1
|
Abstract
Despite availability of effective drugs for hypertension therapy, significant numbers of hypertensive patients fail to achieve recommended blood pressure levels on ≥3 antihypertensive drugs of different classes. These individuals have a high prevalence of adverse cardiovascular events and are defined as having resistant hypertension (RHT) although nonadherence to prescribed antihypertensive medications is common in patients with apparent RHT. Furthermore, apparent and true RHT often display increased sympathetic activity. Based on these findings, technology was developed to treat RHT by suppressing sympathetic activity with electrical stimulation of the carotid baroreflex and catheter-based renal denervation (RDN). Over the last 15 years, experimental and clinical studies have provided better understanding of the physiological mechanisms that account for blood pressure lowering with baroreflex activation and RDN and, in so doing, have provided insight into which patients in this heterogeneous hypertensive population are most likely to respond favorably to these device-based therapies. Experimental studies have also played a role in modifying device technology after early clinical trials failed to meet key endpoints for safety and efficacy. At the same time, these studies have exposed potential differences between baroreflex activation and RDN and common challenges that will likely impact antihypertensive treatment and clinical outcomes in patients with RHT. In this review, we emphasize physiological studies that provide mechanistic insights into blood pressure lowering with baroreflex activation and RDN in the context of progression of clinical studies, which are now at a critical point in determining their fate in RHT management.
Collapse
Affiliation(s)
- Thomas E Lohmeier
- From the Department of Physiology and Biophysics (T.E.L., J.E.H.), University of Mississippi Medical Center, Jackson
| | - John E Hall
- From the Department of Physiology and Biophysics (T.E.L., J.E.H.), University of Mississippi Medical Center, Jackson.,Mississippi Center for Obesity Research (J.E.H.), University of Mississippi Medical Center, Jackson
| |
Collapse
|
2
|
Campón-Checkroun AM, Luceño-Mardones A, Riquelme I, Oliva-Pascual-Vaca J, Ricard F, Oliva-Pascual-Vaca Á. Effects of the Right Carotid Sinus Compression Technique on Blood Pressure and Heart Rate in Medicated Patients with Hypertension. J Altern Complement Med 2018; 24:1108-1112. [PMID: 29733225 DOI: 10.1089/acm.2017.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES To identify the immediate and middle-term effects of the right carotid sinus compression technique on blood pressure and heart rate in hypertensive patients. DESIGN Randomized blinded experimental study. SETTINGS Primary health centers of Cáceres (Spain). SUBJECTS Sixty-four medicated patients with hypertension were randomly assigned to an intervention group (n = 33) or to a control group (n = 31). INTERVENTION In the intervention group a compression of the right carotid sinus was applied for 20 sec. In the control group, a placebo technique of placing hands on the radial styloid processes was performed. OUTCOME MEASURES Blood pressure and heart rate were measured in both groups before the intervention (preintervention), immediately after the intervention, 5 min after the intervention, and 60 min after the intervention. RESULTS The intervention group significantly decreased systolic and diastolic blood pressure and heart rate immediately after the intervention, with a large clinical effect; systolic blood pressure remained reduced 5 min after the intervention, and heart rate remained reduced 60 min after the intervention. No significant changes were observed in the control group. CONCLUSIONS Right carotid sinus compression could be clinically useful for regulating acute hypertension.
Collapse
Affiliation(s)
- Angélica María Campón-Checkroun
- 1 Escuela de Osteopatía de Madrid , Madrid, Spain .,2 Department of Physical Therapy, Universidad Católica de Ávila , Ávila, Spain
| | | | - Inmaculada Riquelme
- 3 Department of Nursing and Physiotherapy, University of the Balearic Islands , Palma, Spain .,4 University Institute of Health Sciences Research (IUNICS-IdISPa), University of the Balearic Islands , Palma, Spain
| | - Jesús Oliva-Pascual-Vaca
- 1 Escuela de Osteopatía de Madrid , Madrid, Spain .,5 Department of Physical Therapy, Faculty of Nursing, Physiotherapy and Podiatry, Universidad de Sevilla , Sevilla, Spain .,6 EU Francisco Maldonado, Department of Physical Therapy, Universidad de Sevilla , Osuna, Spain
| | | | - Ángel Oliva-Pascual-Vaca
- 1 Escuela de Osteopatía de Madrid , Madrid, Spain .,5 Department of Physical Therapy, Faculty of Nursing, Physiotherapy and Podiatry, Universidad de Sevilla , Sevilla, Spain
| |
Collapse
|
3
|
Hildebrandt DA, Irwin ED, Lohmeier TE. Prolonged Baroreflex Activation Abolishes Salt-Induced Hypertension After Reductions in Kidney Mass. Hypertension 2016; 68:1400-1406. [PMID: 27777356 DOI: 10.1161/hypertensionaha.116.08293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/04/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
Abstract
Chronic electric activation of the carotid baroreflex produces sustained reductions in sympathetic activity and arterial pressure and is currently being evaluated for therapy in patients with resistant hypertension. However, patients with significant impairment of renal function have been largely excluded from clinical trials. Thus, there is little information on blood pressure and renal responses to baroreflex activation in subjects with advanced chronic kidney disease, which is common in resistant hypertension. Changes in arterial pressure and glomerular filtration rate were determined in 5 dogs after combined unilateral nephrectomy and surgical excision of the poles of the remaining kidney to produce ≈70% reduction in renal mass. After control measurements, sodium intake was increased from ≈45 to 450 mol/d. While maintained on high salt, animals experienced increases in mean arterial pressure from 102±4 to 121±6 mm Hg and glomerular filtration rate from 40±2 to 45±2 mL/min. During 7 days of baroreflex activation, the hypertension induced by high salt was abolished (103±6 mm Hg) along with striking suppression of plasma norepinephrine concentration from 139±21 to 81±9 pg/mL, but despite pronounced blood pressure lowering, there were no significant changes in glomerular filtration rate (43±2 mL/min). All variables returned to prestimulation values during a recovery period. These findings indicate that after appreciable nephron loss, chronic suppression of central sympathetic outflow by baroreflex activation abolishes hypertension induced by high salt intake. The sustained antihypertensive effects of baroreflex activation occur without significantly compromising glomerular filtration rate in remnant nephrons.
