1
|
Shen S, Zhuang H. Homoharringtonine in the treatment of acute myeloid leukemia: A review. Medicine (Baltimore) 2024; 103:e40380. [PMID: 39496012 PMCID: PMC11537654 DOI: 10.1097/md.0000000000040380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by the accumulation of immature myeloid precursor cells. Over half of AML patients fail to achieve long-term disease-free survival under existing therapy, and the overall prognosis is poor, necessitating the urgent development of novel therapeutic approaches. The plant alkaloid homoharringtonine (HHT), which has anticancer properties, was first identified more than 40 years ago. It works in a novel method of action that prevents the early elongation phase of protein synthesis. HHT has been widely utilized in the treatment of AML, with strong therapeutic effects, few toxic side effects, and the ability to enhance AML patients' prognoses. In AML, HHT can induce cell apoptosis through multiple pathways, exerting synergistic antitumor effects, according to clinical and pharmacological research. About its modes of action, some findings have been made recently. This paper reviews the development of research on the mechanisms of HHT in treating AML to offer insights for further research and clinical therapy.
Collapse
Affiliation(s)
- Siyu Shen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Haifeng Zhuang
- Department of Clinical Hematology and Transfusion, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
2
|
Xie C, Zhou H, Qin D, Zheng H, Tang Y, Li W, Zhou J, Liu L, Yu X, Duan H, Zhou Y, Li Z, Fang Z, Luo Y, Carter BZ, Xu B, Zha J. Bcl-2 inhibition combined with PPARα activation synergistically targets leukemic stem cell-like cells in acute myeloid leukemia. Cell Death Dis 2023; 14:573. [PMID: 37644011 PMCID: PMC10465498 DOI: 10.1038/s41419-023-06075-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Persistence of leukemic stem cells (LSCs) is one of the determining factors to acute myeloid leukemia (AML) treatment failure and responsible for the poor prognosis of the disease. Hence, novel therapeutic strategies that target LSCs are crucial for treatment success. We investigated if targeting Bcl-2 and peroxisome proliferator activated receptor α (PPARα), two distinct cell survival regulating mechanisms could eliminate LSCs. This study demonstrate that the Bcl-2 inhibitor venetoclax combined with the PPARα agonist chiglitazar resulted in synergistic killing of LSC-like cell lines and CD34+ primary AML cells while sparing their normal counterparts. Furthermore, the combination regimen significantly suppressed AML progression in patient-derived xenograft (PDX) mouse models. Mechanistically, chiglitazar-mediated PPARα activation inhibited the transcriptional activity of the PIK3AP1 gene promoter and down-regulated the PI3K/Akt signaling pathway and anti-apoptotic Bcl-2 proteins, leading to cell proliferation inhibition and apoptosis induction, which was synergized with venetoclax. These findings suggest that combinatorial Bcl-2 inhibition and PPARα activation selectively eliminates AML cells in vivo and vitro, representing an effective therapy for patients with relapsed and refractory AML.
Collapse
Grants
- The National Natural Science Foundation of China (No. U22A20290,82170180, 81800163, 82100204,81900164); Natural Science Foundation of Fujian Province, China (No.2023J06054,2020J05307,2020J011246, 2021J011359); The Xiamen Municipal Bureau of Science and Technology (3502Z20209003, 3502Z20209008).
- The National Natural Science Foundation of China (No. U22A20290,82170180, 81800163, 82100204,81900164); Natural Science Foundation of Fujian Province, China (No. 2020J05307,2020J011246, 2021J011359); The Xiamen Municipal Bureau of Science and Technology (3502Z20209003, 3502Z20209008).
Collapse
Affiliation(s)
- Chendi Xie
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hui Zhou
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Dongmei Qin
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Huijian Zheng
- School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuanfang Tang
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wenjuan Li
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Jie Zhou
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Long Liu
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Xinxin Yu
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Hongpeng Duan
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Yong Zhou
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Zhifeng Li
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Zhihong Fang
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Yiming Luo
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, the University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Bing Xu
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China.
| | - Jie Zha
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China.
