1
|
Janssens J, Bruggemans A, Christ F, Debyser Z. Towards a Functional Cure of HIV-1: Insight Into the Chromatin Landscape of the Provirus. Front Microbiol 2021; 12:636642. [PMID: 33868195 PMCID: PMC8044952 DOI: 10.3389/fmicb.2021.636642] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Despite potent combination antiretroviral therapy, HIV-1 infection persists due to irreversible integration of the virus in long-living cells of the immune system. The main focus of HIV-1 cure strategies has been on HIV-1 eradication, yet without great success so far. Therefore, HIV-1 remission or a functional cure, whereby the virus is silenced rather than eradicated, is considered as an alternative strategy. Elite controllers, individuals who spontaneously control HIV-1, may point us the way toward a functional HIV-1 cure. In order to achieve such a cure, a profound understanding of the mechanisms controlling HIV-1 expression and silencing is needed. In recent years, evidence has grown that the site of integration as well as the chromatin landscape surrounding the integration site affects the transcriptional state of the provirus. Still, at present, the impact of integration site selection on the establishment and maintenance of the HIV-1 reservoirs remains poorly understood. The discovery of LEDGF/p75 as a binding partner of HIV-1 integrase has led to a better understanding of integration site selection. LEDGF/p75 is one of the important determinants of integration site selection and targets integration toward active genes. In this review, we will provide an overview of the most important determinants of integration site selection. Secondly, we will discuss the chromatin landscape at the integration site and its implications on HIV-1 gene expression and silencing. Finally, we will discuss how interventions that affect integration site selection or modifications of the chromatin could yield a functional cure of HIV-1 infection.
Collapse
Affiliation(s)
- Julie Janssens
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Anne Bruggemans
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Delayed gastrointestinal-associated lymphoid tissue reconstitution in duodenum compared with rectum in HIV-infected patients initiating antiretroviral therapy. AIDS 2019; 33:2289-2298. [PMID: 31764094 DOI: 10.1097/qad.0000000000002361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND We aimed to characterize the impact of antiretroviral therapy (ART) initiation on gastrointestinal-associated lymphoid tissue at various sites along the gastrointestinal site. METHODOLOGY Peripheral blood and duodenal and rectal biopsies were obtained from 12 HIV to 33 treatment-naive HIV participants at baseline and after 9 months ART. Tissue was digested for immunophenotyping. Inflammatory, bacterial translocation and intestinal damage markers were measured in plasma. RESULTS Twenty-six HIV patients completed follow-up. The lowest reconstitution of CD4 T cells and the lowest CD4/CD8 ratio during ART compared with blood were observed in the duodenum with the rectum being either intermediate or approaching blood levels. Regulatory T cells were in higher proportions in the duodenum than the rectum and neither declined significantly during ART. Several correlations with biomarkers of microbial translocation were observed including increases in lipoteichoic acid levels, which reflects Gram-positive bacterial translocation, correlated with increases in %CD4 T cells in the duodenum (Rho 0.773, P = 0.033), and with decreases in duodenal regulatory T-cell populations (Rho -0.40, P = 0.045). CONCLUSION HIV-mediated immunological disruption is greater in the duodenum than rectum and blood before and during ART. Small intestine damage may represent a unique environment for T-cell depletion, which might be attenuated by interaction with Gram-positive bacteria.
Collapse
|
3
|
Panaampon J, Kudo E, Kariya R, Okada S. Ephedrine enhances HIV-1 reactivation from latency through elevating tumor necrosis factor receptor II (TNFRII) expression. Heliyon 2019; 5:e02490. [PMID: 31687583 PMCID: PMC6819846 DOI: 10.1016/j.heliyon.2019.e02490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/02/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022] Open
Abstract
HIV-1 persists during antiretroviral therapy (ART) due to long-lived and proliferating latently-infected host cells, with the outcome being an incomplete cure. The latently-infected cells, or reservoir cells, are transcriptionally absent and invisible to the immune response. Elimination of latency is one strategy in activating virus production, making it visible to immune clearance. We previously showed that Ephedrae herba reactivated HIV-1 from latency. In this study, we used ephedrine, a major component of Ephedra herba, to reactivate HIV-1 from latency. The results showed that ephedrine enhances HIV-1 reactivation in the presence of TNFα. Combination treatment demonstrates a synergistic effect of HIV-1 reactivation compared to TNFα alone. Ephedrine treatment shows a higher TNFRII expression level, which is related to increased HIV-1 reactivation. However, the mechanism of ephedrine in HIV-1 reactivation is still unclear, and may be related to TNFRII receptor expression. Our results indicate that ephedrine enhances HIV-1 reactivation from latency in combination with TNFα treatment. This new reagent could be a promising latency reversal agent (LRA).
