1
|
Silva-Rodríguez J, Labrador-Espinosa MÁ, Castro-Labrador S, Muñoz-Delgado L, Franco-Rosado P, Castellano-Guerrero AM, Macías-García D, Jesús S, Adarmes-Gómez AD, Carrillo F, Martín-Rodríguez JF, García-Solís D, Roldán-Lora F, Mir P, Grothe MJ. Imaging biomarkers of cortical neurodegeneration underlying cognitive impairment in Parkinson's disease. Eur J Nucl Med Mol Imaging 2025; 52:2002-2014. [PMID: 39888421 PMCID: PMC12014801 DOI: 10.1007/s00259-025-07070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/30/2024] [Indexed: 02/01/2025]
Abstract
PURPOSE Imaging biomarkers bear great promise for improving the diagnosis and prognosis of cognitive impairment in Parkinson's disease (PD). We compared the ability of three commonly used neuroimaging modalities to detect cortical changes in PD patients with mild cognitive impairment (PD-MCI) and dementia (PDD). METHODS 53 cognitively normal PD patients (PD-CN), 32 PD-MCI, and 35 PDD underwent concurrent structural MRI (sMRI), diffusion-weighted MRI (dMRI), and [18F]FDG PET. We extracted grey matter volumes (sMRI), mean diffusivity (MD, dMRI), and standardized uptake value ratios ([18F]FDG PET) for 52 cortical regions included in a neuroanatomical atlas. We assessed group differences using ANCOVA models and further applied a cross-validated machine learning approach to identify the modality-specific brain regions that are most indicative of dementia status and assessed their diagnostic accuracy for group separation using receiver operating characteristic analyses. RESULTS In sMRI, atrophy of temporal and posterior-parietal areas allowed separating PDD from PD-CN (AUC = 0.77 ± 0.07), but diagnostic accuracy was poor for separating PD-MCI from PD-CN (0.57 ± 0.10). dMRI showed most pronounced diffusivity changes in the medial temporal lobe, which provided excellent diagnostic performance for PDD (AUC = 0.87 ± 0.06), and a more modest but still significant performance for PD-MCI (AUC = 0.71 ± 0.09). Finally, [18F]FDG PET revealed pronounced hypometabolism in posterior-occipital regions, which provided the highest diagnostic accuracies for both PDD (AUC = 0.89 ± 0.05) and PD-MCI (AUC = 0.78 ± 0.05). In statistical comparisons, both [18F]FDG PET (p < 0.001) and dMRI (p < 0.031) outperformed sMRI for detecting PDD and PD-MCI. CONCLUSION Among the tested modalities, [18F]FDG PET was most accurate for detecting cortical changes associated with cognitive impairment in PD, especially at early stages. Diffusion measurements may represent a promising MRI-based alternative.
Collapse
Affiliation(s)
- Jesús Silva-Rodríguez
- Reina Sofia Alzheimer Center, CIEN Foundation, ISCIII, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Miguel Ángel Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
| | - Sandra Castro-Labrador
- Reina Sofia Alzheimer Center, CIEN Foundation, ISCIII, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Laura Muñoz-Delgado
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Pablo Franco-Rosado
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Ana María Castellano-Guerrero
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Daniel Macías-García
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Astrid D Adarmes-Gómez
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Fátima Carrillo
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Juan Francisco Martín-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
- Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Sevilla, Spain
| | - David García-Solís
- Servicio de Medicina Nuclear, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Florinda Roldán-Lora
- Unidad de Radiodiagnóstico, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.
- Unidad de Trastornos del Movimiento, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, Avda. Manuel Siurot s/n, Seville, 41013, Spain.
| | - Michel J Grothe
- Reina Sofia Alzheimer Center, CIEN Foundation, ISCIII, Madrid, Spain.
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain.