| |
Collapse
|
3
|
Park MN. The Therapeutic Potential of a Strategy to Prevent Acute Myeloid Leukemia Stem Cell Reprogramming in Older Patients. Int J Mol Sci 2023; 24:12037. [PMID: 37569414 PMCID: PMC10418941 DOI: 10.3390/ijms241512037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common and incurable leukemia subtype. Despite extensive research into the disease's intricate molecular mechanisms, effective treatments or expanded diagnostic or prognostic markers for AML have not yet been identified. The morphological, immunophenotypic, cytogenetic, biomolecular, and clinical characteristics of AML patients are extensive and complex. Leukemia stem cells (LSCs) consist of hematopoietic stem cells (HSCs) and cancer cells transformed by a complex, finely-tuned interaction that causes the complexity of AML. Microenvironmental regulation of LSCs dormancy and the diagnostic and therapeutic implications for identifying and targeting LSCs due to their significance in the pathogenesis of AML are discussed in this review. It is essential to perceive the relationship between the niche for LSCs and HSCs, which together cause the progression of AML. Notably, methylation is a well-known epigenetic change that is significant in AML, and our data also reveal that microRNAs are a unique factor for LSCs. Multiple-targeted approaches to reduce the risk of epigenetic factors, such as the administration of natural compounds for the elimination of local LSCs, may prevent potentially fatal relapses. Furthermore, the survival analysis of overlapping genes revealed that specific targets had significant effects on the survival and prognosis of patients. We predict that the multiple-targeted effects of herbal products on epigenetic modification are governed by different mechanisms in AML and could prevent potentially fatal relapses. Thus, these strategies can facilitate the incorporation of herbal medicine and natural compounds into the advanced drug discovery and development processes achievable with Network Pharmacology research.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
4
|
Targeting EZH2 Promotes Chemosensitivity of BCL-2 Inhibitor through Suppressing PI3K and c-KIT Signaling in Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms231911393. [PMID: 36232694 PMCID: PMC9569949 DOI: 10.3390/ijms231911393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematological malignancies with high heterogeneity, characterized by a differentiating block at the early progenitor stage. The selective BCL-2 inhibitor, Venetoclax (Ven), has shown exciting clinical results in a certain group of AML patients. However, Ven alone is insufficient to reach an enduringly complete response, which leads to the concern of Ven resistance. Alternative combined therapies with Ven are demanded in AML. Here, we reported the synergistic effect and molecular mechanism of the enhancer of zeste homolog 2 (EZH2) inhibitor DZNeP with Ven in AML cells. Results showed that the combination of DZNeP with Ven significantly induces cell proliferation arrest compared to single-drug control in AML cells and primary samples, and CalcuSyn analysis showed their significant synergy. The combination also significantly promotes apoptosis and increases the expression of pro-apoptotic proteins. The whole transcriptome analysis showed that phosphoinositide-3-kinase-interacting protein1 (PIK3IP1), the PI3K/AKT/mTOR signaling suppressor, is upregulated upon DZNeP treatment. Moreover, EZH2 is upregulated but PIK3IP1 is downregulated in 88 newly diagnosed AML cohorts compared to 70 healthy controls, and a higher expression of EZH2 is associated with poor outcomes in AML patients. Particularly, the combination of DZNeP with Ven dramatically eliminated CD117 (c-KIT) (+) AML blasts, suggesting the effect of the combination on tumor stem cells. In summary, our data indicated that DZNeP increases the sensitivity of Ven in AML by affecting PI3K and c-KIT signaling in AML. Our results also suggested that the therapeutic targeting of both EZH2 and BCL-2 provides a novel potential combined strategy against AML.
Collapse
|
5
|
Venetoclax in Relapsed/Refractory Acute Myeloid Leukemia: Are Supporting Evidences Enough? Cancers (Basel) 2021; 14:cancers14010022. [PMID: 35008186 PMCID: PMC8750253 DOI: 10.3390/cancers14010022] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Venetoclax (VEN) is a potent oral inhibitor of the anti-apoptotic molecule BCL2, approved for adults with chronic lymphocytic leukemia (CLL), and recently for naïve acute myeloid leukemia (AML) unfit for intensive chemotherapy. Therefore, VEN is not approved for relapsed/refractory (R/R) AML patients; consequently, this use falls within the so-called off-label use. This review provides evidence of the role of VEN-based therapy in R/R AML patients, including data from clinical trials and from retrospective studies. Abstract Despite the progress in the development of new therapeutic strategies, relapsed/refractory (R/R) acute myeloid leukemia (AML) still represents a high unmet medical need. Treatment options in this setting include enrollment into clinical trials, allogeneic stem cell transplantation and/or targeted therapy. Nevertheless, it is associated with poor outcomes. Thus, the development of new treatments, which could ameliorate the prognosis of these patients with a good safety profile are highly demanded. Recently, venetoclax (VEN) has been approved for naïve AML patients unfit for intensive chemotherapy. In this regard, regimens including VEN could represent a valuable treatment option even in those with R/R disease and several studies have been conducted to demonstrate its role in this clinical setting. This review aims to summarize the current evidence on the use of VEN regimens in the treatment of R/R AML.