Collapse
|
4
|
Tomitaka A, Arami H, Huang Z, Raymond A, Rodriguez E, Cai Y, Febo M, Takemura Y, Nair M. Hybrid magneto-plasmonic liposomes for multimodal image-guided and brain-targeted HIV treatment. NANOSCALE 2017; 10:184-194. [PMID: 29210401 PMCID: PMC6450097 DOI: 10.1039/c7nr07255d] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Image-guided drug delivery is an emerging strategy in the field of nanomedicine. The addition of image guidance to a traditional drug delivery system is expected to achieve highly efficient treatment by tracking the drug carriers in the body and monitoring their effective accumulation in the targeted tissues. In this study, we developed multifunctional magneto-plasmonic liposomes (MPLs), a hybrid system combining liposomes and magneto-plasmonic nanoparticles for a triple-modality image-guided drug delivery. Tenofovir disoproxil fumarate, an antiretroviral drug used to treat human immunodeficiency virus type 1 (HIV-1), was encapsulated into the MPLs to enable the treatment in the brain microenvironment, which is inaccessible to most of the drugs. We found strong negative and positive contrasts originating from the magnetic core of MPLs in magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), respectively. The gold shell of MPLs showed bright positive contrast in X-ray computed tomography (CT). MPLs achieved enhanced transmigration across an in vitro blood-brain barrier (BBB) model by magnetic targeting. Moreover, MPLs provided desired therapeutic effects against HIV infected microglia cells.
Collapse
Affiliation(s)
- Asahi Tomitaka
- Department of Immunology, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hernandez-Vargas EA. Modeling Kick-Kill Strategies toward HIV Cure. Front Immunol 2017; 8:995. [PMID: 28894444 PMCID: PMC5581319 DOI: 10.3389/fimmu.2017.00995] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022] Open
Abstract
Although combinatorial antiretroviral therapy (cART) potently suppresses the virus, a sterile or functional cure still remains one of the greatest therapeutic challenges worldwide. Reservoirs are infected cells that can maintain HIV persistence for several years in patients with optimal cART, which is a leading obstacle to eradicate the virus. Despite the significant progress that has been made in our understanding of the diversity of cells that promote HIV persistence, many aspects that are critical to the development of effective therapeutic approaches able to purge the latent CD4+ T cell reservoir are poorly understood. Simultaneous purging strategies known as “kick-kill” have been pointed out as promising therapeutic approaches to eliminate the viral reservoir. However, long-term outcomes of purging strategies as well as the effect on the HIV reservoir are still largely fragmented. In this context, mathematical modeling can provide a rationale not only to evaluate the impact on the HIV reservoir but also to facilitate the formulation of hypotheses about potential therapeutic strategies. This review aims to discuss briefly the most recent mathematical modeling contributions, harnessing our knowledge toward the uncharted territory of HIV eradication. In addition, problems associated with current models are discussed, in particular, mathematical models consider only T cell responses but HIV control may also depend on other cell responses as well as chemokines and cytokines dynamics.
Collapse
|
6
|
Jensen SS, Fomsgaard A, Borggren M, Tingstedt JL, Gerstoft J, Kronborg G, Rasmussen LD, Pedersen C, Karlsson I. HIV-Specific Antibody-Dependent Cellular Cytotoxicity (ADCC) -Mediating Antibodies Decline while NK Cell Function Increases during Antiretroviral Therapy (ART). PLoS One 2015; 10:e0145249. [PMID: 26696395 PMCID: PMC4692281 DOI: 10.1371/journal.pone.0145249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/30/2015] [Indexed: 12/31/2022] Open
Abstract
Understanding alterations in HIV-specific immune responses during antiretroviral therapy (ART), such as antibody-dependent cellular cytotoxicity (ADCC), is important in the development of novel strategies to control HIV-1 infection. This study included 53 HIV-1 positive individuals. We evaluated the ability of effector cells and antibodies to mediate ADCC separately and in combination using the ADCC-PanToxiLux assay. The ability of the peripheral blood mononuclear cells (PBMCs) to mediate ADCC was significantly higher in individuals who had been treated with ART before seroconversion, compared to the individuals initiating ART at a low CD4+ T cell count (<350 cells/μl blood) and the ART-naïve individuals. The frequency of CD16 expressing natural killer (NK) cells correlated with both the duration of ART and Granzyme B (GzB) activity. In contrast, the plasma titer of antibodies mediating ADCC declined during ART. These findings suggest improved cytotoxic function of the NK cells if initiating ART early during infection, while the levels of ADCC mediating antibodies declined during ART.