- Fundación CIEN, Centro Alzheimer Reina Sofía, C. de Valderrebollo, 5, Vallecas, Madrid, 28031, Spain.
| |
Collapse
|
2
|
Subramanyam P, Palaniswamy SS. 18 F-FDG metabolic abnormalities precede perfusion and atrophic changes in diagnosis of early frontotemporal dementia: study from a tertiary care university hospital. Nucl Med Commun 2025; 46:248-259. [PMID: 39686671 DOI: 10.1097/mnm.0000000000001942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
OBJECTIVE Diagnosis of early onset dementia is critical for initiating management. Although structural MRI is an established procedure for dementia evaluation, early cases may be missed. Neurodegenerative diseases lead to reductions in glucose consumption and grey matter volume loss. Our primary aim was to establish whether metabolic changes precede perfusion abnormalities in early cases of dementia especially, frontotemporal dementia (FTD). Secondly to study if cerebral atrophy using Pasquier visual rating scales can be used reliably to correlate with hypometabolism in this group of patients. MATERIALS AND METHODS A total of 56 patients (M:F = 39:17) with memory loss as per the DSM-5 diagnostic criteria were clinically and neurologically examined and referred for 18 F-Fluorodeoxyglucose (FDG) PET brain imaging. A few patients who had a prior (recent, <1 week) MR brain underwent brain 18 F-FDG PET-CT, and all others were considered for simultaneous 18 F-FDG PETMR imaging of brain. T2-weighted images were used to report Pasquier rating scales in all our patients as per recommendation. RESULTS Cognitive assessments were analysed along with neuroimaging findings. Highest diagnostic performance was obtained with 18 F-FDG PET for identifying early FTD in our series of patients. Sensitivity, specificity and accuracy of FDG and arterial spin labeling (ASL) using simultaneous PETMR were found to be 96.34%/90.1%/89 : 53.57%/62.12%/78, respectively. Cerebral atrophy rated using Pasquier visual scales showed the lowest diagnostic performance. Our study showed that the earliest phase of cognitive decline was found to be associated with specific patterns of hypometabolism, even in the absence of atrophy, which are currently considered diagnostic biomarkers. CONCLUSION Metabolic derangements indeed precede perfusion changes and cerebral atrophy in the setting of early dementia. Simultaneous FDG PETMR is being recommended as the investigation of choice for the evaluation of early FTD. This pilot study shows that FDG PET outperforms cognitive assessments and anatomical imaging modalities in early dementia evaluation. Although ASL can detect perfusion deficits in dementia, compared with FDG PET, its sensitivity and specificity for discerning early onset dementia from controls remain inferior to FDG PET. Pasquier scales, although easy to implement, cannot replace FDG PET metabolic findings, which start very early in the neuronal disease process.
Collapse
Affiliation(s)
- Padma Subramanyam
- Department of Nuclear Medicine and Molecular Imaging, Amrita Institute of Medical Sciences, Amrita Vishwavidyapeetham, Cochin, India
| | | |
Collapse
|
3
|
Labrador-Espinosa MA, Silva-Rodriguez J, Okkels N, Muñoz-Delgado L, Horsager J, Castro-Labrador S, Franco-Rosado P, Castellano-Guerrero AM, Iglesias-Camacho E, San-Eufrasio M, Macías-García D, Jesús S, Adarmes-Gómez A, Ojeda-Lepe E, Carrillo F, Martín-Rodríguez JF, Roldan Lora F, García-Solís D, Borghammer P, Mir P, Grothe MJ. Cortical hypometabolism in Parkinson's disease is linked to cholinergic basal forebrain atrophy. Mol Psychiatry 2024:10.1038/s41380-024-02842-9. [PMID: 39639173 DOI: 10.1038/s41380-024-02842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Cortical hypometabolism on FDG-PET is a well-established neuroimaging biomarker of cognitive impairment in Parkinson's disease (PD), but its pathophysiologic origins are incompletely understood. Cholinergic basal forebrain (cBF) degeneration is a prominent pathological feature of PD-related cognitive impairment and may contribute to cortical hypometabolism through cholinergic denervation of cortical projection areas. Here, we investigated in-vivo associations between subregional cBF volumes on 3T-MRI, cortical hypometabolism on [18F]FDG-PET, and cognitive deficits in a cohort of 95 PD participants with varying degrees of cognitive impairment. We further assessed the spatial correspondence of the cortical pattern of cBF-associated hypometabolism with the pattern of cholinergic denervation in PD as assessed by [18F]FEOBV-PET imaging of presynaptic cholinergic terminal density in a second cohort. Lower volume of the cortically-projecting posterior cBF, but not of the anterior cBF, was significantly associated with extensive neocortical hypometabolism [p(FDR) < 0.05], which mediated the association between cBF atrophy and cognitive impairment (mediated proportion: 43%, p < 0.001). In combined models, posterior cBF atrophy explained more variance in cortical hypometabolism (R2 = 0.26, p < 0.001) than local atrophy in the cortical areas themselves (R2 = 0.16, p = 0.01). Topographic correspondence analysis with the [18F]FEOBV-PET pattern revealed that cortical areas showing most pronounced cBF-associated hypometabolism correspond to those showing most severe cholinergic denervation in PD (Spearman's ρ = 0.57, p < 0.001). In conclusion, posterior cBF atrophy in PD is selectively associated with hypometabolism in denervated cortical target areas, which mediates the effect of cBF atrophy on cognitive impairment. These data provide first-time in-vivo evidence that cholinergic degeneration represents a principle pathological correlate of cortical hypometabolism underlying cognitive impairment in PD.