Collapse
|
6
|
O'Reilly E, Zeinabad HA, Nolan C, Sefy J, Williams T, Tarunina M, Hernandez D, Choo Y, Szegezdi E. Recreating the Bone Marrow Microenvironment to Model Leukemic Stem Cell Quiescence. Front Cell Dev Biol 2021; 9:662868. [PMID: 34589478 PMCID: PMC8473680 DOI: 10.3389/fcell.2021.662868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023] Open
Abstract
The main challenge in the treatment of acute myeloid leukemia (AML) is relapse, as it has no good treatment options and 90% of relapsed patients die as a result. It is now well accepted that relapse is due to a persisting subset of AML cells known as leukemia-initiating cells or leukemic stem cells (LSCs). Hematopoietic stem cells (HSCs) reside in the bone marrow microenvironment (BMM), a specialized niche that coordinates HSC self-renewal, proliferation, and differentiation. HSCs are divided into two types: long-term HSCs (LT-HSCs) and short-term HSCs, where LT-HSCs are typically quiescent and act as a reserve of HSCs. Like LT-HSCs, a quiescent population of LSCs also exist. Like LT-HSCs, quiescent LSCs have low metabolic activity and receive pro-survival signals from the BMM, making them resistant to drugs, and upon discontinuation of therapy, they can become activated and re-establish the disease. Several studies have shown that the activation of quiescent LSCs may sensitize them to cytotoxic drugs. However, it is very difficult to experimentally model the quiescence-inducing BMM. Here we report that culturing AML cells with bone marrow stromal cells, transforming growth factor beta-1 and hypoxia in a three-dimensional system can replicate the quiescence-driving BMM. A quiescent-like state of the AML cells was confirmed by reduced cell proliferation, increased percentage of cells in the G0 cell cycle phase and a decrease in absolute cell numbers, expression of markers of quiescence, and reduced metabolic activity. Furthermore, the culture could be established as co-axial microbeads, enabling high-throughput screening, which has been used to identify combination drug treatments that could break BMM-mediated LSC quiescence, enabling the eradication of quiescent LSCs.
Collapse
Affiliation(s)
- Eimear O'Reilly
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Hojjat Alizadeh Zeinabad
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Caoimhe Nolan
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Jamileh Sefy
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Thomas Williams
- Plasticell Ltd., Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Marina Tarunina
- Plasticell Ltd., Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Diana Hernandez
- Plasticell Ltd., Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Yen Choo
- Plasticell Ltd., Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Eva Szegezdi
- Apoptosis Research Centre, Department of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
7
|
Chung C. Targeting the Myeloid Lineages and the Immune Microenvironment in Myelodysplastic Syndromes: Novel and Evolving Therapeutic Strategies. Ann Pharmacother 2021; 56:475-487. [PMID: 34330162 DOI: 10.1177/10600280211036154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To discuss the recent and emerging data for novel targeted therapies in myelodysplastic syndromes (MDS). DATA SOURCES A literature search from January 2015 to June 2021 was performed using the key terms targeted therapies, myelodysplastic syndromes, DNA repair, erythroid differentiation therapy, epigenetic inhibitors, signal transduction inhibitors, and apoptosis-inducing agents. STUDY SELECTION AND DATA EXTRACTION Relevant clinical trials and articles in the English language were identified and reviewed. DATA SYNTHESIS MDS are a heterogeneous group of malignant blood disorders affecting the bone marrow (BM), ultimately leading to BM failure, acute leukemia, and death. Selection of treatment is influenced by the severity of symptoms, cytopenia, cytogenetics, prognostic category, medical fitness, and patient preferences. Although current therapies such as erythropoiesis stimulating agents (ESAs) and hypomethylating agents (HMAs) help improve anemia and reduce transfusion burden, limited treatment options exist when patients experience treatment failure to ESAs or HMA. Recent regulatory approval of luspatercept, which targets the erythroid differentiation pathway, represents a major therapeutic advance in the management of anemia in MDS patients who are refractory to ESAs. Many investigational targeted therapies that aim at the myeloid lineage signaling pathway and the immune microenvironment are in active development. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE This nonexhaustive review summarizes and describes the recent data for targeted therapies for MDS. CONCLUSION The development of novel and investigational therapeutic agents continues to contribute to an improved understanding of tumor biology. The precise therapeutic role and timing of these agents remain to be elucidated.
