1
|
Xie S, Zhan F, Zhu J, Xu S, Xu J. The latest advances with natural products in drug discovery and opportunities for the future: a 2025 update. Expert Opin Drug Discov 2025. [PMID: 40391763 DOI: 10.1080/17460441.2025.2507382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/22/2025]
Abstract
INTRODUCTION The landscape of drug discovery is rapidly evolving, with natural products (NPs) playing a pivotal role in the development of novel therapeutics. Despite their historical significance, challenges persist in fully harnessing their potential in the development of modern medicine. AREAS COVERED This perspective discusses the recent advances and opportunities in NP-based drug discovery. This includes exploration of the recently approved representative NP-derived drugs, innovative target identification strategies and advancements in hybrid NP molecules for addressing complex diseases. Moreover, the authors also discuss the role of NP-derived payloads in antibody-drug conjugates (ADCs) for targeted cancer therapy. This article is based on searches using the FDA and DrugBank database as well the Derwent Innovations Index from Web of Science between the period of 2017 to 2025. EXPERT OPINION NPs remain vital to drug discovery, demonstrating adaptability in tackling complex medical challenges. Future efforts should focus on integrating advanced methodologies, such as artificial intelligence (AI), high-throughput screening, chemical biology, bioinformatics, gene regulation, the highly accurate non-labeling chemical proteomics approach to explore novel NPs targets. Emphasizing these developments will be crucial for maximizing the therapeutic potential of NPs in combating unmet medical needs.
Collapse
Affiliation(s)
- Shaowen Xie
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangyi Zhan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jingjie Zhu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shengtao Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinyi Xu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Bassetti M, Giacobbe DR, Magnasco L, Fantin A, Vena A, Castaldo N. Antibiotic Strategies for Severe Community-Acquired Pneumonia. Semin Respir Crit Care Med 2024; 45:187-199. [PMID: 38301712 DOI: 10.1055/s-0043-1778641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Despite advancements in health systems and intensive care unit (ICU) care, along with the introduction of novel antibiotics and microbiologic techniques, mortality rates in severe community-acquired pneumonia (sCAP) patients have not shown significant improvement. Delayed admission to the ICU is a major risk factor for higher mortality. Apart from choosing the appropriate site of care, prompt and appropriate antibiotic therapy significantly affects the prognosis of sCAP. Treatment regimens involving ceftaroline or ceftobiprole are currently considered the best options for managing patients with sCAP. Additionally, several other molecules, such as delafloxacin, lefamulin, and omadacycline, hold promise as therapeutic strategies for sCAP. This review aims to provide a comprehensive summary of the key challenges in managing adults with severe CAP, focusing on essential aspects related to antibiotic treatment and investigating potential strategies to enhance clinical outcomes in sCAP patients.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, Policlinico San Martino Hospital, IRCCS, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Daniele R Giacobbe
- Infectious Diseases Unit, Policlinico San Martino Hospital, IRCCS, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Laura Magnasco
- Infectious Diseases Unit, Policlinico San Martino Hospital, IRCCS, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Alberto Fantin
- Department of Pulmonology, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Antonio Vena
- Infectious Diseases Unit, Policlinico San Martino Hospital, IRCCS, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Nadia Castaldo
- Department of Pulmonology, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| |
Collapse
|
3
|
Wilk J, Bajkacz S. Protecting the Last Line of Defense: Analytical Approaches for Sample Preparation and Determination of the Reserve Group of Antibiotics in the Environment. Crit Rev Anal Chem 2024:1-19. [PMID: 38493337 DOI: 10.1080/10408347.2024.2321161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Drug resistance in microorganisms is a serious threat to life and health due to the limited number of antibiotics that show efficacy in treating infections and the difficulty in discovering new compounds with antibacterial activity. To address this issue, the World Health Organization created the AWaRe classification, a tool to support global and national antimicrobial stewardship programs. The AWaRe list categorizes antimicrobials into three groups - Access, Watch, and Reserve - according to their intended use. The Reserve group comprises "last resort" medicines used solely for treating infections caused by bacterial strains that are resistant to other treatments. It is therefore necessary to protect them, not only by using them as prudently as possible in humans and animals, but also by monitoring their subsequent fate. Unmetabolized antibiotics enter the environment through hospital and municipal wastewater or from manure, subsequently contaminating bodies of water and soils, thus contributing to the emergence and spread of antibiotic resistance. This article presents a review of determination methods for the Reserve group of antimicrobials in water, wastewater, and manure. Procedures for extracting and determining these substances in environmental samples are described, showing the limited research available, which is typically on a local level.
