1
|
Liu Y, Xia P, Cao W, Liu Z, Ma J, Zheng K, Chen L, Li X, Qin Y, Li X. Divergence between serum creatine and cystatin C in estimating glomerular filtration rate of critically ill COVID-19 patients. Ren Fail 2021; 43:1104-1114. [PMID: 34238117 PMCID: PMC8274508 DOI: 10.1080/0886022x.2021.1948428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background The clinical use of serum creatine (sCr) and cystatin C (CysC) in kidney function evaluation of critically ill patients has been in continuous discussion. The difference between estimated glomerular filtration rate calculated by sCr (eGFRcr) and CysC (eGFRcysc) of critically ill COVID-19 patients were investigated in this study. Methods This is a retrospective, single-center study of critically ill patients with COVID-19 admitted in intensive care unit (ICU) at Wuhan, China. Control cases were moderate COVID-19 patients matched in age and sex at a ratio of 1:1. The eGFRcr and eGFRcysc were compared. The association between eGFR and death were analyzed in critically ill cases. The potential factors influencing the divergence between eGFRcr and eGFRcysc were explored. Results A total of 76 critically ill COVID-19 patients were concluded. The mean age was 64.5 ± 9.3 years. The eGFRcr (85.45 (IQR 60.58–99.23) ml/min/1.73m2) were much higher than eGFRcysc (60.6 (IQR 34.75–79.06) ml/min/1.73m2) at ICU admission. About 50 % of them showed eGFRcysc < 60 ml/min/1.73 m2 while 25% showed eGFRcr < 60 ml/min/1.73 m2 (χ2 = 10.133, p = 0.001). This divergence was not observed in moderate group. The potential factors influencing the divergence included serum interleukin-6 (IL-6), tumor necrosis factor (TNF-α) level as well as APACHEII, SOFA scores. Reduced eGFRcr (<60 mL/min/1.73 m2) was associated with death (HR = 1.939, 95%CI 1.078–3.489, p = 0.027). Conclusions The eGFRcr was generally higher than eGFRcysc in critically ill COVID-19 cases with severe inflammatory state. The divergence might be affected by inflammatory condition and illness severity. Reduced eGFRcr predicted in-hospital death. In these patients, we advocate for caution when using eGFRcysc.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Xia
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Cao
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengyin Liu
- Department of Infectious Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Ma
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ke Zheng
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Limeng Chen
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuewang Li
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Qin
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuemei Li
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Local administration of p-coumaric acid decreases lipopolysaccharide-induced acute lung injury in mice: In vitro and in silico studies. Eur J Pharmacol 2021; 897:173929. [PMID: 33561444 DOI: 10.1016/j.ejphar.2021.173929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 01/21/2023]
Abstract
Acute lung injury (ALI) remains to cause a high rate of mortality in critically ill patients. It is known that inflammation is a key factor in the pathogenesis of lipopolysaccharide (LPS)-induced ALI, which makes it a relevant approach to the treatment of ALI. In this study, we evaluated the potential of nasally instilled p-coumaric acid to prevent LPS-induced ALI in mice, by evaluating its effects on cellular and molecular targets involved in inflammatory response via in vitro and in silico approaches. Our results demonstrated that p-coumaric acid reduced both neutrophil accumulation and pro-inflammatory cytokine abundance, and simultaneously increased IL-10 production at the site of inflammation, potentially contributing to protection against LPS-induced ALI in mice. In the in vitro experiments, we observed inhibitory effects of p-coumaric acid against IL-6 and IL-8 production in stimulated A549 cells, as well as reactive oxygen species generation by neutrophils. In addition, p-coumaric acid treatment decreased neutrophil adhesion on the TNF-α-stimulated endothelial cells. According to the in silico predictions, p-coumaric acid reached stable interactions with both the ATP-binding site of IKKβ as well as the regions within LFA-1, critical for interaction with ICAM-1, thereby suppressing the production of proinflammatory mediators and hindering the neutrophil infiltration, respectively. Collectively, these findings indicate that p-coumaric acid is a promising anti-inflammatory agent that can be used for developing a pharmaceutical drug for the treatment of ALI and other inflammatory disorders.
