1
|
Nagel S, Meyer C. Establishment of the TBX-code reveals aberrantly activated T-box gene TBX3 in Hodgkin lymphoma. PLoS One 2021; 16:e0259674. [PMID: 34807923 PMCID: PMC8608327 DOI: 10.1371/journal.pone.0259674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/22/2021] [Indexed: 11/23/2022] Open
Abstract
T-box genes encode transcription factors which control basic processes in development of several tissues including cell differentiation in the hematopoietic system. Here, we analyzed the physiological activities of all 17 human T-box genes in early hematopoiesis and in lymphopoiesis including developing and mature B-cells, T-cells, natural killer (NK)-cells and innate lymphoid cells. The resultant expression pattern comprised six genes, namely EOMES, MGA, TBX1, TBX10, TBX19 and TBX21. We termed this gene signature TBX-code which enables discrimination of normal and aberrant activities of T-box genes in lymphoid malignancies. Accordingly, expression analysis of T-box genes in Hodgkin lymphoma (HL) patients using a public profiling dataset revealed overexpression of EOMES, TBX1, TBX2, TBX3, TBX10, TBX19, TBX21 and TBXT while MGA showed aberrant downregulation. Analysis of T-cell acute lymphoid leukemia patients indicated aberrant overexpression of six T-box genes while no deregulated T-box genes were detected in anaplastic large cell lymphoma patients. As a paradigm we focused on TBX3 which was ectopically activated in about 6% of HL patients analyzed. Normally, TBX3 is expressed in tissues like lung, adrenal gland and retina but not in hematopoiesis. HL cell line KM-H2 expressed enhanced TBX3 levels and was used as an in vitro model to identify upstream regulators and downstream targets in this malignancy. Genomic studies of this cell line showed focal amplification of the TBX3 locus at 12q24 which may underlie its aberrant expression. In addition, promoter analysis and comparative expression profiling of HL cell lines followed by knockdown experiments revealed overexpressed transcription factors E2F4 and FOXC1 and chromatin modulator KDM2B as functional activators. Furthermore, we identified repressed target genes of TBX3 in HL including CDKN2A, NFKBIB and CD19, indicating its respective oncogenic function in proliferation, NFkB-signaling and B-cell differentiation. Taken together, we have revealed a lymphoid TBX-code and used it to identify an aberrant network around deregulated T-box gene TBX3 in HL which promotes hallmark aberrations of this disease. These findings provide a framework for future studies to evaluate deregulated T-box genes in lymphoid malignancies.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- * E-mail:
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
2
|
Luo M, Zhang Q, Xia M, Hu F, Ma Z, Chen Z, Guo AY. Differential Co-expression and Regulatory Network Analysis Uncover the Relapse Factor and Mechanism of T Cell Acute Leukemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:184-194. [PMID: 30195757 PMCID: PMC6023839 DOI: 10.1016/j.omtn.2018.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/02/2018] [Accepted: 05/04/2018] [Indexed: 01/17/2023]
Abstract
The pediatric T cell acute lymphoblastic leukemia (T-ALL) still remains a cancer with worst prognosis for high recurrence. Massive studies were conducted for the leukemia relapse based on diagnosis and relapse paired samples. However, the initially diagnostic samples may contain the relapse information and mechanism, which were rarely studied. In this study, we collected mRNA and microRNA (miRNA) data from initially diagnosed pediatric T-ALL samples with their relapse or remission status after treatment. Integrated differential co-expression and miRNA-transcription factor (TF)-gene regulatory network analyses were used to reveal the possible relapse mechanisms for pediatric T-ALL. We detected miR-1246/1248 and NOTCH2 served as key nodes in the relapse network, and they combined with TF WT1/SOX4/REL to form regulatory modules that influence the progress of T-ALL. A regulatory loop miR-429-MYCN-MFHAS1 was found potentially associated with the remission of T-ALL. Furthermore, we proved miR-1246/1248 combined with NOTCH2 could promote cell proliferation in the T-ALL cell line by experiments. Meanwhile, analysis based on the miRNA-drug relationships demonstrated that drugs 5-fluorouracil, ascorbate, and trastuzumab targeting miR-1246 could serve as potential supplements for the standard therapy. In conclusion, our findings revealed the potential molecular mechanisms of T-ALL relapse by the combination of co-expression and regulatory network, and they provide preliminary clues for precise treatment of T-ALL patients.