Collapse
|
8
|
White BS, Khan SA, Mason MJ, Ammad-Ud-Din M, Potdar S, Malani D, Kuusanmäki H, Druker BJ, Heckman C, Kallioniemi O, Kurtz SE, Porkka K, Tognon CE, Tyner JW, Aittokallio T, Wennerberg K, Guinney J. Bayesian multi-source regression and monocyte-associated gene expression predict BCL-2 inhibitor resistance in acute myeloid leukemia. NPJ Precis Oncol 2021; 5:71. [PMID: 34302041 PMCID: PMC8302655 DOI: 10.1038/s41698-021-00209-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 06/22/2021] [Indexed: 11/09/2022] Open
Abstract
The FDA recently approved eight targeted therapies for acute myeloid leukemia (AML), including the BCL-2 inhibitor venetoclax. Maximizing efficacy of these treatments requires refining patient selection. To this end, we analyzed two recent AML studies profiling the gene expression and ex vivo drug response of primary patient samples. We find that ex vivo samples often exhibit a general sensitivity to (any) drug exposure, independent of drug target. We observe that this "general response across drugs" (GRD) is associated with FLT3-ITD mutations, clinical response to standard induction chemotherapy, and overall survival. Further, incorporating GRD into expression-based regression models trained on one of the studies improved their performance in predicting ex vivo response in the second study, thus signifying its relevance to precision oncology efforts. We find that venetoclax response is independent of GRD but instead show that it is linked to expression of monocyte-associated genes by developing and applying a multi-source Bayesian regression approach. The method shares information across studies to robustly identify biomarkers of drug response and is broadly applicable in integrative analyses.
Collapse
Affiliation(s)
- Brian S White
- Computational Oncology, Sage Bionetworks, Seattle, WA, USA.
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Suleiman A Khan
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Mike J Mason
- Computational Oncology, Sage Bionetworks, Seattle, WA, USA
| | - Muhammad Ammad-Ud-Din
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Disha Malani
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Heikki Kuusanmäki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Biotech Research & Innovation Centre (BRIC) and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Brian J Druker
- Howard Hughes Medical Institute, Portland, OR, USA
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Caroline Heckman
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Scilifelab, Karolinska Institute, Solna, Sweden
| | - Stephen E Kurtz
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kimmo Porkka
- HUS Comprehensive Cancer Center, Hematology Research Unit Helsinki and iCAN Digital Precision Cancer Center Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Cristina E Tognon
- Howard Hughes Medical Institute, Portland, OR, USA
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W Tyner
- Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Biostatistics and Epidemiology (OCBE), University of Oslo, Oslo, Norway
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Biotech Research & Innovation Centre (BRIC) and Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Justin Guinney
- Computational Oncology, Sage Bionetworks, Seattle, WA, USA
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Combining triptolide with ABT-199 is effective against acute myeloid leukemia through reciprocal regulation of Bcl-2 family proteins and activation of the intrinsic apoptotic pathway. Cell Death Dis 2020; 11:555. [PMID: 32699295 PMCID: PMC7376040 DOI: 10.1038/s41419-020-02762-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
Bcl-2 inhibitors display an effective activity in acute myeloid leukemia (AML), but its clinical efficacy as a monotherapy was limited in part owing to failure to target other antiapoptotic Bcl-2 family proteins, such as Mcl-1. In this context, the combination strategy may be a promising approach to overcome this barrier. Here, we report the preclinical efficacy of a novel strategy combining ABT-199 with triptolide (TPL), a natural product extracted from a traditional Chinese medicine, in AML. Combination treatment exhibited markedly increased cytotoxicity in leukemic cells irrespective of p53 status while largely sparing normal cells of the hematopoietic lineage. Moreover, co-administration of ABT-199 with TPL dramatically suppressed leukemia progression as well as prolonged animal survival in a xenograft AML model. The potentiated effect of ABT-199 and TPL against AML was associated with activation of the mitochondrum-related intrinsic apoptotic pathway through a mechanism reciprocally modulating Bcl-2 family proteins. In this case, TPL not only downregulated Mcl-1 but also upregulated proapoptotic BH3-only proteins, thereby overcoming the resistance toward ABT-199. Conversely, ABT-199 abrogated Bcl-2-mediated cytoprotection against TPL. Together, these findings suggest that the regimen combining TPL and ABT-199 might be active against AML by inducing robust apoptosis through reciprocal regulation of anti- and proapoptotic Bcl-2 family proteins, therefore providing a strong rationale for the clinical investigation of this combination regimen for the treatment of AML.