Collapse
|
3
|
Feng X, Li P, Ma L, Liang H, Lei J, Li W, Wang K, Song Y, Li S, Yang W, Yang C. Clinical Characteristics and Short-Term Outcomes of Severe Patients With COVID-19 in Wuhan, China. Front Med (Lausanne) 2020; 7:491. [PMID: 32850926 PMCID: PMC7424035 DOI: 10.3389/fmed.2020.00491] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/20/2020] [Indexed: 01/08/2023] Open
Abstract
Background: A novel pneumonia (COVID-19) spread rapidly throughout worldwide, in December, 2019. Most of the deaths have occurred in severe and critical cases, but information on prognostic risk factors for severely ill patients is incomplete. Further research is urgently needed to guide clinicians, and we therefore prospectively evaluate the clinical outcomes of 114 severely ill patients with COVID-19 for short-term at the Union Hospital in Wuhan, China. Methods: In this single-centered, prospective, and observational study, we enrolled 114 severely ill patients with confirmed COVID-19 from Jan 23, 2020, to February 22, 2020. Epidemiological, demographic, laboratory, treatment, and outcome data were recorded, and the risk factors for poor outcome were analyzed. Results: Among the 114 enrolled patients with a mean age of 63.96 ± 13.41 years, 94 (82.5%) patients were classified as a good outcome group. Common clinical manifestations included fever, cough, and fatigue. Compared with the good outcome group, 20 (17.5%) patients in the poor outcome group more frequently exhibited lymphopenia, and lower levels of albumin, partial arterial oxygen pressure, higher levels of lactate dehydrogenase, creatine kinase, hypersensitive troponin I, C-reactive protein, ferritin, blood urea nitrogen, and D-dimer, as well as markedly higher levels of IL-6 and IL-10. Absolute numbers of T lymphocytes, CD8 + T cells, decreased in almost all the patients and were markedly lower in the poor outcome group than the good outcome group. We also found that traditional Chinese medicine can significantly improve the patient's condition, which is conducive to the transformation from a severe to mild condition. In addition, univariate and multivariate Cox analyses of potential factors for poor outcome patients indicated that cytokine storms and uncontrolled inflammation responses as well as liver, kidney, and cardiac dysfunction are related to the development of a poor outcome. Conclusion: In summary, we reported this single-centered, prospective, and observational study for short-term outcome in severe patients with COVID-19. We found that cytokine storms and uncontrolled inflammation responses as well as liver, kidney, and cardiac dysfunction may play important roles in the final outcome of severely ill patients with COVID-19. Our study will allow clinicians to benefit and rapidly estimate the likelihood of a short-term poor outcome for severely ill patients.
Collapse
Affiliation(s)
- Xiaobo Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyun Li
- Department of Clinical Nutrition, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Lei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqiang Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yang
- Hubei Key Laboratory of Food Nutrition and Safety, Department of Nutrition and Food Hygiene, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Wang T, Jiang L, Wei X, Dong Z, Liu B, Zhao J, Wang L, Xie P, Wang Y, Zhou S. Inhibition of miR-221 alleviates LPS-induced acute lung injury via inactivation of SOCS1/NF-κB signaling pathway. Cell Cycle 2019; 18:1893-1907. [PMID: 31208297 DOI: 10.1080/15384101.2019.1632136] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The role of inflammation response has been well documented in the development of acute lung injury (ALI). However, little is known about the functions of miRNAs in the regulation of inflammation in ALI. The aim of this study was to explore the effects of miRNAs in the regulation of inflammation in ALI and to elucidate the biomolecular mechanisms responsible for these effects. The expression profiles of miRNAs in lung tissues from lipopolysaccharide (LPS)-induced ALI mice model were analyzed using a microarray. It was observed that microRNA-221-3p (miR-221) was significantly increased in lung tissues in ALI mice. The inhibition of miR-221 attenuated lung injury including decreased lung W/D weight ratio and lung permeability and survival rates of ALI mice, as well as apoptosis, whereas its agomir-mediated upregulation exacerbated the lung injury. Concomitantly, miR-221 inhibition significantly reduced LPS-induced pulmonary inflammation, while LPS-induced pulmonary inflammation was aggravated by miR-221 upregulation. Of note, suppressor of cytokine signaling-1 (SOCS1), an effective suppressor of the NF-κB signaling pathway, was found to be a direct target of miR-221 in RAW264.7 cells. Overexpression of SOCS1 by pcDNA-SOCS1 plasmids markedly reversed the miR-221 inhibition-mediated inhibitory effects on inflammation and apoptosis in LPS-treated RAW264.7 cells. Finally, it was found that miR-221 inhibition suppressed LPS induced the activation of the NF-κB signaling pathway, as demonstrated by downregulation of phosphorylated-IκBα, p-p65 and upregulation of IκBα, whilst miR-221 overexpression had an opposite result in ALI mice. Our findings demonstrate that inhibition of miR-221 can alleviate LPS-induced inflammation via inactivation of SOCS1/NF-κB signaling pathway in ALI mice.