Collapse
Grants
- USE-19094-G Universidad de Sevilla (University of Seville)
- CD21/00067 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- CM21/00051 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- PI20/00613 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- CP19/00031 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
- CVI-02526 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- PE-0210-2018 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- PI-0459-2018 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- PE-0186-2019 Consejería de Salud, Junta de Andalucía (Ministry of Health, Andalusian Regional Government)
- CTS-7685 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (Ministry of Economy, Innovation, Science and Employment, Government of Andalucia)
Collapse
Affiliation(s)
- Miguel A Labrador-Espinosa
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Psychiatry and Neurochemistry, Institute of Physiology and Neuroscience, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jesús Silva-Rodriguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, Madrid, Spain
| | - Niels Okkels
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
- Department of Neurology, Regional Hospital Viborg, Viborg, Denmark
| | - Laura Muñoz-Delgado
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Sandra Castro-Labrador
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, Madrid, Spain
| | - Pablo Franco-Rosado
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana María Castellano-Guerrero
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Iglesias-Camacho
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
| | - Manuela San-Eufrasio
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
| | - Daniel Macías-García
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Astrid Adarmes-Gómez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Ojeda-Lepe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Fátima Carrillo
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
| | - Juan Francisco Martín-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Florinda Roldan Lora
- Unidad de Radiodiagnóstico, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - David García-Solís
- Unidad de Medicina Nuclear, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.
| | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Universidad de Sevilla/CSIC/CIBERNED, Sevilla, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, Madrid, Spain.
| |
Collapse
|
4
|
Cayir S, Volpi T, Toyonaga T, Gallezot JD, Yang Y, Sadabad FE, Mulnix T, Mecca AP, Fesharaki-Zadeh A, Matuskey D. Relationship between neuroimaging and cognition in frontotemporal dementia: An FDG-PET and structural MRI study. J Neuroimaging 2024; 34:627-634. [PMID: 38676301 PMCID: PMC11511789 DOI: 10.1111/jon.13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous neurodegenerative condition with a prevalence comparable to Alzheimer's disease for patients under 65 years of age. Limited studies have examined the association between cognition and neuroimaging in FTD using different imaging modalities. METHODS We examined the association of cognition using Montreal Cognitive Assessment (MoCA) with both gray matter (GM) volume and glucose metabolism using magnetic resonance imaging and fluorodeoxyglucose (FDG)-PET in 21 patients diagnosed with FTD. Standardized uptake value ratio (SUVR) using the brainstem as a reference region was the primary outcome measure for FDG-PET. Partial volume correction was applied to PET data to account for disease-related atrophy. RESULTS Significant positive associations were found between whole-cortex GM volume and MoCA scores (r = 0.46, p = .04). The association between whole-cortex FDG SUVR and MoCA scores was not significant (r = 0.37, p = .09). GM volumes of the frontal cortex (r = 0.54, p = .01), caudate (r = 0.62, p<.01), and insula (r = 0.57, p<.01) were also significantly correlated with MoCA, as were SUVR values of the insula (r = 0.51, p = .02), thalamus (r = 0.48, p = .03), and posterior cingulate cortex (PCC) (r = 0.47, p = .03). CONCLUSIONS Whole-cortex atrophy is associated with cognitive dysfunction, and this association is larger than for whole-cortex hypometabolism as measured with FDG-PET. At the regional level, focal atrophy and/or hypometabolism in the frontal cortex, insula, PCC, thalamus, and caudate seem to be important for the decline of cognitive function in FTD. Furthermore, these results highlight how functional and structural changes may not overlap and might contribute to cognitive dysfunction in FTD in different ways.