Collapse
|
10
|
Ma Y, Chen S, Chen M, Ren X, Patel N, Liu W, Huang H, Zhou R, Zhang K, Goodin S, Li D, Zheng X. Combination of diethyldithiocarbamate with 12-O-tetradecanoyl phorbol-13-acetate inhibits the growth of human myeloid leukemia HL-60 cells in vitro and in xenograft model. Biosci Biotechnol Biochem 2020; 84:2069-2076. [PMID: 32640883 DOI: 10.1080/09168451.2020.1789837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
12-O-tetradecanoylphorbol-13-acetate (TPA), is a major active constituent of the seed oil of Croton tiglium L., has pharmacological activity for the treatment of acute myeloid leukemia patients. Diethyldithiocarbamate (DTC) is a potent inhibitor of NF-κB show activity of anticancer. In this study, we determined the effect of DTC and TPA in combination on HL-60 cells cultured in vitro and in vivo. In this study, we have shown that DTC and TPA synergistically inhibited the growth of HL-60 cells and strongly induced apoptosis in the cells. Mechanistic studies showed that the combined effects of DTC and TPA were associated with a decrease in Bcl-2. The animal experiment showed that the combination of DTC and TPA more potently inhibited the growth of HL-60 tumors than either agent alone. Our results indicate that the administration of TPA and DTC in combination may be an effective strategy for inhibiting the growth of acute myeloid leukemia cells.
Collapse
Affiliation(s)
- Yuran Ma
- Department of Pharmacy and Pharmaceutical Engineering, School of Biotechnology and Health Sciences, Wuyi University , Jiangmen Province, Guangdong, 529020, China
| | - Shaohua Chen
- Department of Otolaryngology, Guangdong Provincial People's Hospital , Guangzhou, China
| | - Min Chen
- Department of Pharmacy and Pharmaceutical Engineering, School of Biotechnology and Health Sciences, Wuyi University , Jiangmen Province, Guangdong, 529020, China
| | - Xiang Ren
- Department of Pharmacy and Pharmaceutical Engineering, School of Biotechnology and Health Sciences, Wuyi University , Jiangmen Province, Guangdong, 529020, China
| | - Nandini Patel
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey , Piscataway, NJ, USA
| | - Wenfeng Liu
- Department of Pharmacy and Pharmaceutical Engineering, School of Biotechnology and Health Sciences, Wuyi University , Jiangmen Province, Guangdong, 529020, China
| | - Huarong Huang
- Allan H. Conney Laboratory for Anticancer Research, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology , Guangzhou, China
| | - Renping Zhou
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey , Piscataway, NJ, USA
| | - Kun Zhang
- Department of Pharmacy and Pharmaceutical Engineering, School of Biotechnology and Health Sciences, Wuyi University , Jiangmen Province, Guangdong, 529020, China
| | - Susan Goodin
- Department of Pharmacology, Rutgers Cancer Institute of New Jersey , New Brunswick, NJ, USA
| | - Dongli Li
- Department of Pharmacy and Pharmaceutical Engineering, School of Biotechnology and Health Sciences, Wuyi University , Jiangmen Province, Guangdong, 529020, China
| | - Xi Zheng
- Department of Pharmacy and Pharmaceutical Engineering, School of Biotechnology and Health Sciences, Wuyi University , Jiangmen Province, Guangdong, 529020, China.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey , Piscataway, NJ, USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Venetoclax with backbone therapies have shown promising efficacy for newly diagnosed, previously untreated, older, unfit acute myeloid leukemia patients. This review discusses this data and potential reasons for the efficacy of these venetoclax-based combinations. RECENT FINDINGS Venetoclax with hypomethylators and low-dose cytarabine have resulted in high response rates, promising response durations, and significant overall survival in relatively small, uncontrolled studies. There is emerging data that these responses are due to the effective targeting of leukemia stem cells through an alteration of the metabolic environment that is poorly tolerated by this population. SUMMARY Venetoclax with a backbone therapy in older, untreated patients with acute myeloid leukemia has shown promising efficacy in preliminary clinical trials, and at least partially works through a novel mechanism that can target the leukemia stem cell population. Future investigations will help elucidate the mechanism and the contributions being made by each agent in the regimen.
