1
|
Gallego-Fabrega C, Muiño E, Cárcel-Márquez J, Llucià-Carol L, Lledós M, Martín-Campos JM, Cullell N, Fernández-Cadenas I. Genome-Wide Studies in Ischaemic Stroke: Are Genetics Only Useful for Finding Genes? Int J Mol Sci 2022; 23:6840. [PMID: 35743317 PMCID: PMC9224543 DOI: 10.3390/ijms23126840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Ischaemic stroke is a complex disease with some degree of heritability. This means that heritability factors, such as genetics, could be risk factors for ischaemic stroke. The era of genome-wide studies has revealed some of these heritable risk factors, although the data generated by these studies may also be useful in other disciplines. Analysis of these data can be used to understand the biological mechanisms associated with stroke risk and stroke outcome, to determine the causality between stroke and other diseases without the need for expensive clinical trials, or to find potential drug targets with higher success rates than other strategies. In this review we will discuss several of the most relevant studies regarding the genetics of ischaemic stroke and the potential use of the data generated.
Collapse
Affiliation(s)
- Cristina Gallego-Fabrega
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Jara Cárcel-Márquez
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Laia Llucià-Carol
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
- Institute for Biomedical Research of Barcelona (IIBB), National Spanish Research Council (CSIC), 08036 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Miquel Lledós
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Jesús M. Martín-Campos
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Natalia Cullell
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
| | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics Group, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (C.G.-F.); (E.M.); (J.C.-M.); (L.L.-C.); (M.L.); (J.M.M.-C.); (N.C.)
- Stroke Pharmacogenomics and Genetics Group, Fundació MútuaTerrassa per la Docència i la Recerca, 08221 Terrassa, Spain
| |
Collapse
|
2
|
Cullell N, Carrera C, Muiño E, Torres N, Krupinski J, Fernandez-Cadenas I. Pharmacogenetic studies with oral anticoagulants. Genome-wide association studies in vitamin K antagonist and direct oral anticoagulants. Oncotarget 2018; 9:29238-29258. [PMID: 30018749 PMCID: PMC6044386 DOI: 10.18632/oncotarget.25579] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/28/2018] [Indexed: 12/17/2022] Open
Abstract
Oral anticoagulants (OAs) are the recommended drugs to prevent cardiovascular events and recurrence in patients with atrial fibrillation (AF) and cardioembolic stroke. We conducted a literature search to review the current state of OAs pharmacogenomics, focusing on Genome Wide Association Studies (GWAs) in patients treated with vitamin K antagonists (VKAs) and direct oral anticoagulants (DOACs). VKAs: Warfarin, acenocoumarol, fluindione and phenprocoumon have long been used, but their interindividual variability and narrow therapeutic/safety ratio makes their dosage difficult. GWAs have been useful in finding genetic variants associated with VKAs response. The main genes involved in VKAs pharmacogenetics are: VKORC1, CYP2C19 and CYP4F2. Variants in these genes have been included in pharmacogenetic algorithms to predict the VKAs dose individually in each patient depending on their genotype and clinical variables. DOACs: Dabigatran, apixaban, rivaroxaban and edoxaban have been approved for patients with AF. They have stable pharmacokinetics and do not require routine blood checks, thus avoiding most of the drawbacks of VKAs. Except for a GWAs performed in patients treated with dabigatran, there is no Genome Wide pharmacogenomics data for DOACs. Pharmacogenomics could be useful to predict the better clinical response and avoid adverse events in patients treated with anticoagulants, identifying the most appropriate anticoagulant drug for each patient. Current pharmacogenomics data show that the polymorphisms affecting VKAs or DOACs are different, concluding that personalized medicine based on pharmacogenomics could be possible. However, more studies are required to implement personalized medicine in clinical practice with OA and based on pharmacogenetics of DOACs.