Collapse
Affiliation(s)
- Joanna Wilk
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Gliwice, Poland
| | - Sylwia Bajkacz
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Gliwice, Poland
| |
Collapse
|
4
|
Nazli A, Tao W, You H, He X, He Y. Treatment of MRSA Infection: Where are We? Curr Med Chem 2024; 31:4425-4460. [PMID: 38310393 DOI: 10.2174/0109298673249381231130111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 02/05/2024]
Abstract
Staphylococcus aureus is a leading cause of septicemia, endocarditis, pneumonia, skin and soft tissue infections, bone and joint infections, and hospital-acquired infections. In particular, methicillin-resistant Staphylococcus aureus (MRSA) is associated with high morbidity and mortality, and continues to be a major public health problem. The emergence of multidrug-resistant MRSA strains along with the wide consumption of antibiotics has made anti-MRSA treatment a huge challenge. Novel treatment strategies (e.g., novel antimicrobials and new administrations) against MRSA are urgently needed. In the past decade, pharmaceutical companies have invested more in the research and development (R&D) of new antimicrobials and strategies, spurred by favorable policies. All research articles were collected from authentic online databases, including Google Scholar, PubMed, Scopus, and Web of Science, by using different combinations of keywords, including 'anti-MRSA', 'antibiotic', 'antimicrobial', 'clinical trial', 'clinical phase', clinical studies', and 'pipeline'. The information extracted from articles was compared to information provided on the drug manufacturer's website and Clinical Trials.gov (https://clinicaltrials.gov/) to confirm the latest development phase of anti-MRSA agents. The present review focuses on the current development status of new anti-MRSA strategies concerning chemistry, pharmacological target(s), indications, route of administration, efficacy and safety, pharmacokinetics, and pharmacodynamics, and aims to discuss the challenges and opportunities in developing drugs for anti-MRSA infections.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Wenlan Tao
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China
| | - Hengyao You
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaoli He
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
5
|
Ruggieri F, Compagne N, Antraygues K, Eveque M, Flipo M, Willand N. Antibiotics with novel mode of action as new weapons to fight antimicrobial resistance. Eur J Med Chem 2023; 256:115413. [PMID: 37150058 DOI: 10.1016/j.ejmech.2023.115413] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/09/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023]
Abstract
Antimicrobial resistance (AMR) is a major public health issue, causing 5 million deaths per year. Without any action plan, AMR will be in a near future the leading cause of death ahead of cancer. AMR comes from the ability of bacteria to rapidly develop and share resistance mechanisms towards current antibiotics, rendering them less effective. To circumvent this issue and avoid the phenomenon of cross-resistance, new antibiotics acting on novel targets or with new modes of action are required. Today, the pipeline of potential new treatments with these characteristics includes promising compounds such as gepotidacin, zoliflodacin, ibezapolstat, MGB-BP-3, CRS-3123, afabicin and TXA-709, which are currently in clinical trials, and lefamulin, which has been recently approved by FDA and EMA. In this review, we report the chemical synthesis, mode of action, structure-activity relationships, in vitro and in vivo activities as well as clinical data of these eight small molecules listed above.