Collapse
Affiliation(s)
- Salih Cayir
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tommaso Volpi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jean-Dominique Gallezot
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yanghong Yang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Faranak Ebrahimian Sadabad
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tim Mulnix
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Adam P Mecca
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arman Fesharaki-Zadeh
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Cayir S, Volpi T, Toyonaga T, Gallezot JD, Yanghong Y, Sadabad FE, Mulnix T, Mecca AP, Fesharaki-Zadeh A, Matuskey D. Relationship between Neuroimaging and Cognition in Frontotemporal Dementia: A [18 F]FDG PET and Structural MRI Study. RESEARCH SQUARE 2024:rs.3.rs-3846125. [PMID: 38313264 PMCID: PMC10836106 DOI: 10.21203/rs.3.rs-3846125/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Background Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous condition with a prevalence comparable to Alzheimer's Disease for patients under sixty-five years of age. Gray matter (GM) atrophy and glucose hypometabolism are important biomarkers for the diagnosis and evaluation of disease progression in FTD. However, limited studies have systematically examined the association between cognition and neuroimaging in FTD using different imaging modalities in the same patient group. Methods We examined the association of cognition using Montreal Cognitive Assessment (MoCA) with both GM volume and glucose metabolism using structural magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose positron emission tomography scanning ([18F]FDG PET) in 21 patients diagnosed with FTD. Standardized uptake value ratio (SUVR) using the brainstem as a reference region was the primary outcome measure for [18F]FDG PET. Partial volume correction was applied to PET data to account for disease-related atrophy. Results Significant positive associations were found between whole-cortex GM volume and MoCA scores (r = 0.461, p = 0.035). The association between whole-cortex [18F]FDG SUVR and MoCA scores was not Significant (r = 0.374, p = 0.094). GM volumes of the frontal cortex (r = 0.540, p = 0.011), caudate (r = 0.616, p = 0.002), and insula (r = 0.568, p = 0.007) were also Significantly correlated with MoCA, as were SUVR values of the insula (r = 0.508, p = 0.018), thalamus (r = 0.478, p = 0.028), and posterior cingulate cortex (PCC) (r = 0.472, p = 0.030). Discussion Whole-cortex atrophy is associated with cognitive dysfunction, and this effect is larger than for cortical hypometabolism as measured with [18F]FDG PET. At the regional level, focal atrophy and/or hypometabolism in the frontal lobe, insula, PCC, thalamus, and caudate seem to imply the importance of these regions for the decline of cognitive function in FTD. Furthermore, these results highlight how functional and structural changes may not overlap and might contribute to cognitive dysfunction in FTD in different ways. Our findings provide insight into the relationships between structural, metabolic, and cognitive changes due to FTD.