Collapse
Affiliation(s)
- Sanne Skov Jensen
- Virus Research & Development Laboratory, Department of Microbial Diagnostic and Virology, Statens Serum Institut, Copenhagen, Denmark.,Department of Infectious Diseases, Odense University Hospital, DK-5000 Odense, Denmark.,Infectious Disease Research Unit, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Anders Fomsgaard
- Virus Research & Development Laboratory, Department of Microbial Diagnostic and Virology, Statens Serum Institut, Copenhagen, Denmark.,Infectious Disease Research Unit, Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Marie Borggren
- Virus Research & Development Laboratory, Department of Microbial Diagnostic and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Jeanette Linnea Tingstedt
- Virus Research & Development Laboratory, Department of Microbial Diagnostic and Virology, Statens Serum Institut, Copenhagen, Denmark
| | - Jan Gerstoft
- Viro-immunology Research Unit, Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Gitte Kronborg
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | | | - Court Pedersen
- Department of Infectious Diseases, Odense University Hospital, DK-5000 Odense, Denmark
| | - Ingrid Karlsson
- Virus Research & Development Laboratory, Department of Microbial Diagnostic and Virology, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
7
|
Flores A, Camarasa MJ, Pérez-Pérez MJ, San-Félix A, Balzarini J, Quesada E. Multivalent agents containing 1-substituted 2,3,4-trihydroxyphenyl moieties as novel synthetic polyphenols directed against HIV-1. Org Biomol Chem 2015; 12:5278-94. [PMID: 24927059 DOI: 10.1039/c4ob00445k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The synthesis and the assessment of the anti-HIV activity of a set of molecules inspired by the multivalent structures of some naturally-occurring polyphenols (tannins) are reported. Different multibranched scaffolds have been derived from pentaerythritol as the central core which distribute spatially synthetic polyphenolic subunits based on 1-substituted 2,3,4-trihydroxyphenyl moieties. A tetrapodal compound () bearing four N-(2,3,4-trihydroxyphenyl)amide groups, exhibits remarkable selective activity against HIV-1 with EC50 values in the micromolar scale, in the same range as those reported for the most representative anti-HIV tannins. Preliminary SAR studies emphasize the importance of the 1-substituted 2,3,4-trihydroxyphenyl moiety, the presence of an amide as the linker and the multivalent architecture of these molecules, since the anti-HIV activity increases with the number of polyphenolic moieties. The data support the interest in synthetic polyphenols and represent a promising starting point for further design and development of selective HIV-1 inhibitors.
Collapse
Affiliation(s)
- Aida Flores
- Instituto de Química Médica CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
8
|
Madhavi V, Ana-Sosa-Batiz FE, Jegaskanda S, Center RJ, Winnall WR, Parsons MS, Ananworanich J, Cooper DA, Kelleher AD, Hsu D, Pett S, Stratov I, Kramski M, Kent SJ. Antibody-dependent effector functions against HIV decline in subjects receiving antiretroviral therapy. J Infect Dis 2014; 211:529-38. [PMID: 25170105 DOI: 10.1093/infdis/jiu486] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Combination antiretroviral therapy (cART) effectively controls human immunodeficiency virus (HIV) infection but does not eliminate HIV, and lifelong treatment is therefore required. HIV-specific cytotoxic T lymphocyte (CTL) responses decline following cART initiation. Alterations in other HIV-specific immune responses that may assist in eliminating latent HIV infection, specifically antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP), are unclear. METHODS A cohort of 49 cART-naive HIV-infected subjects from Thailand (mean baseline CD4 count, 188 cells/µL; mean viral load, 5.4 log10 copies/mL) was followed for 96 weeks after initiating cART. ADCC and ADP assays were performed using serum samples obtained at baseline and after 96 weeks of cART. RESULTS A 35% reduction in HIV type 1 envelope (Env)-specific ADCC-mediated killing of target cells (P<.001) was observed after 96 weeks of cART. This was corroborated by a significant reduction in the ability of Env-specific ADCC antibodies to activate natural killer cells (P<.001). Significantly reduced ADP was also observed after 96 weeks of cART (P=.018). CONCLUSIONS This longitudinal study showed that cART resulted in significant reductions of HIV-specific effector antibody responses, including ADCC and ADP. Therapeutic vaccines or other immunomodulatory approaches may be required to improve antibody-mediated control of HIV during cART.