Collapse
Affiliation(s)
- Francesca Ruggieri
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Nina Compagne
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Kevin Antraygues
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Maxime Eveque
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Marion Flipo
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France
| | - Nicolas Willand
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, F-59000, Lille, France.
| |
Collapse
|
6
|
Vena A, Castaldo N, Magnasco L, Bavastro M, Limongelli A, Giacobbe DR, Bassetti M. Current and emerging drug treatment strategies to tackle invasive community-associated methicillin-resistant Staphylococcus aureus (MRSA) infection: what are the challenges? Expert Opin Pharmacother 2023; 24:331-346. [PMID: 36548447 DOI: 10.1080/14656566.2022.2161885] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infections represent a leading cause of purulent skin and soft tissue infections in some geographical regions. Traditionally, 'old antibiotics' such as trimethoprim-sulfamethoxazole, tetracyclines, clindamycin, chloramphenicol,vancomycin, and teicoplanin have been used to treat these infections, but these were often associated with low efficacy and excessive side effects and toxicity, especially nephrotoxicity. Along with the development of new compounds, the last decade has seen substantial improvements in the management of CA-MRSA infections. AREAS COVERED In this review, the authors discuss the current and emerging drug treatment strategies to tackle invasive CA-MRSA infections. Articles reported in this review were selected from through literature searches using the PubMed database. EXPERT OPINION The availability of new drugs showing a potent in vitro activity against CA-MRSA represents a unique opportunity to face the threat of resistance while potentially reducing toxicity. All these compounds represent promising options to enhance our antibiotic armamentarium. However, data regarding the use of these new drugs in real-life studies are limited and their best placement in therapy and in terms of optimization of medical resources and balance of cost-effectiveness requires further investigation.
Collapse
Affiliation(s)
- Antonio Vena
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Nadia Castaldo
- Department of Pulmonology, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Laura Magnasco
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Martina Bavastro
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Alessandro Limongelli
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
7
|
Raju S, Sheridan PE, Hauer AK, Garrett AE, McConnell DE, Thornton JA, Stokes SL, Emerson J. Cu-Catalyzed Chan-Evans-Lam Coupling reactions of 2-Nitroimidazole with Aryl boronic acids: An effort toward new bioactive agents against S. pneumoniae. Chem Biodivers 2022; 19:e202200327. [PMID: 35819995 PMCID: PMC10184775 DOI: 10.1002/cbdv.202200327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022]
Abstract
The coupling of phenylboronic acids with poorly-activated imidazoles is studied as a model system to explore the use of copper-catalyzed Chan-Evans-Lam (CEL) coupling for targeted C-N bond forming reactions. Optimized CEL reaction conditions are reported for four phenanthroline-based ligand systems, where the ligand 4,5-diazafluoren-9-one (dafo, L2 ) with 1 molar equivalent of potassium carbonate yielded the highest reactivity. The substrate 2-Nitroimidazole (also known as azomycin) has documented antimicrobial activity against a range of microbes. Here N-arylation of 2-nitroimidazole with a range of aryl boronic acids has been successfully developed by copper(II)-catalyzed CEL reactions. Azomycin and a range of newly arylated azomycin derivatives were screened against S. pneumoniae , where 1-(4-(benzyloxy)phenyl)-2-nitro-1H-imidazole ( 3d ) was demonstrated to have a minimal inhibition concentration value of 3.3 μg/mL.