Collapse
Affiliation(s)
- Natalia Cullell
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mútua Terrassa, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Caty Carrera
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mútua Terrassa, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain.,Neurovascular Research Laboratory, Institut de Recerca, Universitat Autònoma de Barcelona, Hospital Vall d'Hebron, Barcelona, Spain
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mútua Terrassa, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Nuria Torres
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mútua Terrassa, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain
| | - Jerzy Krupinski
- Servicio de Neurología, Hospital Universitari Mútua Terrassa, Terrassa, Barcelona, Spain.,School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Israel Fernandez-Cadenas
- Stroke Pharmacogenomics and Genetics, Fundació Docència i Recerca Mútua Terrassa, Hospital Universitari Mútua de Terrassa, Terrassa, Barcelona, Spain.,Stroke Pharmacogenomics and Genetics, Institut de Recer ca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
3
|
Siasos G, Tsigkou V, Oikonomou E, Zaromitidou M, Tousoulis D. Novel Antiplatelet Agents. Coron Artery Dis 2018. [DOI: 10.1016/b978-0-12-811908-2.00020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Dong OM, Wiltshire T. Advancing precision medicine in healthcare: addressing implementation challenges to increase pharmacogenetic testing in the clinical setting. Physiol Genomics 2017; 49:346-354. [PMID: 28550089 DOI: 10.1152/physiolgenomics.00029.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Abstract
The incorporation of precision medicine into the clinical setting is becoming increasingly feasible with the availability of more affordable genetic sequencing technologies and successful genetic associations with phenotypes, especially in the pharmacogenomic field. Although substantial progress has been made to ensure successful uptake of pharmacogenomic testing in the clinical setting already, many challenges still remain for sustainable implementation. The importance of pharmacogenomic information in patient care, identifying key barriers, and proposed solutions for advancing pharmacogenomic implementation will be discussed.
Collapse
Affiliation(s)
- Olivia M Dong
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, and Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, and Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Shi C, Yan W, Wang G, Wang F, Li Q, Lin N. Pharmacogenetics-Based versus Conventional Dosing of Warfarin: A Meta-Analysis of Randomized Controlled Trials. PLoS One 2015; 10:e0144511. [PMID: 26672604 PMCID: PMC4682655 DOI: 10.1371/journal.pone.0144511] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022] Open
Abstract
Background Recently, using the patient’s genotype to guide warfarin dosing has gained interest; however, whether pharmacogenetics-based dosing (PD) improves clinical outcomes compared to conventional dosing (CD) remains unclear. Thus, we performed a meta-analysis to evaluate these two strategies. Methods The PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), Chinese VIP and Chinese Wan-fang databases were searched. The Cochrane Collaboration’s tool was used to assess the risk of bias in randomized controlled trials (RCTs). The primary outcome was time within the therapeutic range (TTR); the secondary end points were the time to maintenance dose and time to first therapeutic international normalized ratio (INR), an INR greater than 4, adverse events, major bleeding, thromboembolism and death from any cause. Results A total of 11 trials involving 2,678 patients were included in our meta-analysis. The results showed that PD did not improve the TTR compared to CD, although PD significantly shortened the time to maintenance dose (MD = -8.80; 95% CI: -11.99 to -5.60; P<0.00001) and the time to first therapeutic INR (MD = -2.80; 95% CI: -3.45 to -2.15; P<0.00001). Additionally, PD significantly reduced the risk of adverse events (RR = 0.86; 95% CI: 0.75 to 0.99; P = 0.03) and major bleeding (RR = 0.36; 95% CI: 0.15 to 0.89, P = 0.03), although it did not reduce the percentage of INR greater than 4, the risk of thromboembolic events and death from any cause. Subgroup analysis showed that PD resulted in a better improvement in the endpoints of TTR and over-anticoagulation at a fixed initial dosage rather than a non-fixed initial dosage. Conclusions The use of genotype testing in the management of warfarin anticoagulation was associated with significant improvements in INR-related and clinical outcomes. Thus, genotype-based regimens can be considered a reliable and accurate method to determine warfarin dosing and may be preferred over fixed-dose regimens. Trial Registration PROSPERO Database registration: CRD42015024127.