Collapse
Affiliation(s)
- Tao Wang
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Lihua Jiang
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Xiaoyong Wei
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Zhenghua Dong
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Bo Liu
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Junbo Zhao
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Lijuan Wang
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Peilin Xie
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Yuxia Wang
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Shangyou Zhou
- a Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| |
Collapse
|
5
|
Wang Y, Zhang X, Tian J, Liu G, Li X, Shen D. Sevoflurane alleviates LPS‑induced acute lung injury via the microRNA‑27a‑3p/TLR4/MyD88/NF‑κB signaling pathway. Int J Mol Med 2019; 44:479-490. [PMID: 31173183 PMCID: PMC6605322 DOI: 10.3892/ijmm.2019.4217] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
Acute lung injury (ALI) is a critical syndrome that is associated with a high morbidity and mortality in patients. Sevoflurane has a lung protective effect in ALI as it reportedly has anti‑inflammatory and apoptotic‑regulating activity. However, the mechanism is still not entirely understood. The aim of the present study was to explore the effects of sevoflurane on lipopolysaccharide (LPS)‑induced ALI in mice and the possible mechanisms involved. The results revealed that sevoflurane treatment improved LPS‑induced lung injury, as evidenced by the reduction in mortality, lung permeability, lung wet/dry ratio and lung histopathological changes in mice. Total cell counts and the production of pro‑inflammatory cytokines [tumor necrosis factor‑α, interleukin (IL)‑1β and IL‑6] in bronchoalveolar fluid were also decreased following treatment with sevoflurane. Additionally, LPS‑triggered apoptosis in lung tissues, which was eliminated by sevoflurane. Furthermore, a miRCURY™ LNA array was employed to screen for differentially expressed microRNAs (miRs/miRNAs). Among these miRNAs, 6 were differentially expressed and were involved in the inflammatory response, but only miR‑27a‑3p (miR‑27a) was regulated by sevoflurane. Subsequently, the present study investigated whether sevoflurane exerts its function through the modulation of miR‑27a. The results demonstrated that the overexpression of miR‑27a via an injection with agomiR‑27a produced similar protections as sevoflurane, while the inhibition of miR‑27a suppressed the lung protective effects of sevoflurane in ALI mice. In addition, the present study identified that miR‑27a inhibited Toll‑like receptor 4 (TLR4) by binding to its 3'‑untranslated region. Western blot analysis demonstrated that sevoflurane may ameliorate the inflammatory response by blocking the miR‑27a/TLR4/MyD88/NF‑κB signaling pathway. The present results indicate that sevoflurane may be a viable therapeutic option in the treatment of patients with ALI.
Collapse
Affiliation(s)
- Yunfei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Xiaoran Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Jianmin Tian
- Department of Anesthesiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Guoze Liu
- Department of Anesthesiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Xiaofang Li
- Department of Anesthesiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Dan Shen
- Department of Anesthesiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
6
|
Zhang W, Wang G, Zhou S. Protective Effects of Isoliquiritigenin on LPS-Induced Acute Lung Injury by Activating PPAR-γ. Inflammation 2018; 41:1290-1296. [PMID: 29654430 DOI: 10.1007/s10753-018-0777-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Isoliquiritigenin (ILG), a major ingredient of licorice, has been reported to have anti-oxidative and anti-inflammatory effects. The aim of this study was to investigate the protective effects of ILG on lung injury using an animal model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Male BALB/c mice were conditioned with ILG 1 h before intranasal instillation of LPS. The effects of ILG on lung injury were assessed by measuring lung histopathological examination, MPO assay, wet/dry (W/D) ratio, and inflammatory cytokine production. The results showed that ILG significantly inhibited LPS-induced lung histopathological changes and the MPO activity. Meanwhile, it attenuated the wet/dry (W/D) ratio in the lung tissues. The results also indicated that ILG inhibited LPS-induced ALI in the expression of inflammatory cytokines in the BALF. Furthermore, ILG can decrease the activity of NF-κB and can increase the expression of PPAR-γ. These findings suggested that ILG inhibited the inflammatory of LPS-induced lung injury by activating PPAR-γ and inhibiting NF-κB activation.