Collapse
Affiliation(s)
- Vijaya Madhavi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Fernanda E Ana-Sosa-Batiz
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Rob J Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Wendy R Winnall
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Matthew S Parsons
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Jintanat Ananworanich
- Thai Red Cross AIDS Research Centre, HIV Netherlands Australia Thailand Research Collaboration, Bangkok, Thailand
| | - David A Cooper
- Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Anthony D Kelleher
- Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Denise Hsu
- Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Sarah Pett
- Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia Medical Research Council Clinical Trials Unit, Department of Infection and Population Health, University College London, United Kingdom
| | - Ivan Stratov
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Marit Kramski
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville
| |
Collapse
|
9
|
Muenchhoff M, Prendergast AJ, Goulder PJR. Immunity to HIV in Early Life. Front Immunol 2014; 5:391. [PMID: 25161656 PMCID: PMC4130105 DOI: 10.3389/fimmu.2014.00391] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/30/2014] [Indexed: 01/14/2023] Open
Abstract
The developing immune system is adapted to the exposure to a plethora of pathogenic and non-pathogenic antigens encountered in utero and after birth, requiring a fine balance between protective immunity and immune tolerance. In early stages of life, this tolerogenic state of the innate and adaptive immune system and the lack of immunological memory render the host more susceptible to infectious pathogens like HIV. HIV pathogenesis is different in children, compared to adults, with more rapid disease progression and a substantial lack of control of viremia compared to adults. Plasma viral load remains high during infancy and only declines gradually over several years in line with immune maturation, even in rare cases where children maintain normal CD4 T-lymphocyte counts for several years without antiretroviral therapy (ART). These pediatric slow progressors also typically show low levels of immune activation despite persistently high viremia, resembling the phenotype of natural hosts of SIV infection. The lack of immunological memory places the fetus and the newborn at higher risk of infections; however, it may also provide an opportunity for unique interventions. Frequencies of central memory CD4+ T-lymphocytes, one of the main cellular reservoirs of HIV, are very low in the newborn child, so immediate ART could prevent the establishment of persistent viral reservoirs and result in "functional cure." However, as recently demonstrated in the case report of the "Mississippi child" who experienced viral rebound after more than 2 years off ART, additional immunomodulatory strategies might be required for sustained viral suppression after ART cessation. In this review, we discuss the interactions between HIV and the developing immune system in children and the potential implications for therapeutic and prophylactic interventions.
Collapse
Affiliation(s)
- Maximilian Muenchhoff
- Department of Paediatrics, University of Oxford, Peter Medawar Building for Pathogen Research , Oxford , UK
| | - Andrew J Prendergast
- Centre for Paediatrics, Blizard Institute, Queen Mary University of London , London , UK ; Zvitambo Institute for Maternal and Child Health Research , Harare , Zimbabwe
| | - Philip Jeremy Renshaw Goulder
- Department of Paediatrics, University of Oxford, Peter Medawar Building for Pathogen Research , Oxford , UK ; HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The review reflects on opportunities and challenges for HIV treatment optimization for the next 5 years. RECENT FINDINGS Considering all currently available options, the fixed-dose combination of tenofovir + lamivudine (or emtricitabine) + efavirenz is considered as the best option for first-line treatment for the short to medium term. Second-line therapy will likely continue to be comprised of a boosted protease inhibitor in combination with two nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), with potential for combining with integrase inhibitors. For children, there is potential for simplification and harmonization with adult antiretroviral regimens. First-line therapy for children younger than 3 years of age may be best delivered using two nucleoside reverse transcriptase inhibitors (NRTIs) and a boosted protease inhibitor; above 3 years of age, the standard of care is two NRTIs and a non-nucleoside reverse transcriptase inhibitor (NNRTI) as recommended for adults. Important research questions include the dosing and safety of new antiretroviral agents and formulations, particularly once-daily fixed-dose combinations, the role of integrase inhibitors and the optimal second-line regimen for NNRTI-exposed children who fail protease inhibitor-containing first-line regimens. SUMMARY Treatment simplification is critical to further antiretroviral therapy scaling-up and support long-term retention in care. Future guidance should consider the broader benefits of earlier antiretroviral therapy initiation beyond potential AIDS mortality reduction, notably mitigation of short- and long-term HIV-associated comorbidities, reduction of HIV transmission, increased retention in care, and enhancing programme simplification.