Collapse
Affiliation(s)
- Changcheng Shi
- Department of Clinical Pharmacy, Hangzhou First People’s Hospital, Hangzhou, Zhejiang Province, China
- Department of Clinical Pharmacology, Hangzhou Translational Medicine Research Center, Hangzhou, Zhejiang Province, China
| | - Wei Yan
- Department of Clinical Pharmacy, Hangzhou First People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Gang Wang
- Department of Clinical Pharmacy, Hangzhou First People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Fei Wang
- Department of Clinical Pharmacy, Hangzhou First People’s Hospital, Hangzhou, Zhejiang Province, China
- Department of Clinical Pharmacology, Hangzhou Translational Medicine Research Center, Hangzhou, Zhejiang Province, China
| | - Qingyu Li
- Department of Clinical Pharmacy, Hangzhou First People’s Hospital, Hangzhou, Zhejiang Province, China
| | - Nengming Lin
- Department of Clinical Pharmacy, Hangzhou First People’s Hospital, Hangzhou, Zhejiang Province, China
- Department of Clinical Pharmacology, Hangzhou Translational Medicine Research Center, Hangzhou, Zhejiang Province, China
- Affiliated Hangzhou Hospital, Nanjing Medical University, Hangzhou, Zhejiang Province, China
- The first Affiliated Hangzhou Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
- * E-mail:
| |
Collapse
|
6
|
Yasmina A, de Boer A, Klungel OH, Deneer VHM. Pharmacogenomics of oral antiplatelet drugs. Pharmacogenomics 2015; 15:509-28. [PMID: 24624918 DOI: 10.2217/pgs.14.16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pharmacogenomics has been implicated in the response variability of antiplatelet drugs in coronary artery disease (CAD), particularly for aspirin and clopidogrel. A large number of studies and several meta-analyses have been published on this topic, but until recently, there have been no clear conclusions and no definite guidelines on the clinical use of pharmacogenetic testing before prescribing antiplatelet drugs for CAD. In this review, the available evidence is summarized. The most consistent results are on clopidogrel, where CYP2C19 loss-of-function alleles are associated with stent thrombosis events. We recommend to genotype for CYP2C19 loss-of-function alleles in patients with CAD who are to undergo percutaneous coronary intervention and stenting, and to adjust the antiplatelet treatment based on the genotyping results.
Collapse
Affiliation(s)
- Alfi Yasmina
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
7
|
Fisch AS, Perry CG, Stephens SH, Horenstein RB, Shuldiner AR. Pharmacogenomics of anti-platelet and anti-coagulation therapy. Curr Cardiol Rep 2013; 15:381. [PMID: 23797323 DOI: 10.1007/s11886-013-0381-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arterial thrombosis is a major component of vascular disease, especially myocardial infarction (MI) and stroke. Current anti-thrombotic therapies such as warfarin and clopidogrel are effective in inhibiting cardiovascular events; however, there is great inter-individual variability in response to these medications. In recent years, it has been recognized that genetic factors play a significant role in drug response, and, subsequently, common variants in genes responsible for metabolism and drug action have been identified. These discoveries along with new diagnostic targets and therapeutic strategies hold promise for more effective individualized anti-coagulation and anti-platelet therapy.
Collapse
Affiliation(s)
- Adam S Fisch
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, and the Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
8
|
Amici S, Paciaroni M, Agnelli G, Caso V. Gene-drug interaction in stroke. Stroke Res Treat 2011; 2011:212485. [PMID: 22135769 PMCID: PMC3216369 DOI: 10.4061/2011/212485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/05/2011] [Accepted: 09/02/2011] [Indexed: 01/09/2023] Open
Abstract
Stroke is the third cause of mortality and one of most frequent causes of long-term neurological disability, as well as a complex disease that results from the interaction of environmental and genetic factors. The focus on genetics has produced a large number of studies with the objective of revealing the genetic basis of cerebrovascular diseases. Furthermore, pharmacogenetic research has investigated the relation between genetic variability and drug effectiveness/toxicity. This review will examine the implications of pharmacogenetics of stroke; data on antihypertensives, statins, antiplatelets, anticoagulants, and recombinant tissue plasminogen activator will be illustrated.
Several polymorphisms have been studied and some have been associated with positive drug-gene interaction on stroke, but the superiority of the genotype-guided approach over the clinical approach has not been proved yet; for this reason, it is not routinely recommended.
Collapse
Affiliation(s)
- Serena Amici
- Stroke Unit, Division of Cardiovascular Medicine, University of Perugia, Santa Maria della Misericordia Hospital, Sant'Andrea delle Fratte, 06126 Perugia, Italy
| | | | | | | |
Collapse
|