Collapse
Affiliation(s)
- Selvam Raju
- Mississippi State University, Chemistry, Department of Chemistry, 1115 Hand Laboratory, 39762, Mississippi State, UNITED STATES
| | - Patrick E Sheridan
- Mississippi State University, Chemistry, Department of Chemistry, 1115 Hand Lab, 39762, Mississippi State, UNITED STATES
| | - Alanna K Hauer
- Mississippi State University, Chemistry, Department of Chemistry, 1115 Hand Lab, 39762, Mississippi State, UNITED STATES
| | - Allyn E Garrett
- Mississippi State University, Chemistry, Department of Chemistry, 1115 Hand Lab, 39762, Mississippi State, UNITED STATES
| | - Danielle E McConnell
- Mississippi State University, Biological Sciences, Harned Hall, 39762, Mississippi State, UNITED STATES
| | - Justin A Thornton
- Mississippi State University, Biological Sciences, Harned Hall, 39762, Mississippi State, UNITED STATES
| | - Sean L Stokes
- Mississippi State University, Chemistry, 1115 Hand Lab, 39762, Mississippi State, UNITED STATES
| | - Joseph Emerson
- Mississippi State University, Chemistry, 1115 Hand Laboratory, 310 President's circle, 39762, Mississippi State, UNITED STATES
| |
Collapse
|
8
|
Mustafa M, Winum JY. The importance of sulfur-containing motifs in drug design and discovery. Expert Opin Drug Discov 2022; 17:501-512. [PMID: 35193437 DOI: 10.1080/17460441.2022.2044783] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Sulfur-containing functional groups are privileged motifs that occur in various pharmacologically effective substances and several natural products. Various functionalities are found with a sulfur atom at diverse oxidation states, as illustrated by thioether, sulfoxide, sulfone, sulfonamide, sulfamate, and sulfamide functions. They are valuable scaffolds in the field of medicinal chemistry and are part of a large array of approved drugs and clinical candidates. AREA COVERED Herein, the authors review the current research on the development of organosulfur-based drug discovery. This article also covers details of their roles in the new lead compounds reported in the literature over the past five years 2017-2021. EXPERT OPINION Given its prominent role in medicinal chemistry and its importance in drug discovery, sulfur has attracted continuing interest and has been used in the design of various valuable compounds that demonstrate a variety of biological and pharmacological feature activities. Overall, sulfur's role in medicinal chemistry continues to grow. However, many sulfur functionalities remain underused in small-molecule drug discovery and deserve special attention in the armamentarium for treating diverse diseases. Research efforts are also still required for the development of a synthetic methodology for direct access to these functions and late-stage functionalization.
Collapse
Affiliation(s)
- Muhamad Mustafa
- IBMM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.,Department of Medicinal Chemistry, Faculty of Pharmacy, Deraya Unuversity, Minia, Egypt
| | | |
Collapse
|
9
|
Kaur R, Rani P, Atanasov AG, Alzahrani Q, Gupta R, Kapoor B, Gulati M, Chawla P. Discovery and Development of Antibacterial Agents: Fortuitous and Designed. Mini Rev Med Chem 2021; 22:984-1029. [PMID: 34939541 DOI: 10.2174/1570193x19666211221150119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
Today, antibacterial drug resistance has turned into a significant public health issue. Repeated intake, suboptimal and/or unnecessary use of antibiotics, and, additionally, the transfer of resistance genes are the critical elements that make microorganisms resistant to conventional antibiotics. A substantial number of antibacterials that were successfully utilized earlier for prophylaxis and therapeutic purposes have been rendered inadequate due to this phenomenon. Therefore, the exploration of new molecules has become a continuous endeavour. Many such molecules are at various stages of investigation. A surprisingly high number of new molecules are currently in the stage of phase 3 clinical trials. A few new agents have been commercialized in the last decade. These include solithromycin, plazomicin, lefamulin, omadacycline, eravacycline, delafloxacin, zabofloxacin, finafloxacin, nemonoxacin, gepotidacin, zoliflodacin, cefiderocol, BAL30072, avycaz, zerbaxa, vabomere, relebactam, tedizolid, cadazolid, sutezolid, triclosan and afabiacin. This article aims to review the investigational and recently approved antibacterials with a focus on their structure, mechanisms of action/resistance, and spectrum of activity. Delving deep, their success or otherwise in various phases of clinical trials is also discussed while attributing the same to various causal factors.