Collapse
Affiliation(s)
- Mei Luo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiong Zhang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengxuan Xia
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feifei Hu
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaowu Ma
- Laboratory of Neuronal Network and Brain Diseases Modulation, School of Medicine, Yangtze University, Jingzhou, Hubei 434023, China
| | - Zehua Chen
- Joint Laboratory for the Research of Pharmaceutics-Huazhong University of Science and Technology and Infinitus, Wuhan, China
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
3
|
Xiao Y, Jiang Z, Li Y, Ye W, Jia B, Zhang M, Xu Y, Wu D, Lai L, Chen Y, Chang Y, Huang X, Liu H, Qing G, Liu P, Li Y, Xu B, Zhong M, Yao Y, Pei D, Li P. ANGPTL7 regulates the expansion and repopulation of human hematopoietic stem and progenitor cells. Haematologica 2015; 100:585-94. [PMID: 25637050 DOI: 10.3324/haematol.2014.118612] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 01/27/2015] [Indexed: 12/18/2022] Open
Abstract
Successful expansion of hematopoietic stem cells would benefit the use of hematopoietic stem cell transplants in the clinic. Several angiopoietin-like proteins, including angiopoietin-like 7, can support the activity of hematopoietic stem cells. However, effects of ANGPTL7 on human hematopoietic stem cells and the downstream signaling cascade activated by ANGPTL7 are poorly understood. Here, we established a human hematopoietic stem and progenitor cell-supportive mouse fetal liver cell line that specifically expressed the Angptl7 protein. Furthermore, we found ANGPTL7 is capable of stimulating human hematopoietic stem and progenitor cell expansion and increasing the repopulation activities of human hematopoietic progenitors in xenografts. RNA-sequencing analysis showed that ANGPTL7 activated the expression of CXCR4, HOXB4 and Wnt downstream targets in human hematopoietic progenitors. In addition, chemical manipulation of Wnt signaling diminished the effects of ANGPTL7 on human hematopoietic stem and progenitor cells in culture. In summary, we identify the secreted growth factor ANGPTL7 as a regulator of both human hematopoietic stem and progenitor cell expansion and regeneration.
Collapse
Affiliation(s)
- Yiren Xiao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China
| | - Zhiwu Jiang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China
| | - Yin Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Ye
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China
| | - Bei Jia
- Department of Obstetrics and Gynecology, Nan Fang Hospital of Southern Medical University, Guangzhou, China
| | - Minjie Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town, China
| | - Yan Xu
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China
| | - Yaoyu Chen
- Department of Hematology, Nanjing Medical University, China
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China
| | - Hudan Liu
- School of Pharmacy, Tongji Medical College, Huazhong Unviersity of Science and Technology, Wuhan, China
| | - Guoliang Qing
- School of Pharmacy, Tongji Medical College, Huazhong Unviersity of Science and Technology, Wuhan, China
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Yangqiu Li
- Institute of Hematology, Medical College, Jinan University, Guangzhou, China Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Bing Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nan Fang Hospital of Southern Medical University, Guangzhou, China
| | - Yao Yao
- Drug Discovery Pipeline, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China
| | - Peng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China
| |
Collapse
|
5
|
Ye H, Liu X, Lv M, Wu Y, Kuang S, Gong J, Yuan P, Zhong Z, Li Q, Jia H, Sun J, Chen Z, Guo AY. MicroRNA and transcription factor co-regulatory network analysis reveals miR-19 inhibits CYLD in T-cell acute lymphoblastic leukemia. Nucleic Acids Res 2012; 40:5201-14. [PMID: 22362744 PMCID: PMC3384304 DOI: 10.1093/nar/gks175] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. The understanding of its gene expression regulation and molecular mechanisms still remains elusive. Started from experimentally verified T-ALL-related miRNAs and genes, we obtained 120 feed-forward loops (FFLs) among T-ALL-related genes, miRNAs and TFs through combining target prediction. Afterwards, a T-ALL miRNA and TF co-regulatory network was constructed, and its significance was tested by statistical methods. Four miRNAs in the miR-17–92 cluster and four important genes (CYLD, HOXA9, BCL2L11 and RUNX1) were found as hubs in the network. Particularly, we found that miR-19 was highly expressed in T-ALL patients and cell lines. Ectopic expression of miR-19 represses CYLD expression, while miR-19 inhibitor treatment induces CYLD protein expression and decreases NF-κB expression in the downstream signaling pathway. Thus, miR-19, CYLD and NF-κB form a regulatory FFL, which provides new clues for sustained activation of NF-κB in T-ALL. Taken together, we provided the first miRNA-TF co-regulatory network in T-ALL and proposed a model to demonstrate the roles of miR-19 and CYLD in the T-cell leukemogenesis. This study may provide potential therapeutic targets for T-ALL and shed light on combining bioinformatics with experiments in the research of complex diseases.
Collapse
Affiliation(s)
- Huashan Ye
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|