Collapse
|
6
|
Gasca-Salas C, Trompeta C, López-Aguirre M, Rodríguez Rojas R, Clarimon J, Dols-Icardo O, El Bounasri S, Guida P, Mata-Marín D, Hernández-Fernández F, Marras C, García-Cañamaque L, Plaza de Las Heras I, Obeso I, Vela L, Fernández-Rodríguez B. Brain hypometabolism in non-demented microtubule-associated protein tau H1 carriers with Parkinson's disease. J Neuroimaging 2023; 33:953-959. [PMID: 37726927 DOI: 10.1111/jon.13156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND AND PURPOSE The microtubule-associated protein tau (MAPT) H1 homozygosity (H1/H1 haplotype) is a genetic risk factor for neurodegenerative diseases, such as Parkinson's disease (PD). MAPT H1 homozygosity has been associated with conversion to PD; however, results are conflicting since some studies did not find a strong influence. Cortical hypometabolism is associated with cognitive impairment in PD. In this study, we aimed to evaluate the metabolic pattern in nondemented PD patients MAPT H1/H1 carriers in comparison with MAPT H1/H2 haplotype. In addition, we evaluated domain-specific cognitive differences according to MAPT haplotype. METHODS We compared a group of 26 H1/H1 and 20 H1/H2 carriers with late-onset PD. Participants underwent a comprehensive neuropsychological cognitive evaluation and a [18F]-Fluorodeoxyglucose PET-MR scan. RESULTS MAPT H1/H1 carriers showed worse performance in the digit span forward test of attention compared to MAPT H1/H2 carriers. In the [18F]-Fluorodeoxyglucose PET comparisons, MAPT H1/H1 displayed hypometabolism in the frontal cortex, parahippocampal, and cingulate gyrus, as well as in the caudate and globus pallidus. CONCLUSION PD patients MAPT H1/H1 carriers without dementia exhibit relative hypometabolism in several cortical areas as well as in the basal ganglia, and worse performance in attention than MAPT H1/H2 carriers. Longitudinal studies should assess if lower scores in attention and dysfunction in these areas are predictors of dementia in MAPT H1/H1 homozygotes.
Collapse
Affiliation(s)
- Carmen Gasca-Salas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- University CEU-San Pablo, Madrid, Spain
| | - Clara Trompeta
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- PhD Program in Health Sciences, University of Alcala de Henares Alcalá de Henares, Madrid, Spain
| | - Miguel López-Aguirre
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- PhD Program in Physics, Complutense University of Madrid, Madrid, Spain
| | - Rafael Rodríguez Rojas
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Jordi Clarimon
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oriol Dols-Icardo
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Shaimaa El Bounasri
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pasqualina Guida
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- PhD Program in Neuroscience, Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - David Mata-Marín
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- PhD Program in Neuroscience, Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Frida Hernández-Fernández
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Connie Marras
- The Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Lina García-Cañamaque
- Nuclear Medicine Department, PET-MRI Centre, HM Puerta del Sur University Hospital, HM Hospitales, Madrid, Spain
| | - Isabel Plaza de Las Heras
- Nuclear Medicine Department, PET-MRI Centre, HM Puerta del Sur University Hospital, HM Hospitales, Madrid, Spain
| | - Ignacio Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, Madrid, Spain
| | - Lydia Vela
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Department of Neurology, Hospital U Fundación Alcorcón, Calle Budapest, Alcorcón, Spain
| | - Beatriz Fernández-Rodríguez
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- PhD Program in Neuroscience, Autónoma de Madrid University-Cajal Institute, Madrid, Spain
| |
Collapse
|
7
|
Molot J, Sears M, Marshall LM, Bray RI. Neurological susceptibility to environmental exposures: pathophysiological mechanisms in neurodegeneration and multiple chemical sensitivity. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:509-530. [PMID: 34529912 DOI: 10.1515/reveh-2021-0043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/13/2021] [Indexed: 05/23/2023]
Abstract