Collapse
Affiliation(s)
- Wenbin Zhang
- Emergency Department, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, 213003, Jiangsu, China
| | - Gui Wang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, 213003, Jiangsu, China
| | - Shujun Zhou
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
7
|
Ji XX, Ji XJ, Li QQ, Lu XX, Luo L. Rosiglitazone Reduces Apoptosis and Inflammation in Lipopolysaccharide-Induced Human Umbilical Vein Endothelial Cells. Med Sci Monit 2018; 24:6200-6207. [PMID: 30185768 PMCID: PMC6140784 DOI: 10.12659/msm.910036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Although the peroxisome proliferator-activated receptor-g (PPARg) agonist rosiglitazone has significant anti-inflammatory properties, no scientific studies have provided new insights in its pharmacological properties with respect to acute respiratory distress syndrome (ARDS). The present investigation aimed to evaluate whether rosiglitazone can reduce apoptosis and inflammation in a lipopolysaccharide (LPS)-induced acute respiratory distress syndrome in vitro model. MATERIAL AND METHODS Human umbilical vein endothelial cells (HUVECs) were treated with 1 µg/ml LPS in the absence or presence of 10 µM rosiglitazone for 24 h. Cell viability was measured by MTT assay. Flow cytometry was used to examine the cell apoptosis and ROS production in HUVECs response to LPS and rosiglitazone. The levels of pro-inflammatory cytokine factors, including TNF-α, IL-6, CXCL12, and CXCR4, were measured by ELISA, real-time PCR, and Western blot assay, respectively. The expression of PPARg, Bcl-2, and Bax and the activity of JAK2 and STAT3 were also investigated by Western blot assay. RESULTS We found that rosiglitazone significantly inhibited LPS-induced cell apoptosis, ROS production, and inflammation in HUVECs. Furthermore, we found a significant reduction of JAK2/STAT3 activation and the Bax/Bcl-2 ratio in LPS-induced HUVECs response to rosiglitazone treatment. CONCLUSIONS Treatment with rosiglitazone can reduce apoptosis and inflammation in HUVECs induced by LPS.
Collapse
Affiliation(s)
- Xiao-Xia Ji
- Department of Critical Care Medicine, Wuxi No.2 Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| | - Xiao-Jing Ji
- Department of Internal Medicine, Wuxi No.2 Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| | - Qian-Qian Li
- Department of Critical Care Medicine, Wuxi No.2 Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| | - Xiao-Xian Lu
- Department of Critical Care Medicine, Wuxi No.2 Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| | - Liang Luo
- Department of Critical Care Medicine, Wuxi No.2 Hospital affiliated to Nanjing Medical University, Wuxi, Jiangsu, China (mainland)
| |
Collapse
|
8
|
Wang X, Yan J, Xu X, Duan C, Xie Z, Su Z, Ma H, Ma H, Wei X, Du X. Puerarin prevents LPS-induced acute lung injury via inhibiting inflammatory response. Microb Pathog 2018; 118:170-176. [PMID: 29571724 DOI: 10.1016/j.micpath.2018.03.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 01/26/2023]
Abstract
Acute lung injury (ALI) is a critical illness syndrome with high morbidity and mortality in patients. Inflammation has been known to be involved in the development of ALI. The purpose of this study was to investigate the effect of puerarin on lipopolysaccharide (LPS)-induced ALI in mice. The pro-inflammatory cytokines TNF-α, IL-6 and IL-1β were determined by ELISA. Western blot analysis was used for detecting the expression of NF-κB, IκBα, and LXRα. And myeloperoxidase (MPO) activity, lung wet/dry (W/D) ratio, and histopathological examination were also detected in lung tissues. The results showed that puerarin significantly inhibited LPS-stimulated MPO activity in lung tissues. Meanwhile, puerarin attenuated lung histopathological changes and lung wet/dry (W/D) ratio. We also found that the expression of pro-inflammatory cytokines, TNF-α, IL-6 and IL-1β were inhibited by puerarin. Puerarin also inhibited LPS-induced TNF-α in RAW264.7 cells and IL-8 in A549 cells. From the results of western blotting, puerarin significantly suppressed LPS-stimulated NF-κB activation. And the expression of LXRα was dose-dependently increased by treatment of puerarin. The inhibition of puerarin on TNF-α production in RAW264.7 cells and IL-8 production in A549 cells were blocked by LXRα inhibitor geranylgeranyl pyrophosphate (GGPP). These results suggested that puerarin attenuated ALI by activating LXRα, which subsequently inhibited LPS-induced inflammatory response.
Collapse
Affiliation(s)
- Xinye Wang
- Changchun University of Chinese Medicine, School of Management, Jilin, Changchun, 130117, China
| | - Jinjun Yan
- The General Hospital of FAW, Department of Anesthesiology, Jilin, Changchun, 130011, China
| | - Xiaohong Xu
- Changchun University of Chinese Medicine, Graduate School, Jilin, Changchun, 130117, China
| | - Chunyan Duan
- Changchun University of Chinese Medicine, School of Management, Jilin, Changchun, 130117, China
| | - Zheng Xie
- Changchun University of Chinese Medicine, School of Management, Jilin, Changchun, 130117, China
| | - Zheqian Su
- Changchun University of Chinese Medicine, School of Management, Jilin, Changchun, 130117, China
| | - Hongxia Ma
- Changchun University of Chinese Medicine, School of Management, Jilin, Changchun, 130117, China
| | - Hui Ma
- Changchun University of Chinese Medicine, School of Management, Jilin, Changchun, 130117, China
| | - Xing Wei
- Changchun University of Chinese Medicine, School of Management, Jilin, Changchun, 130117, China
| | - Xiaochun Du
- Changchun University of Chinese Medicine, School of Management, Jilin, Changchun, 130117, China.
| |
Collapse
|