Collapse
Affiliation(s)
- Ravleen Kaur
- Department of Health Sciences, Cape Breton University, Sydney, Nova Scotia. Canada
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara. India
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute of Digital Health and Patient Safety, Medical University of Vienna, Vienna. Austria
| | - Qushmua Alzahrani
- Department of Pharmacy/Nursing/Medicine Health and Environment, University of the Region of Joinville (UNIVILLE) volunteer researcher, Joinville. Brazil
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara . India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan Moga, Punjab 142001. India
| |
Collapse
|
10
|
The Very First Modification of Pleuromutilin and Lefamulin by Photoinitiated Radical Addition Reactions-Synthesis and Antibacterial Studies. Pharmaceutics 2021; 13:pharmaceutics13122028. [PMID: 34959310 PMCID: PMC8704873 DOI: 10.3390/pharmaceutics13122028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022] Open
Abstract
Pleuromutilin is a fungal diterpene natural product with antimicrobial properties, semisynthetic derivatives of which are used in veterinary and human medicine. The development of bacterial resistance to pleuromutilins is known to be very slow, which makes the tricyclic diterpene skeleton of pleuromutilin a very attractive starting structure for the development of new antibiotic derivatives that are unlikely to induce resistance. Here, we report the very first synthetic modifications of pleuromutilin and lefamulin at alkene position C19–C20, by two different photoinduced addition reactions, the radical thiol-ene coupling reaction, and the atom transfer radical additions (ATRAs) of perfluoroalkyl iodides. Pleuromutilin were modified with the addition of several alkyl- and aryl-thiols, thiol-containing amino acids and nucleoside and carbohydrate thiols, as well as perfluoroalkylated side chains. The antibacterial properties of the novel semisynthetic pleuromutilin derivatives were investigated on a panel of bacterial strains, including susceptible and multiresistant pathogens and normal flora members. We have identified some novel semisynthetic pleuromutilin and lefamulin derivatives with promising antimicrobial properties.
Collapse
|
11
|
Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of Changes to the Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, M100, 31st Edition. J Clin Microbiol 2021; 59:e0021321. [PMID: 34550809 PMCID: PMC8601225 DOI: 10.1128/jcm.00213-21] [Citation(s) in RCA: 467] [Impact Index Per Article: 116.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Clinical and Laboratory Standards Institute (CLSI) Subcommittee on Antimicrobial Susceptibility Testing (AST) develops and publishes standards and guidelines for AST methods and results interpretation in an annual update to the Performance Standards for Antimicrobial Susceptibility Testing (M100). This minireview will discuss changes to M100 for the 31st edition, including new and revised breakpoints and testing recommendations. New MIC and disk diffusion breakpoints are described for azithromycin (Shigella spp.), imipenem-relebactam (Enterobacterales, Pseudomonas aeruginosa, and anaerobes), and lefamulin (Staphylococcus aureus, Haemophilus influenzae, and Streptococcus pneumoniae), and disk breakpoints are described for azithromycin and Neisseria gonorrhoeae. The rationale behind revised oxacillin MIC breakpoints for select staphylococci is discussed. Updates to test methods include a method for disk diffusion using positive blood culture broth and use of linezolid to predict tedizolid susceptibility. There is clarification on which drugs to suppress on bacteria isolated from the cerebrospinal fluid and clarification on the use of a caret symbol attached to the intermediate category ("I^") to indicate those antimicrobials that concentrate in the urine.