The World Health Organization lists air pollution as one of the top five risks for developing chronic non-communicable disease, joining tobacco use, harmful use of alcohol, unhealthy diets and physical inactivity. This review focuses on how host defense mechanisms against adverse airborne exposures relate to the probable interacting and overlapping pathophysiological features of neurodegeneration and multiple chemical sensitivity. Significant long-term airborne exposures can contribute to oxidative stress, systemic inflammation, transient receptor subfamily vanilloid 1 (TRPV1) and subfamily ankyrin 1 (TRPA1) upregulation and sensitization, with impacts on olfactory and trigeminal nerve function, and eventual loss of brain mass. The potential for neurologic dysfunction, including decreased cognition, chronic pain and central sensitization related to airborne contaminants, can be magnified by genetic polymorphisms that result in less effective detoxification. Onset of neurodegenerative disorders is subtle, with early loss of brain mass and loss of sense of smell. Onset of MCS may be gradual following long-term low dose airborne exposures, or acute following a recognizable exposure. Upregulation of chemosensitive TRPV1 and TRPA1 polymodal receptors has been observed in patients with neurodegeneration, and chemically sensitive individuals with asthma, migraine and MCS. In people with chemical sensitivity, these receptors are also sensitized, which is defined as a reduction in the threshold and an increase in the magnitude of a response to noxious stimulation. There is likely damage to the olfactory system in neurodegeneration and trigeminal nerve hypersensitivity in MCS, with different effects on olfactory processing. The associations of low vitamin D levels and protein kinase activity seen in neurodegeneration have not been studied in MCS. Table 2 presents a summary of neurodegeneration and MCS, comparing 16 distinctive genetic, pathophysiological and clinical features associated with air pollution exposures. There is significant overlap, suggesting potential comorbidity. Canadian Health Measures Survey data indicates an overlap between neurodegeneration and MCS (p < 0.05) that suggests comorbidity, but the extent of increased susceptibility to the other condition is not established. Nevertheless, the pathways to the development of these conditions likely involve TRPV1 and TRPA1 receptors, and so it is hypothesized that manifestation of neurodegeneration and/or MCS and possibly why there is divergence may be influenced by polymorphisms of these receptors, among other factors.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, North York, ON, Canada
| | | | | | - Riina I Bray
- Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Sintini I, Duffy JR, Clark HM, Utianski RL, Botha H, Machulda MM, Senjem ML, Strand EA, Schwarz CG, Lowe VJ, Jack CR, Josephs KA, Whitwell JL. Functional connectivity to the premotor cortex maps onto longitudinal brain neurodegeneration in progressive apraxia of speech. Neurobiol Aging 2022; 120:105-116. [PMID: 36166918 PMCID: PMC9613616 DOI: 10.1016/j.neurobiolaging.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
Abstract
Primary progressive apraxia of speech (PPAOS) is a neurodegenerative motor speech disorder affecting the ability to produce speech. If agrammatic aphasia is present, it can be referred to as the non-fluent/agrammatic variant of primary progressive aphasia (nfvPPA). We investigated whether resting-state functional MRI (rs-fMRI) connectivity from disease "epicenters" correlated with longitudinal gray matter atrophy and hypometabolism in nfvPPA and PPAOS. Eighteen nfvPPA and 23 PPAOS patients underwent clinical assessment, structural MRI, rs-fMRI, and [18F] fluorodeoxyglucose (FDG)-PET at baseline and ∼2 years follow-up. Rates of neurodegeneration in nfvPPA and PPAOS correlated with functional connectivity to the premotor, motor, and frontal cortex. Connectivity to the caudate and thalamus was more strongly associated with rates of hypometabolism than atrophy. Connectivity to the left Broca's area was more strongly associated with rates of atrophy and hypometabolism in nfvPPA. Finally, functional connectivity to a network of regions, and not to a single epicenter, correlated with rates of neurodegeneration in PPAOS and nfvPPA, suggesting similar biological mechanisms driving disease progression, with regional differences related to language.
