate the interactive effect between sex and pulmonary vascular resistance (PVR) on RV ejection fraction (RVEF). Effects of sex, RVEF, and PVR on transplant-free survival were assessed using a Cox proportional hazards model. RESULTS Seven hundred fifty patients with PH (62.8% female) were enrolled, including 397 patients with groups 2 through 5 PH. Patients with group 1 PH were predominantly female (73.4%). Male patients showed multiple markers of worse RV function with significantly lower RVEF (adjusted difference, 5.5%; 95% CI, 3.2%-7.8%; P < .001) on cardiac MRI and lower RV fractional shortening (adjusted difference, 4.0%; 95% CI, 2.3%-5.8%; P < .001) and worse RV free-wall longitudinal strain (adjusted difference, 2.4%; 95% CI, 1.2%-3.6%; P < .001) on echocardiography. Significant interaction was noted between PVR and sex on RVEF, with the largest sex-based differences in RVEF noted at mild to moderate PVR elevation. Male sex was associated with decreased transplant-free survival (adjusted hazard ratio, 1.46; 95% CI, 1.07-1.98; P = .02), partially mediated by differences in RVEF (P = .003). INTERPRETATION In patients with PH in the PVDOMICS study, female sex was more common, whereas male sex was associated with worse RV function and decreased transplant-free survival, most notably at mild to moderate elevation of PVR.
Collapse
Affiliation(s)
- Nicholas J Shelburne
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; INTEGRIS Advanced Cardiopulmonary Care, INTEGRIS Baptist Medical Center, Oklahoma City, OK
| | - Hui Nian
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Gerald J Beck
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland
| | - Nancy G Casanova
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, AZ
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN
| | - Hilary M DuBrock
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Serpil Erzurum
- Lerner Research Institute, Cleveland Clinic, Cleveland; Respiratory Institute, Cleveland Clinic, Cleveland
| | - Robert P Frantz
- Department of Internal Medicine, the Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore
| | - Nicholas S Hill
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Evelyn M Horn
- Division of Cardiology, Department of Pediatrics and Medicine, Columbia University Medical Center-New York Presbyterian Hospital
| | - Miriam S Jacob
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland
| | | | | | - Deborah H Kwon
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland
| | - A Brett Larive
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland
| | - Jane A Leopold
- Tufts Medical Center, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Margaret M Park
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland
| | - Franz P Rischard
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, AZ
| | - Erika B Rosenzweig
- Perkin Heart Failure Center, Weill Cornell Medical Center, the Division of Pediatric Cardiology, Department of Pediatrics and Medicine, Columbia University Medical Center-New York Presbyterian Hospital
| | - Rebecca R Vanderpool
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Chang Yu
- Department of Population Health, NYU Grossman School of Medicine, New York, NY
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
5
|
Das BB. Unlocking the Potential: Angiotensin Receptor Neprilysin and Sodium Glucose Co-Transporter 2 Inhibitors for Right Ventricle Dysfunction in Heart Failure. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1112. [PMID: 39064541 PMCID: PMC11279219 DOI: 10.3390/medicina60071112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
This review article examines the mechanism of action of Angiotensin Receptor-Neprilysin Inhibitors (ARNIs) and Sodium-Glucose Co-Transporter 2 Inhibitors (SGLT2is) in managing chronic right ventricular (RV) dysfunction. Despite advancements in heart failure (HF) treatment, RV dysfunction remains a significant contributor to morbidity and mortality. This article explores the The article explores the impact of ARNIs and SGLT2is on RV function based on clinical and preclinical evidence, and the potential benefits of combined therapy. It highlights the need for further research to optimize patient outcomes and suggests that RV function should be considered in future clinical trials as part of risk stratification for HF therapies. This review underscores the importance of the early initiation of ARNIs and SGLT2is as per guideline-directed medical therapy for eligible HFrEF and HFpEF patients to improve co-existing RV dysfunction.
Collapse
Affiliation(s)
- Bibhuti B Das
- Heart Failure and Transplant Program, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
6
|
Khreisat A, Amal T, Howell DM, Timmis S. An Undifferentiated Primary Mediastinal Carcinoma Compressing the Main Pulmonary Artery: A Rare Cause of Right Ventricular Strain. Cureus 2024; 16:e52789. [PMID: 38268992 PMCID: PMC10806412 DOI: 10.7759/cureus.52789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 01/26/2024] Open
Abstract
Undifferentiated carcinoma (or poorly differentiated carcinoma) of the mediastinum is a relatively rare pathological variant of anterior mediastinal tumors. Pathologists usually use the term to describe an epithelial tumor with no histological features that enable the identification of its site of origin. Invasion of adjacent vital cardiopulmonary structures is among the most problematic complications of anterior mediastinal masses. We report a case of a 60-year-old male presenting with easy fatiguability, significant weight loss, and chest pain. A CT scan of the chest revealed a large anterior mediastinal mass, compression of the main pulmonary artery, and a large pericardial effusion. The patient underwent pericardiocentesis, emergent radiotherapy, and platinum-based chemotherapy. His condition dramatically improved, and he was subsequently discharged home for further follow-up.
Collapse
Affiliation(s)
- Ali Khreisat
- Internal Medicine, Corewell Health William Beaumont University Hospital, Royal Oak, USA
| | - Tanya Amal
- Internal Medicine, Corewell Health William Beaumont University Hospital, Royal Oak, USA
| | - David M Howell
- Internal Medicine, Beaumont Health, Royal Oak, USA
- Internal Medicine, Oakland University William Beaumont School of Medicine, Royal Oak, USA
| | - Steven Timmis
- Cardiovascular Medicine, Corewell Health William Beaumont University Hospital, Royal Oak, USA
- Cardiology, Beaumont Health, Royal Oak, USA
| |
Collapse
|
7
|
Hameed A, Condliffe R, Swift AJ, Alabed S, Kiely DG, Charalampopoulos A. Assessment of Right Ventricular Function-a State of the Art. Curr Heart Fail Rep 2023; 20:194-207. [PMID: 37271771 PMCID: PMC10256637 DOI: 10.1007/s11897-023-00600-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 06/06/2023]
Abstract
PURPOSE OF REVIEW The right ventricle (RV) has a complex geometry and physiology which is distinct from the left. RV dysfunction and failure can be the aftermath of volume- and/or pressure-loading conditions, as well as myocardial and pericardial diseases. RECENT FINDINGS Echocardiography, magnetic resonance imaging and right heart catheterisation can assess RV function by using several qualitative and quantitative parameters. In pulmonary hypertension (PH) in particular, RV function can be impaired and is related to survival. An accurate assessment of RV function is crucial for the early diagnosis and management of these patients. This review focuses on the different modalities and indices used for the evaluation of RV function with an emphasis on PH.
Collapse
Affiliation(s)
- Abdul Hameed
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Andrew J Swift
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- INSIGNEO, Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Samer Alabed
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- INSIGNEO, Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield, UK
| | - Athanasios Charalampopoulos
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK.
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.
| |
Collapse
|