Collapse
|
11
|
Differential impact of PD-1 and/or interleukin-10 blockade on HIV-1-specific CD4 T cell and antigen-presenting cell functions. J Virol 2013; 88:2508-18. [PMID: 24352453 DOI: 10.1128/jvi.02034-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Antigen persistence in chronic infections and cancer upregulates inhibitory networks, such as the PD-1 and interleukin-10 (IL-10) pathways, that impair immunity and lead to disease progression. These pathways are attractive targets for immunotherapy, as demonstrated by recent clinical trials of PD-1/PD-L1 blockade in cancer patients. However, in HIV-1 infection not all subjects respond to inhibition of either pathway and the mechanistic interactions between these two networks remain to be better defined. Here we demonstrate that in vitro blockade of PD-L1 and/or IL-10Rα results in markedly different profiles of HIV-1-specific CD4 T cell restoration. Whereas PD-L1 blockade leads to balanced increase in gamma interferon (IFN-γ), IL-2, and IL-13 secretion, IL-10Rα blockade preferentially restores IFN-γ production. In viremic subjects, combined PD-L1/IL-10Rα blockade results in a striking 10-fold increase in IFN-γ secretion by HIV-1-specific CD4 T cells that is not observed in subjects with spontaneous (elite controllers) or therapy-induced control of viral replication. In contrast to the dramatic increase in IFN-γ production, concurrent blockade has a marginal additive effect on IL-2 production, IL-13 secretion, and HIV-1-specific CD4 T cell proliferation. IFN-γ produced by Thelper cells upregulates PD-L1, HLA I/II, and IL-12 expression by monocytes. The effect of combined blockade on IFN-γ was dependent on reciprocal reinforcement through IL-12. These studies provide crucial information on the different immunoregulatory qualities of PD-1 and IL-10 in progressive disease and link exhausted virus-specific CD4 T cells and monocytes in the regulation of IFN-γ and IL-12 secretion. IMPORTANCE Infection with HIV results in most people in uncontrolled viral replication and progressive weakening of the body defenses. In the absence of antiviral therapy, this process results in clinical disease, or AIDS. An important reason why HIV continues to multiply is that a population of white blood cells called CD4 T cells that targets the virus fails to work properly. At least part of this impairment is under the control of inhibitory mechanisms that can be blocked to improve the function of these CD4 T cells. In this report, we show that blocking one or two of the molecules involved, called PD-1 and IL-10, has different effects on the individual functions of these cells and that one is strongly improved. We investigate how these effects are caused by interactions between CD4 T cells and antigen-presenting cells. These observations can have implications for new therapeutic approaches in HIV infection.
Collapse
|
12
|
Chirullo B, Sgarbanti R, Limongi D, Shytaj IL, Alvarez D, Das B, Boe A, DaFonseca S, Chomont N, Liotta L, Petricoin EI, Norelli S, Pelosi E, Garaci E, Savarino A, Palamara AT. A candidate anti-HIV reservoir compound, auranofin, exerts a selective 'anti-memory' effect by exploiting the baseline oxidative status of lymphocytes. Cell Death Dis 2013; 4:e944. [PMID: 24309931 PMCID: PMC3877546 DOI: 10.1038/cddis.2013.473] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/26/2013] [Accepted: 10/31/2013] [Indexed: 01/05/2023]
Abstract
Central memory (TCM) and transitional memory (TTM) CD4+ T cells are known to be the major cellular reservoirs for HIV, as these cells can harbor a transcriptionally silent form of viral DNA that is not targeted by either the immune system or current antiretroviral drug regimens. In the present study, we explored the molecular bases of the anti-HIV reservoir effects of auranofin (AF), a pro-oxidant gold-based drug and a candidate compound for a cure of AIDS. We here show that TCM and TTM lymphocytes have lower baseline antioxidant defenses as compared with their naive counterpart. These differences are mirrored by the effects exerted by AF on T-lymphocytes: AF was able to exert a pro-differentiating and pro-apoptotic effect, which was more pronounced in the memory subsets. AF induced an early activation of the p38 mitogen-activated protein kinase (p38 MAPK) followed by mitochondrial depolarization and a final burst in intracellular peroxides. The pro-differentiating effect was characterized by a downregulation of the CD27 marker expression. Interestingly, AF-induced apoptosis was inhibited by pyruvate, a well-known peroxide scavenger, but pyruvate did not inhibit the pro-differentiating effect of AF, indicating that the pro-apoptotic and pro-differentiating effects involve different pathways. In conclusion, our results demonstrate that AF selectively targets the TCM/TTM lymphocyte subsets, which encompass the HIV reservoir, by affecting redox-sensitive cell death pathways.