Collapse
|
12
|
Gurnari C, Voso MT, Maciejewski JP, Visconte V. From Bench to Bedside and Beyond: Therapeutic Scenario in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12020357. [PMID: 32033196 PMCID: PMC7072629 DOI: 10.3390/cancers12020357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of clonal disorders characterized by abnormal proliferation of undifferentiated myeloid progenitors, impaired hematopoiesis, and variable response to therapy. To date, only about 30% of adult patients with AML become long-term survivors and relapse and/or disease refractoriness are the major cause of treatment failure. Thus, this is an urgent unmet clinical need and new drugs are envisaged in order to ameliorate disease survival outcomes. Here, we review the latest therapeutic approaches (investigational and approved agents) for AML treatment. A specific focus will be given to molecularly targeted therapies for AML as a representation of possible agents for precision medicine. We will discuss experimental and preclinical data for FLT3, IDH1, BCL-2, Hedgehog pathway inhibitors, and epitherapy.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (J.P.M.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
- Neuro-Oncohematology Unit, Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00143 Rome, Italy
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (J.P.M.)
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (J.P.M.)
- Correspondence:
| |
Collapse
|
13
|
Niscola P, Noguera NI, Catalano G, Cupelli L, Fratoni S, Giovannini M, Mazzone C, Neri B, Scaramucci L, Trawinska MM, de Fabritiis P, Abruzzese E. Double remission of simultaneously occurring secondary AML and CLL by venetoclax monotherapy. Acta Oncol 2019; 58:888-890. [PMID: 30848978 DOI: 10.1080/0284186x.2019.1585943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Pasquale Niscola
- Hematology Unit, Saint’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Nélida Inés Noguera
- Neuro Oncohematology Unit, Santa Lucia Foundation and Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Gianfranco Catalano
- Hematology Unit, Saint’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Luca Cupelli
- Hematology Unit, Saint’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Stefano Fratoni
- Department of Pathology, Saint’ Eugenio Hospital, Rome, Italy
| | - Marco Giovannini
- Hematology Unit, Saint’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Carla Mazzone
- Hematology Unit, Saint’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Benedetta Neri
- Hematology Unit, Saint’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Laura Scaramucci
- Hematology Unit, Saint’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | | | - Paolo de Fabritiis
- Hematology Unit, Saint’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| | - Elisabetta Abruzzese
- Hematology Unit, Saint’ Eugenio Hospital, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
14
|
Ferrara F, Vitagliano O. Induction therapy in acute myeloid leukemia: Is it time to put aside standard 3 + 7? Hematol Oncol 2019; 37:558-563. [DOI: 10.1002/hon.2615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/23/2019] [Indexed: 12/17/2022]
|
15
|
Zhang S, Zhao Y, Heaster TM, Fischer MA, Stengel KR, Zhou X, Ramsey H, Zhou MM, Savona MR, Skala MC, Hiebert SW. BET inhibitors reduce cell size and induce reversible cell cycle arrest in AML. J Cell Biochem 2019; 120:7309-7322. [PMID: 30417424 PMCID: PMC6513713 DOI: 10.1002/jcb.28005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
Abstract
Inhibitors of the bromodomain and extraterminal domain family (BETi) offer a new approach to treat hematological malignancies, with leukemias containing mixed lineage leukemia rearrangements being especially sensitive due to a reliance on the regulation of transcription elongation. We explored the mechanism of action of BETi in cells expressing the t(8;21), and show that these compounds reduced the size of acute myeloid leukemia cells, triggered a rapid but reversible G0 /G1 arrest, and with time, cause cell death. Meta-analysis of PRO-seq data identified ribosomal genes, which are regulated by MYC, were downregulated within 3 hours of addition of the BETi. This reduction of MYC regulated metabolic genes coincided with the loss of mitochondrial respiration and large reductions in the glycolytic rate. In addition, gene expression analysis showed that transcription of BCL2 was rapidly affected by BETi but this did not cause dramatic increases in cell death. Cell cycle arrest, lowered metabolic activity, and reduced BCL2 levels suggested that a second compound was needed to push these cells over the apoptotic threshold. Indeed, low doses of the BCL2 inhibitor, venetoclax, in combination with the BETi was a potent combination in t(8;21) containing cells. Thus, BET inhibitors that affect MYC and BCL2 expression should be considered for combination therapy with venetoclax.
