1
|
Huang J, Peng X, Dong K, Tao J, Yang Y. The Association Between Insulin Resistance, Leptin, and Resistin and Diabetic Nephropathy in Type 2 Diabetes Mellitus Patients with Different Body Mass Indexes. Diabetes Metab Syndr Obes 2021; 14:2357-2365. [PMID: 34079314 PMCID: PMC8163637 DOI: 10.2147/dmso.s305054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/15/2021] [Indexed: 02/01/2023] Open
Abstract
AIM This study aimed to compare HOMA-IR, leptin, and resistin as the risk factors for diabetic nephropathy in the type 2 diabetes mellitus (T2DM) patients with different BMI classifications. MATERIALS AND METHODS A total of 309 patients with T2DM were enrolled in this cross-sectional study. All participants were divided into three groups according to BMI: the normal weight group (18.5 kg/m2≤BMI<24 kg/m2), the overweight group (24kg/m2≤BMI<28 kg/m2) and the obesity group (BMI≥28 kg/m2). The clinical information and laboratory examinations were recorded in detail. Leptin and resistin levels were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS Higher HOMA-IR, leptin and resistin levels were found to be the risk factors for diabetic nephropathy when we made comparisons in the total population (P<0.05). In the normal weight group, logistic regression analysis showed that T2DM patients with higher HOMA-IR (OR=4.210, P=0.001), leptin (OR=2.474, P=0.031) and resistin levels (OR=8.299, P<0.001) had nearly 4-fold, 2-fold and 8-fold risk for diabetic nephropathy, respectively, after adjustments. The receiver operating characteristic (ROC) curves indicated that the area under the curves (AUCs) of HOMA-IR and resistin were 0.699 (95% CI 0.617-0.772) and 0.790 (95% CI 0.715-0.854), respectively, which were significantly larger than the AUC of 0.5 (all P<0.001). However, no significant association was observed between HOMA-IR, leptin, and resistin and renal complications (all P>0.05) in the overweight and obesity groups in both logistic regression and AUC analysis. CONCLUSION Higher insulin resistance, leptin and resistin levels were observed as risk factors for diabetic nephropathy in T2DM patients with lower BMI. These were not obvious in the overweight and obese patients.
Collapse
Affiliation(s)
- Jiaojiao Huang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Xuemin Peng
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Jing Tao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
2
|
Li Y, Wang L, Xu B, Zhao L, Li L, Xu K, Tang A, Zhou S, Song L, Zhang X, Zhan H. Based on Network Pharmacology Tools to Investigate the Molecular Mechanism of Cordyceps sinensis on the Treatment of Diabetic Nephropathy. J Diabetes Res 2021; 2021:8891093. [PMID: 33628839 PMCID: PMC7884116 DOI: 10.1155/2021/8891093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/17/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus and is a major cause of end-stage kidney disease. Cordyceps sinensis (Cordyceps, Dong Chong Xia Cao) is a widely applied ingredient for treating patients with DN in China, while the molecular mechanisms remain unclear. This study is aimed at revealing the therapeutic mechanisms of Cordyceps in DN by undertaking a network pharmacology analysis. MATERIALS AND METHODS In this study, active ingredients and associated target proteins of Cordyceps sinensis were obtained via Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and Swiss Target Prediction platform, then reconfirmed by using PubChem databases. The collection of DN-related target genes was based on DisGeNET and GeneCards databases. A DN-Cordyceps common target interaction network was carried out via the STRING database, and the results were integrated and visualized by utilizing Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to determine the molecular mechanisms and therapeutic effects of Cordyceps on the treatment of DN. RESULTS Seven active ingredients were screened from Cordyceps, 293 putative target genes were identified, and 85 overlapping targets matched with DN were considered potential therapeutic targets, such as TNF, MAPK1, EGFR, ACE, and CASP3. The results of GO and KEGG analyses revealed that hub targets mainly participated in the AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, PI3K-Akt signaling pathway, and IL-17 signaling pathway. These targets were correlated with inflammatory response, apoptosis, oxidative stress, insulin resistance, and other biological processes. CONCLUSIONS Our study showed that Cordyceps is characterized as multicomponent, multitarget, and multichannel. Cordyceps may play a crucial role in the treatment of DN by targeting TNF, MAPK1, EGFR, ACE, and CASP3 signaling and involved in the inflammatory response, apoptosis, oxidative stress, and insulin resistance.