Collapse
Affiliation(s)
- Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Matthew L Senjem
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Edythe A Strand
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
9
|
Kang K, Jeong SY, Park K, Hahm MH, Kim J, Lee H, Kim C, Yun E, Han J, Yoon U, Lee S. Distinct cerebral cortical perfusion patterns in idiopathic normal-pressure hydrocephalus. Hum Brain Mapp 2022; 44:269-279. [PMID: 36102811 PMCID: PMC9783416 DOI: 10.1002/hbm.25974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023] Open
Abstract
The aims of the study are to evaluate idiopathic normal-pressure hydrocephalus (INPH)-related cerebral blood flow (CBF) abnormalities and to investigate their relation to cortical thickness in INPH patients. We investigated cortical CBF utilizing surface-based early-phase 18 F-florbetaben (E-FBB) PET analysis in two groups: INPH patients and healthy controls. All 39 INPH patients and 20 healthy controls were imaged with MRI, including three-dimensional volumetric images, for automated surface-based cortical thickness analysis across the entire brain. A subgroup with 37 participants (22 INPH patients and 15 healthy controls) that also underwent 18 F-fluorodeoxyglucose (FDG) PET imaging was further analyzed. Compared with age- and gender-matched healthy controls, INPH patients showed statistically significant hyperperfusion in the high convexity of the frontal and parietal cortical regions. Importantly, within the INPH group, increased perfusion correlated with cortical thickening in these regions. Additionally, significant hypoperfusion mainly in the ventrolateral frontal cortex, supramarginal gyrus, and temporal cortical regions was observed in the INPH group relative to the control group. However, this hypoperfusion was not associated with cortical thinning. A subgroup analysis of participants that also underwent FDG PET imaging showed that increased (or decreased) cerebral perfusion was associated with increased (or decreased) glucose metabolism in INPH. A distinctive regional relationship between cerebral cortical perfusion and cortical thickness was shown in INPH patients. Our findings suggest distinct pathophysiologic mechanisms of hyperperfusion and hypoperfusion in INPH patients.
Collapse
Affiliation(s)
- Kyunghun Kang
- Department of Neurology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Ki‐Su Park
- Department of Neurosurgery, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Myong Hun Hahm
- Department of Radiology, School of MedicineKyungpook National UniversityDaeguSouth Korea
| | - Jaeil Kim
- School of Computer Science and EngineeringKyungpook National UniversityDaeguSouth Korea
| | - Ho‐Won Lee
- Department of Neurology, School of MedicineKyungpook National UniversityDaeguSouth Korea,Brain Science and Engineering InstituteKyungpook National UniversityDaeguSouth Korea
| | - Chi‐Hun Kim
- Department of NeurologyHallym University Sacred Heart HospitalAnyangSouth Korea
| | - Eunkyeong Yun
- Department of Biomedical EngineeringDaegu Catholic UniversityGyeongsan‐siSouth Korea
| | - Jaehwan Han
- Department of Biomedical EngineeringDaegu Catholic UniversityGyeongsan‐siSouth Korea
| | - Uicheul Yoon
- Department of Biomedical EngineeringDaegu Catholic UniversityGyeongsan‐siSouth Korea
| | - Sang‐Woo Lee
- Department of Nuclear Medicine, School of MedicineKyungpook National UniversityDaeguSouth Korea
| |
Collapse
|
10
|
Assessment of the In Vivo Relationship Between Cerebral Hypometabolism, Tau Deposition, TSPO Expression, and Synaptic Density in a Tauopathy Mouse Model: a Multi-tracer PET Study. Mol Neurobiol 2022; 59:3402-3413. [PMID: 35312967 PMCID: PMC9148291 DOI: 10.1007/s12035-022-02793-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/05/2022] [Indexed: 11/03/2022]
Abstract