Collapse
Affiliation(s)
- Drew A Hildebrandt
- From the Department of Physiology and Biophysics (D.A.H., T.E.L.) and Department of Surgery (D.A.H.), University of Mississippi Medical Center, Jackson; and Trauma Services, North Memorial Medical Center, Robbinsdale, MN (E.D.I.)
| | - Eric D Irwin
- From the Department of Physiology and Biophysics (D.A.H., T.E.L.) and Department of Surgery (D.A.H.), University of Mississippi Medical Center, Jackson; and Trauma Services, North Memorial Medical Center, Robbinsdale, MN (E.D.I.)
| | - Thomas E Lohmeier
- From the Department of Physiology and Biophysics (D.A.H., T.E.L.) and Department of Surgery (D.A.H.), University of Mississippi Medical Center, Jackson; and Trauma Services, North Memorial Medical Center, Robbinsdale, MN (E.D.I.).
| |
Collapse
|
4
|
Lohmeier TE, Iliescu R, Tudorancea I, Cazan R, Cates AW, Georgakopoulos D, Irwin ED. Chronic Interactions Between Carotid Baroreceptors and Chemoreceptors in Obesity Hypertension. Hypertension 2016; 68:227-35. [PMID: 27160198 DOI: 10.1161/hypertensionaha.116.07232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
Abstract
Carotid bodies play a critical role in protecting against hypoxemia, and their activation increases sympathetic activity, arterial pressure, and ventilation, responses opposed by acute stimulation of the baroreflex. Although chemoreceptor hypersensitivity is associated with sympathetically mediated hypertension, the mechanisms involved and their significance in the pathogenesis of hypertension remain unclear. We investigated the chronic interactions of these reflexes in dogs with sympathetically mediated, obesity-induced hypertension based on the hypothesis that hypoxemia and tonic activation of carotid chemoreceptors may be associated with obesity. After 5 weeks on a high-fat diet, the animals experienced a 35% to 40% weight gain and increases in arterial pressure from 106±3 to 123±3 mm Hg and respiratory rate from 8±1 to 12±1 breaths/min along with hypoxemia (arterial partial pressure of oxygen=81±3 mm Hg) but eucapnia. During 7 days of carotid baroreflex activation by electric stimulation of the carotid sinus, tachypnea was attenuated, and hypertension was abolished before these variables returned to prestimulation values during a recovery period. After subsequent denervation of the carotid sinus region, respiratory rate decreased transiently in association with further sustained reductions in arterial partial pressure of oxygen (to 65±2 mm Hg) and substantial hypercapnia. Moreover, the severity of hypertension was attenuated from 125±2 to 116±3 mm Hg (45%-50% reduction). These findings suggest that hypoxemia may account for sustained stimulation of peripheral chemoreceptors in obesity and that this activation leads to compensatory increases in ventilation and central sympathetic outflow that contributes to neurogenically mediated hypertension. Furthermore, the excitatory effects of chemoreceptor hyperactivity are abolished by chronic activation of the carotid baroreflex.
Collapse
Affiliation(s)
- Thomas E Lohmeier
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, "Gr. T. Popa," Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.)
| | - Radu Iliescu
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, "Gr. T. Popa," Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.)
| | - Ionut Tudorancea
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, "Gr. T. Popa," Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.)
| | - Radu Cazan
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, "Gr. T. Popa," Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.)
| | - Adam W Cates
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, "Gr. T. Popa," Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.)
| | - Dimitrios Georgakopoulos
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, "Gr. T. Popa," Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.)
| | - Eric D Irwin
- From the Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (T.E.L.); Department of Pharmacology (R.I.) and Department of Physiology (I.T.), University of Medicine and Pharmacy, "Gr. T. Popa," Iasi, Romania; Colonial Pipeline Company, Atlanta, GA (R.C.); CVRx, Inc., Minneapolis, MN (A.W.C., D.G.); and North Memorial Medical Center, Trauma Services, Robbinsdale, MN (E.D.I.)
| |
Collapse
|