Collapse
Affiliation(s)
- Romney Humphries
- Vanderbilt University Medical Center, Department of Pathology, Microbiology and Immunology, Nashville, Tennessee, USA
| | - April M. Bobenchik
- Lifespan Academic Medical Center, Department of Pathology and Laboratory Medicine, Providence, Rhode Island, USA
| | - Janet A. Hindler
- Los Angeles County Department of Public Health, Public Health Laboratories, Los Angeles, California, USA
| | - Audrey N. Schuetz
- Mayo Clinic College of Medicine and Science, Department of Laboratory Medicine and Pathology, Rochester, Minnesota, USA
| |
Collapse
|
12
|
McCarthy MW. Clinical Pharmacokinetics and Pharmacodynamics of Lefamulin. Clin Pharmacokinet 2021; 60:1387-1394. [PMID: 34254252 DOI: 10.1007/s40262-021-01056-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
Lefamulin (Xenleta) has been approved by the US FDA for the treatment of community-acquired bacterial pneumonia (CABP). It may be taken intravenously or orally and has activity against a broad range of pulmonary pathogens, including Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae, Legionella pneumophila, and Chlamydophila pneumonia, as well as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Lefamulin has an adverse effect profile that is similar to other antimicrobial agents commonly used to treat CABP. Despite these promising features, the use of lefamulin remains limited in clinical practice. However, given the rise of antibiotic-resistant organisms, this may soon change. This review examines what is known about the pharmacokinetics and pharmacodynamics of lefamulin and looks ahead to its potential applications in clinical practice, including the treatment of sexually transmitted infections such as multidrug-resistant Mycoplasma genitalium, as well as its role as a synergistic agent used in combination with other antimicrobials in the treatment of drug-resistant organisms.
Collapse
Affiliation(s)
- Matthew William McCarthy
- Weill Cornell Medicine and NewYork-Presbyterian Hospital, 525 E. 68th Street, New York, NY, 10065, USA.
| |
Collapse
|
13
|
Taylor RM, Karlowsky JA, Baxter MR, Adam HJ, Walkty A, Lagacé-Wiens P, Zhanel GG. In vitro susceptibility of common bacterial pathogens causing respiratory tract infections in Canada to lefamulin, a new pleuromutilin. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2021; 6:149-162. [PMID: 36341032 PMCID: PMC9608697 DOI: 10.3138/jammi-2020-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/09/2021] [Indexed: 06/16/2023]
Abstract
Background Community-acquired pneumonia (CAP) is a significant global health concern. Pathogens causing CAP demonstrate increasing resistance to commonly prescribed empiric treatments. Resistance in Streptococcus pneumoniae, the most prevalent bacterial cause of CAP, has been increasing worldwide, highlighting the need for improved antibacterial agents. Lefamulin, a novel pleuromutilin, is a recently approved therapeutic agent highly active against many lower respiratory tract pathogens. However, to date minimal data are available to describe the in vitro activity of lefamulin against bacterial isolates associated with CAP. Methods Common bacterial causes of CAP obtained from both lower respiratory and blood specimen isolates cultured by hospital laboratories across Canada were submitted to the annual CANWARD study's coordinating laboratory in Winnipeg, Canada, from January 2015 to October 2018. A total of 876 bacterial isolates were tested against lefamulin and comparator agents using the Clinical and Laboratory Standards Institute (CLSI) reference broth microdilution method, and minimum inhibitory concentrations (MICs) were interpreted using accepted breakpoints. Results All S. pneumoniae isolates tested from both respiratory (n = 315) and blood specimens (n = 167) were susceptible to lefamulin (MIC ≤0.5 μg/mL), including isolates resistant to penicillins, clarithromycin, doxycycline, and trimethoprim-sulfamethoxazole. Lefamulin also inhibited 99.0% of Haemophilus influenzae isolates (regardless of β-lactamase production) (99 specimens; MIC ≤2 μg/mL) and 95.7% of methicillin-susceptible Staphylococcus aureus (MSSA) (MIC ≤0.25 μg/mL; 70 specimens) at their susceptible breakpoints. Conclusions: Lefamulin demonstrated potent in vitro activity against all respiratory isolates tested and may represent a significant advancement in empiric treatment options for CAP.
Collapse
Affiliation(s)
- Robert M Taylor
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James A Karlowsky
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | - Melanie R Baxter
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Heather J Adam
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew Walkty
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | - Philippe Lagacé-Wiens
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Shared Health Manitoba, Winnipeg, Manitoba, Canada
| | - George G Zhanel
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|