Collapse
Affiliation(s)
- B Chirullo
- Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hauber I, Hofmann-Sieber H, Chemnitz J, Dubrau D, Chusainow J, Stucka R, Hartjen P, Schambach A, Ziegler P, Hackmann K, Schröck E, Schumacher U, Lindner C, Grundhoff A, Baum C, Manz MG, Buchholz F, Hauber J. Highly significant antiviral activity of HIV-1 LTR-specific tre-recombinase in humanized mice. PLoS Pathog 2013; 9:e1003587. [PMID: 24086129 PMCID: PMC3784474 DOI: 10.1371/journal.ppat.1003587] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 07/15/2013] [Indexed: 12/12/2022] Open
Abstract
Stable integration of HIV proviral DNA into host cell chromosomes, a hallmark and essential feature of the retroviral life cycle, establishes the infection permanently. Current antiretroviral combination drug therapy cannot cure HIV infection. However, expressing an engineered HIV-1 long terminal repeat (LTR) site-specific recombinase (Tre), shown to excise integrated proviral DNA in vitro, may provide a novel and highly promising antiviral strategy. We report here the conditional expression of Tre-recombinase from an advanced lentiviral self-inactivation (SIN) vector in HIV-infected cells. We demonstrate faithful transgene expression, resulting in accurate provirus excision in the absence of cytopathic effects. Moreover, pronounced Tre-mediated antiviral effects are demonstrated in vivo, particularly in humanized Rag2−/−γc−/− mice engrafted with either Tre-transduced primary CD4+ T cells, or Tre-transduced CD34+ hematopoietic stem and progenitor cells (HSC). Taken together, our data support the use of Tre-recombinase in novel therapy strategies aiming to provide a cure for HIV. Current antiretroviral combination therapy can efficiently suppress virus replication, but cannot eliminate HIV. Therefore, no cure for HIV exists. A main hurdle for virus eradication is seen in the existence of resting cells that contain integrated replication-competent, but temporarily silenced, HIV genomes. Therefore, the most direct approach to eliminating virus reservoirs is to remove HIV genomes from infected cells. As previous studies suggested, this may be achievable by Tre-recombinase, an engineered enzyme that can excise integrated HIV from host cell chromosomes. The present work analyzes the expression of Tre-recombinase in human cells and demonstrates highly accurate Tre activity in complete absence of Tre-related cytopathic effects. Furthermore, in vivo analysis of Tre-recombinase demonstrates highly significant antiviral effects of Tre in HIV-infected humanized mice. The presented data suggest that Tre-recombinase might become a valuable component of a future therapy that aims at virus eradication.
Collapse
Affiliation(s)
- Ilona Hauber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Helga Hofmann-Sieber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jan Chemnitz
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Danilo Dubrau
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Janet Chusainow
- Department of Medical Systems Biology, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Rolf Stucka
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Philip Hartjen
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- Infectious Diseases Unit, I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Patrick Ziegler
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Klinik für Onkologie, Hämatologie und Stammzelltransplantation, RWTH Aachen University, Aachen, Germany
| | - Karl Hackmann
- Institute for Clinical Genetics, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Evelin Schröck
- Institute for Clinical Genetics, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Udo Schumacher
- Institute for Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Lindner
- Department of Gynecology, Day Kimball Healthcare Hospital, Hamburg, Germany
| | - Adam Grundhoff
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Christopher Baum
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Markus G. Manz
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- University and University Hospital Zürich, Division of Hematology, Zürich, Switzerland
| | - Frank Buchholz
- Department of Medical Systems Biology, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Joachim Hauber
- Heinrich Pette Institute – Leibniz Institute for Experimental Virology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
14
|
Kaczmarek K, Morales A, Henderson AJ. T Cell Transcription Factors and Their Impact on HIV Expression. Virology (Auckl) 2013; 2013:41-47. [PMID: 24436634 PMCID: PMC3891646 DOI: 10.4137/vrt.s12147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
By targeting CD4+ effector T cells, HIV has a dramatic impact on the depletion, expansion and function of the different polarized T cell subsets. The maturation of T cell lineages is in part driven by intrinsic transcription factors that potentially influence how efficiently HIV replicates. In this review, we explore whether transcription factors that are required for polarizing T cells influence HIV replication. In particular, we examine provirus transcription as well as the establishment and maintenance of HIV latency. Furthermore, it is suggested these factors may provide novel cell-specific therapeutic strategies for targeting the HIV latent reservoir.