Collapse
Affiliation(s)
- Yan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China
| | - Lei Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Bojun Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China
| | - Liangbin Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China
| | - Li Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China
| | - Keyang Xu
- Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang, China
| | - Anqi Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China
| | - Shasha Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China
| | - Lu Song
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China
| | - Xiao Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China
| | - Huakui Zhan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China
| |
Collapse
|
3
|
Markova I, Miklankova D, Hüttl M, Kacer P, Skibova J, Kucera J, Sedlacek R, Kacerova T, Kazdova L, Malinska H. The Effect of Lipotoxicity on Renal Dysfunction in a Nonobese Rat Model of Metabolic Syndrome: A Urinary Proteomic Approach. J Diabetes Res 2019; 2019:8712979. [PMID: 31886287 PMCID: PMC6925916 DOI: 10.1155/2019/8712979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/04/2019] [Accepted: 11/20/2019] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The development of metabolic syndrome-associated renal dysfunction is exacerbated by a number of factors including dyslipidemia, ectopic deposition of lipids and their toxic metabolites, impairment of lipid metabolism, and insulin resistance. Renal dysfunction is also affected by the production of proinflammatory and profibrotic factors secreted from adipose tissue, which can in turn directly impair kidney cells and potentiate insulin resistance. In this study, we investigated the manifestation of renal lipid accumulation and its effect on renal dysfunction in a model of metabolic syndrome-the hereditary hypertriglyceridemic rat (HHTg)-by assessing microalbuminuria and targeted urinary proteomics. Male Wistar control rats and HHTg rats were fed a standard diet and observed over the course of ageing at 3, 12, and 20 months of age. RESULTS Chronically elevated levels of triglycerides in HHTg rats were associated with increased levels of NEFA during OGTT and over a period of 24 hours (+80%, P < 0.01). HHTg animals exhibited qualitative changes in NEFA fatty acid composition, represented by an increased proportion of saturated fatty acids (P < 0.05) and a decreased proportion of n-3 PUFA (P < 0.01). Ectopic lipid deposition in the kidneys of HHTg rats-triglycerides (+30%) and cholesterol (+10%)-was associated with markedly elevated microalbuminuria as ageing increased, despite the absence of microalbuminuria at the young age of 3 months in these animals. According to targeted proteomic analysis, 3-month-old HHTg rats (in comparison to age-matched controls) exhibited increased urinary secretion of proinflammatory parameters (MCP-1, IL-6, IL-8, P < 0.01) and decreased urinary secretion of epidermal growth factor (EGF, P < 0.01) before manifestation of microalbuminuria. Elevation in the urinary secretion of inflammatory cytokines can be affected by increased relative expression of MCP-1 in the renal cortex (P < 0.05). CONCLUSIONS Our results confirm dyslipidemia and ectopic lipid accumulation to be key contributors in the development of metabolic syndrome-associated renal dysfunction. Assessing urinary secretion of proinflammatory cytokines and epidermal growth factor can help in detecting early development of metabolic syndrome-associated renal dysfunction.
Collapse
Affiliation(s)
- Irena Markova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Denisa Miklankova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Petr Kacer
- Czech University of Life Sciences, 16500 Prague, Czech Republic
| | - Jelena Skibova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Jan Kucera
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
| | - Tereza Kacerova
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Ludmila Kazdova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| | - Hana Malinska
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic
| |
Collapse
|
4
|
Inhibition of insulin resistance by PGE1 via autophagy-dependent FGF21 pathway in diabetic nephropathy. Sci Rep 2018; 8:9. [PMID: 29311680 PMCID: PMC5758726 DOI: 10.1038/s41598-017-18427-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022] Open
Abstract
Insulin resistance is a critical process in the initiation and progression of diabetic nephropathy (DN). Alprostadil (Prostaglandin E1, PGE1) had protective effects on renal function. However, it is unknown whether PGE1 inhibited insulin resistance in renal tubule epithelial cells via autophagy, which plays a protective role in DN against insulin resistance. Insulin resistance was induced by palmitic acid (PA) in human HK-2 cells, shown as the decrease of insulin-stimulated AKT phosphorylation, glucose transporter-4 (GLUT4), glucose uptake and enhanced phosphorylation of insulin receptor substrate 1(IRS-1) at site serine 307 (pIRS-1ser307) and downregulated expression of IRS-1. Along with less abundance of p62, autophagy markers LC3B and Beclin-1 significantly increased in HK-2 cells exposed to PA. Such abnormal changes were significantly reversed by PGE1, which mimicked the role of autophagy gene 7 small interfering RNA (ATG7 siRNA). Furthermore, PGE1 promoted the protein expression of autophagy-related fibroblast growth factor-21 (FGF21), which alleviated insulin resistance. Results from western blotting and immunohistochemistry indicated that PGE1 remarkably restored autophagy, insulin resistance and the FGF21 expression in rat kidney of type 2 diabetes mellitus (T2DM). Collectively, we demonstrated the potential protection of PGE1 on insulin resistance in renal tubules via autophagy-dependent FGF21 pathway in preventing the progression of DN.