Collapse
Affiliation(s)
- Susu Zhang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Yue Zhao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Tiffany M. Heaster
- Morgridge Institute for Research and the Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - Melissa A. Fischer
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Kristy R. Stengel
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Haley Ramsey
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Michael R. Savona
- Morgridge Institute for Research and the Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706;,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37027
| | - Melissa C. Skala
- Morgridge Institute for Research and the Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - Scott W. Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232;,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37027,To whom correspondence should be sent: Department of Biochemistry, 512 Preston Research Building, Vanderbilt University School of Medicine, 2220 Pierce Ave., Nashville Tennessee, 37232, Phone: (615) 936-3582; Fax: (615) 936-1790;
| |
Collapse
|
16
|
Badr G, Zahran AM, Omar HM, Barsoum MA, Mahmoud MH. Camel Whey Protein Disrupts the Cross-Talk Between PI3K and BCL-2 Signals and Mediates Apoptosis in Primary Acute Myeloid Leukemia Cells. Nutr Cancer 2019; 71:1040-1054. [PMID: 31017486 DOI: 10.1080/01635581.2019.1595054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the present study, we investigated the impact of camel whey protein (CWP) on the survival of primary acute myeloid leukemia (AML) cells that were isolated from 20 patients diagnosed with AML. We found that CWP induced apoptosis in the primary AML cells without affecting the normal PBMCs that were isolated from healthy individuals, as determined by PI/annexin V double staining followed by flow-cytometry analysis. Furthermore, we demonstrated that these primary AML cells exhibited aberrant phosphorylation of AKT, mTOR and STAT3. Treatment of AML cells with CWP mediated significant reduction in the phosphorylation of AKT, mTOR and STAT3. Additionally, we demonstrated that blockade of PI3K/AKT signaling pathway by wortmannin (WM) impaired the expression of Bcl-2 and BclXL in the primary AML cells, suggesting an essential cross-talk between PI3K and Bcl-2 that maintains the survival of AML cells. In this context, treatment of AML cells with CWP disrupted the PI3K/Bcl-2 cross-talk; significantly downregulated the expression of anti-apoptotic Bcl-2 family members Bcl-2 and BclXL; markedly upregulated the expression of the pro-apoptotic Bcl-2 family members Bak and Bax; and subsequently sensitized tumor cells to growth arrest. Our data revealed the therapeutic potential of CWP and the underlying mechanisms against leukemia.
Collapse
Affiliation(s)
- Gamal Badr
- a Zoology Department, Faculty of Science , Assiut University , Assiut , Egypt.,b Laboratory of Immunology and Molecular Physiology, Zoology Department, Faculty of Science , Assiut University , Assiut , Egypt.,c King Saud University , Riyadh , Saudi Arabia
| | - Asmaa M Zahran
- d Clinical Pathology Department, South Egypt Cancer Institute , Assiut University , Assiut , Egypt
| | - Hossam M Omar
- a Zoology Department, Faculty of Science , Assiut University , Assiut , Egypt.,e Laboratory of Physiology, Zoology Department, Faculty of Science , Assiut University , Assiut , Egypt
| | - Martina A Barsoum
- a Zoology Department, Faculty of Science , Assiut University , Assiut , Egypt.,b Laboratory of Immunology and Molecular Physiology, Zoology Department, Faculty of Science , Assiut University , Assiut , Egypt.,e Laboratory of Physiology, Zoology Department, Faculty of Science , Assiut University , Assiut , Egypt
| | - Mohamed H Mahmoud
- f Deanship of Scientific Research , King Saud University , Riyadh , Saudi Arabia.,g Food Science and Nutrition Department , National Research Center , Cairo , Egypt
| |
Collapse
|
17
|