Collapse
Affiliation(s)
- Katarzyna Kaczmarek
- Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA
| | - Ayana Morales
- Section of Infectious Diseases and Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Andrew J Henderson
- Graduate Program in Molecular and Translational Medicine, Boston University School of Medicine, Boston, MA. ; Section of Infectious Diseases and Department of Medicine, Boston University School of Medicine, Boston, MA
| |
Collapse
|
15
|
Van Lint C, Bouchat S, Marcello A. HIV-1 transcription and latency: an update. Retrovirology 2013; 10:67. [PMID: 23803414 PMCID: PMC3699421 DOI: 10.1186/1742-4690-10-67] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 05/29/2013] [Indexed: 12/11/2022] Open
Abstract
Combination antiretroviral therapy, despite being potent and life-prolonging, is not curative and does not eradicate HIV-1 infection since interruption of treatment inevitably results in a rapid rebound of viremia. Reactivation of latently infected cells harboring transcriptionally silent but replication-competent proviruses is a potential source of persistent residual viremia in cART-treated patients. Although multiple reservoirs may exist, the persistence of resting CD4+ T cells carrying a latent infection represents a major barrier to eradication. In this review, we will discuss the latest reports on the molecular mechanisms that may regulate HIV-1 latency at the transcriptional level, including transcriptional interference, the role of cellular factors, chromatin organization and epigenetic modifications, the viral Tat trans-activator and its cellular cofactors. Since latency mechanisms may also operate at the post-transcriptional level, we will consider inhibition of nuclear RNA export and inhibition of translation by microRNAs as potential barriers to HIV-1 gene expression. Finally, we will review the therapeutic approaches and clinical studies aimed at achieving either a sterilizing cure or a functional cure of HIV-1 infection, with a special emphasis on the most recent pharmacological strategies to reactivate the latent viruses and decrease the pool of viral reservoirs.
Collapse
Affiliation(s)
- Carine Van Lint
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute of Molecular Biology and Medicine, 12, Rue des Profs Jeener et Brachet, 6041, Gosselies, Belgium.
| | | | | |
Collapse
|
16
|
Pasternak AO, Lukashov VV, Berkhout B. Cell-associated HIV RNA: a dynamic biomarker of viral persistence. Retrovirology 2013; 10:41. [PMID: 23587031 PMCID: PMC3637491 DOI: 10.1186/1742-4690-10-41] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/10/2013] [Indexed: 12/27/2022] Open
Abstract
In most HIV-infected individuals adherent to modern antiretroviral therapy (ART), plasma viremia stays undetectable by clinical assays and therefore, additional virological markers for monitoring and predicting therapy responses and for measuring the degree of HIV persistence in patients on ART should be identified. For the above purposes, quantitation of cell-associated HIV biomarkers could provide a useful alternative to measurements of viral RNA in plasma. This review concentrates on cell-associated (CA) HIV RNA with the emphasis on its use as a virological biomarker. We discuss the significance of CA HIV RNA as a prognostic marker of disease progression in untreated patients and as an indicator of residual virus replication and the size of the dynamic viral reservoir in ART-treated patients. Potential value of this biomarker for monitoring the response to ART and to novel HIV eradication therapies is highlighted.
