Madore DV, Meade BD, Rubin F, Deal C, Lynn F. Utilization of serologic assays to support efficacy of vaccines in nonclinical and clinical trials: meeting at the crossroads.
Vaccine 2010;
28:4539-47. [PMID:
20470795 DOI:
10.1016/j.vaccine.2010.04.094]
[Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/22/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
In May 2009 the National Institute of Allergy and Infectious Diseases hosted a workshop on serologic assays that support vaccine efficacy evaluations. The meeting promoted exchange of ideas among investigators from varying disciplines who are working on anti-infectious agent vaccines at different stages of development. The presentations and discussions at the workshop illustrated the challenges common across various pathogens with recurring themes: (1) A thorough understanding of the science regarding the pathogen and the host response to disease and immunization is fundamental to assay selection. (2) The intended use of the immunoassay data must be clearly defined to ensure appropriate specificity, accuracy, and precision; a laboratory must also commit resources to assure data quality and reliability. (3) During vaccine development, an immunoassay may evolve with respect to quality, purpose, and degree of standardization, and, in some cases, must be changed or replaced as data are accumulated. (4) Collaboration on standardized reagents and methods, harmonization efforts, and multidisciplinary teams facilitate consistent generation of quality data. This report provides guidance for effective development and utilization of immunoassays based on the lessons learned from currently licensed vaccines. Investigators are encouraged to create additional opportunities for scientific exchange, noting that the discussed themes are relevant for immunoassays used for other purposes such as therapeutics and diagnostics.
Collapse