Collapse
|
5
|
Xu HZ, Cheng YL, Wang WN, Wu H, Zhang YY, Zang CS, Xu ZG. 12-Lipoxygenase Inhibition on Microalbuminuria in Type-1 and Type-2 Diabetes Is Associated with Changes of Glomerular Angiotensin II Type 1 Receptor Related to Insulin Resistance. Int J Mol Sci 2016; 17:ijms17050684. [PMID: 27164093 PMCID: PMC4881510 DOI: 10.3390/ijms17050684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/18/2016] [Accepted: 04/27/2016] [Indexed: 01/06/2023] Open
Abstract
(1) BACKGROUND: 12-lipoxygenase (12-LO) is involved in the development of diabetic nephropathy (DN). In the present study, we investigated whether 12-LO inhibition may ameliorate type-2 DN (T2DN) by interfering with insulin resistance (IR); (2) METHODS: Rat glomerular mesangial cells, glomeruli and skeletal muscles were isolated and used in this study. Kidney histological changes were confirmed by periodic-acid Schiff staining; mRNA expression was detected by competitive reverse transcription polymerase chain reaction; and the protein level was determined by Western blot and the enzyme-linked immunosorbent assay, respectively; (3) RESULTS: The inhibition of 12-LO attenuated microalbuminuria (MAU) increases in type-2 diabetic rats, but not in type-1 diabetic rats. Infusion of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE) significantly increased the expression of angiotensin II (Ang II) and Ang II type 1 receptor (AT1R), but decreased the expression of AT1R-associated protein (ATRAP) in rat glomeruli, compared to the control. An in vitro study revealed that both 12(S)-HETE and insulin upregulated AT1R expression in rat mesangial cells. In the presence of p38 mitogen-activated protein kinase (MAPK) inhibitor, SB202190, the 12(S)-HETE-induced ATRAP reduction was significantly abolished. Interestingly, 12-LO inhibition did not influence AT1R expression in type-1 diabetic rats, but significantly abolished the increased AT1R and Ang II expression in glomeruli of type-2 diabetic rats. Furthermore, the inhibition of 12-LO significantly corrected impaired insulin sensitivity and fast serum insulin level, as well as the p-AMP-activated protein kinase (AMPK) reduction in skeletal muscle of type-2 diabetic rats; (4) CONCLUSION: The inhibition of 12-LO potentially ameliorated MAU by preventing IR through the downregulation of glomerular AT1R expression in T2DN.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/pharmacology
- Albuminuria/etiology
- Albuminuria/metabolism
- Animals
- Arachidonate 12-Lipoxygenase/metabolism
- Cells, Cultured
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Nephropathies/metabolism
- Down-Regulation
- Insulin Resistance
- Kidney Glomerulus/drug effects
- Kidney Glomerulus/metabolism
- Lipoxygenase Inhibitors/pharmacology
- Male
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Protein Kinase Inhibitors/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
Collapse
Affiliation(s)
- Hong-Zhao Xu
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yan-Li Cheng
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Wan-Ning Wang
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Hao Wu
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yuan-Yuan Zhang
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Chong-Sen Zang
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Zhong-Gao Xu
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
6
|
Kebapci N, Uslu S, Ozcelik E. Metabolic Syndrome Is a Risk Factor for the Development of Chronic Renal Disease. Ren Fail 2013; 35:460-5. [DOI: 10.3109/0886022x.2013.774680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|