Collapse
Affiliation(s)
- Alexander O Pasternak
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam-CINIMA, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam 1105 AZ, The Netherlands.
| | | | | |
Collapse
|
17
|
Peterson CW, Younan P, Jerome KR, Kiem HP. Combinatorial anti-HIV gene therapy: using a multipronged approach to reach beyond HAART. Gene Ther 2013; 20:695-702. [PMID: 23364313 DOI: 10.1038/gt.2012.98] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/19/2012] [Accepted: 11/22/2012] [Indexed: 12/11/2022]
Abstract
The 'Berlin Patient', who maintains suppressed levels of HIV viremia in the absence of antiretroviral therapy, continues to be a standard bearer in HIV eradication research. However, the unique circumstances surrounding his functional cure are not applicable to most HIV(+) patients. To achieve a functional or sterilizing cure in a greater number of infected individuals worldwide, combinatorial treatments, targeting multiple stages of the viral life cycle, will be essential. Several anti-HIV gene therapy approaches have been explored recently, including disruption of the C-C chemokine receptor 5 (CCR5) and CXC chemokine receptor 4 (CXCR4) coreceptor loci in CD4(+) T cells and CD34(+) hematopoietic stem cells. However, less is known about the efficacy of these strategies in patients and more relevant HIV model systems such as non-human primates (NHPs). Combinatorial approaches, including genetic disruption of integrated provirus, functional enhancement of endogenous restriction factors and/or the use of pharmacological adjuvants, could amplify the anti-HIV effects of CCR5/CXCR4 gene disruption. Importantly, delivering gene disruption molecules to genetic sites of interest will likely require optimization on a cell type-by-cell type basis. In this review, we highlight the most promising gene therapy approaches to combat HIV infection, methods to deliver these therapies to hematopoietic cells and emphasize the need to target viral replication pre- and post-entry to mount a suitably robust defense against spreading infection.
Collapse
Affiliation(s)
- C W Peterson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
18
|
De Clercq E. The nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors in the treatment of HIV infections (AIDS). ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 67:317-58. [PMID: 23886005 DOI: 10.1016/b978-0-12-405880-4.00009-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The majority of the drugs currently used for the treatment of HIV infections (AIDS) belong to either of the following three classes: nucleoside reverse transcriptase inhibitors (NRTIs), nonnucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs). At present, there are 7 NRTIs, 5 NNRTIs, and 10 PIs approved for clinical use. They are discussed from the following viewpoints: (i) chemical formulae; (ii) mechanism of action; (iii) drug combinations; (iv) clinical aspects; (v) preexposure prophylaxis; (vi) prevention of mother-to-child transmission; (vii) their use in children; (viii) toxicity; (ix) adherence (compliance); (x) resistance; (xi) new NRTIs, NNRTIs, or PIs in (pre)clinical development; and (xii) the prospects for a "cure" of the disease.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
19
|
Engineered DNA modifying enzymes: components of a future strategy to cure HIV/AIDS. Antiviral Res 2012; 97:211-7. [PMID: 23267832 DOI: 10.1016/j.antiviral.2012.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 11/21/2022]
Abstract
Despite phenomenal advances in AIDS therapy transforming the disease into a chronic illness for most patients, a routine cure for HIV infections remains a distant goal. However, a recent example of HIV eradication in a patient who had received CCR5-negative bone marrow cells after full-body irradiation has fuelled new hopes for a cure for AIDS. Here, we review new HIV treatment strategies that use sophisticated genome engineering to target HIV infections. These approaches offer new ways to tackle the infection, and alone or in conjunction with already established treatments, promise to transform HIV into a curable disease.
Collapse
|
20
|
Price RW, Swanstrom R. Targeting chronic central nervous system HIV infection. Antivir Ther 2012; 17:1227-31. [PMID: 23018178 DOI: 10.3851/imp2414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2012] [Indexed: 10/27/2022]
Abstract
Central nervous system (CNS) HIV infection is a nearly universal facet of systemic infection. Although antiretroviral therapy is generally effective in suppressing this infection and reducing its severe complications, reports of continued neurological abnormalities have questioned whether treatment developed for systemic efficacy is optimized for CNS infection. Shikuma et al. report that a 'monocyte efficacy' score based on cell culture studies and applied to antiretroviral drugs correlated with neuropsychological performance in a previously reported cohort. Although there are important questions regarding the theoretical underpinnings of both this score and its application, the findings present a novel slant on therapy.
Collapse
Affiliation(s)
- Richard W Price
- Department of Neurology, University of California San Francisco, San Francisco General Hospital, San Francisco, CA, USA.
| | | |
Collapse
|