Zhai KF, Duan H, Cui CY, Cao YY, Si JL, Yang HJ, Wang YC, Cao WG, Gao GZ, Wei ZJ. Liquiritin from Glycyrrhiza uralensis Attenuating Rheumatoid Arthritis via Reducing Inflammation, Suppressing Angiogenesis, and Inhibiting MAPK Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2856-2864. [PMID: 30785275 DOI: 10.1021/acs.jafc.9b00185] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Among the various treatments, induction of synoviocyte apoptosis by natural products during a rheumatoid arthritis (RA) pathological condition can be considered to have vast potential. However, it is unclear that liquiritin, a kind of natural flavonoid extracted from the roots of Glycyrrhiza uralensis, induced the apoptosis of the synovial membrane and its molecular mechanism. In this study, interleukin-1β (IL-1β)-RA-FLS cells were incubated with different concentrations of liquiritin. An MTT assay, Hoechst 33342 staining, JC-1 staining, and Western blot were used to check the viability, cell apoptosis, mitochondrial membrane potential changes, and the expression of related proteins, respectively. In vivo, a TUNEL assay and HE staining of tissue were used for histopathological evaluation. Our results showed that liquiritin significantly inhibited the proliferation of IL-1β-induced-RA-FLS, promoted nuclear DNA fragmentation, and changed the mitochondrial membrane potential to accelerate cell apoptosis. Liquiritin downregulated the ratio of Bcl-2/Bax and inhibited the VEGF expression and phosphorylation of JNK and P38. Moreover, liquiritin improved the clinical score of rheumatism, inflammatory infiltration, and angiogenesis and induced apoptosis of the synovial tissue in vivo. Hence, liquiritin ameliorates RA by reducing inflammation, blocking MAPK signaling, and restraining angiogenesis.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/physiopathology
- Cell Proliferation/drug effects
- Drugs, Chinese Herbal/administration & dosage
- Flavanones/administration & dosage
- Glucosides/administration & dosage
- Glycyrrhiza uralensis/chemistry
- Humans
- Interleukin-1beta/genetics
- Interleukin-1beta/immunology
- MAP Kinase Signaling System/drug effects
- Male
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/physiopathology
- Phosphorylation/drug effects
- Rats
- Rats, Wistar
- Synovial Membrane/drug effects
- Synovial Membrane/immunology
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/immunology
Collapse
Affiliation(s)
- Ke-Feng Zhai
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , People's Republic of China
- Department of Clinical Laboratory, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 , People's Republic of China
| | - Hong Duan
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , People's Republic of China
| | - Cai-Yue Cui
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , People's Republic of China
| | - Yu-Yao Cao
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| | - Jia-Li Si
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , People's Republic of China
| | - Hui-Jiao Yang
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , People's Republic of China
| | - Yong-Chao Wang
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , People's Republic of China
| | - Wen-Gen Cao
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , People's Republic of China
| | - Gui-Zhen Gao
- Suzhou Engineering Research Center of Natural Medicine and Functional Food, Institute of Pharmaceutical Biotechnology, School of Biological and Food Engineering , Suzhou University , 49, Bianhe Road , Suzhou 234000 , People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering , Hefei University of Technology , Hefei 230009 , People's Republic of China
| |
Collapse
|
18
|
Next Generation Sequencing in AML-On the Way to Becoming a New Standard for Treatment Initiation and/or Modulation? Cancers (Basel) 2019; 11:cancers11020252. [PMID: 30795628 PMCID: PMC6406956 DOI: 10.3390/cancers11020252] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disease caused by genetic abberations occurring predominantly in the elderly. Next generation sequencing (NGS) analysis has led to a deeper genetic understanding of the pathogenesis and the role of recently discovered genetic precursor lesions (clonal hematopoiesis of indeterminate/oncogenic potential (CHIP/CHOP)) in the evolution of AML. These advances are reflected by the inclusion of certain mutations in the updated World Health Organization (WHO) 2016 classification and current treatment guidelines by the European Leukemia Net (ELN) and National Comprehensive Cancer Network (NCCN) and results of mutational testing are already influencing the choice and timing of (targeted) treatment. Genetic profiling and stratification of patients into molecularly defined subgroups are expected to gain ever more weight in daily clinical practice. Our aim is to provide a concise summary of current evidence regarding the relevance of NGS for the diagnosis, risk stratification, treatment planning and response assessment in AML, including minimal residual disease (MRD) guided approaches. We also summarize recently approved drugs targeting genetically defined patient populations with risk adapted- and individualized treatment strategies.
Collapse
|