Cerebral glucose hypometabolism is a typical hallmark of Alzheimer’s disease (AD), usually associated with ongoing neurodegeneration and neuronal dysfunction. However, underlying pathological processes are not fully understood and reproducibility in animal models is not well established. The aim of the present study was to investigate the regional interrelation of glucose hypometabolism measured by [18F]FDG positron emission tomography (PET) with various molecular targets of AD pathophysiology using the PET tracers [18F]PI-2620 for tau deposition, [18F]DPA-714 for TSPO expression associated with neuroinflammation, and [18F]UCB-H for synaptic density in a transgenic tauopathy mouse model. Seven-month-old rTg4510 mice (n = 8) and non-transgenic littermates (n = 8) were examined in a small animal PET scanner with the tracers listed above. Hypometabolism was observed throughout the forebrain of rTg4510 mice. Tau pathology, increased TSPO expression, and synaptic loss were co-localized in the cortex and hippocampus and correlated with hypometabolism. In the thalamus, however, hypometabolism occurred in the absence of tau-related pathology. Thus, cerebral hypometabolism was associated with two regionally distinct forms of molecular pathology: (1) characteristic neuropathology of the Alzheimer-type including synaptic degeneration and neuroinflammation co-localized with tau deposition in the cerebral cortex, and (2) pathological changes in the thalamus in the absence of other markers of AD pathophysiology, possibly reflecting downstream or remote adaptive processes which may affect functional connectivity. Our study demonstrates the feasibility of a multitracer approach to explore complex interactions of distinct AD-pathomechanisms in vivo in a small animal model. The observations demonstrate that multiple, spatially heterogeneous pathomechanisms can contribute to hypometabolism observed in AD mouse models and they motivate future longitudinal studies as well as the investigation of possibly comparable pathomechanisms in human patients.
Collapse
|
11
|
Matuskova V, Ismail Z, Nikolai T, Markova H, Cechova K, Nedelska Z, Laczo J, Wang M, Hort J, Vyhnalek M. Mild Behavioral Impairment Is Associated With Atrophy of Entorhinal Cortex and Hippocampus in a Memory Clinic Cohort. Front Aging Neurosci 2021; 13:643271. [PMID: 34108874 PMCID: PMC8180573 DOI: 10.3389/fnagi.2021.643271] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/16/2021] [Indexed: 12/22/2022] Open
Abstract
Objectives Mild behavioral impairment (MBI) is a syndrome describing late-onset persistent neuropsychiatric symptoms (NPS) in non-demented older adults. Few studies to date have investigated the associations of MBI with structural brain changes. Our aim was to explore structural correlates of NPS in a non-demented memory clinic sample using the Mild Behavioral Impairment Checklist (MBI-C) that has been developed to measure MBI. Methods One hundred sixteen non-demented older adults from the Czech Brain Aging Study with subjective cognitive concerns were classified as subjective cognitive decline (n = 37) or mild cognitive impairment (n = 79). Participants underwent neurological and neuropsychological examinations and brain magnetic resonance imaging (MRI) (1.5 T). The Czech version of the MBI-C was administered to participants’ informants. Five a priori selected brain regions were measured, namely, thicknesses of the orbitofrontal cortex (OFC), anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and entorhinal cortex (ERC) and volume of the hippocampus (HV), and correlated with MBI-C total and domain scores. Results Entorhinal cortex was associated with MBI-C total score (rS = −0.368, p < 0.001) and with impulse dyscontrol score (rS = −0.284, p = 0.002). HV was associated with decreased motivation (rS = −0.248, p = 0.008) and impulse dyscontrol score (rS = −0.240, p = 0.011). Conclusion Neuropsychiatric symptoms, particularly in the MBI impulse dyscontrol and motivation domains, are associated with medial temporal lobe atrophy in a clinical cohort of non-demented older adults. This study supports earlier involvement of temporal rather than frontal regions in NPS manifestation. Since these regions are typically affected early in the course of Alzheimer’s disease (AD), the MBI-C may potentially help further identify individuals at-risk of developing AD dementia.
Collapse
Affiliation(s)
- Veronika Matuskova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Zahinoor Ismail
- Department of Psychiatry, Cumming School of Medicine, Calgary, AB, Canada.,Department of Clinical Neurosciences, Cumming School of Medicine, Calgary, AB, Canada.,Department of Community Health Sciences, Cumming School of Medicine, Calgary, AB, Canada.,Hotchkiss Brain Institute and O'Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada
| | - Tomas Nikolai
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Hana Markova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Katerina Cechova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Zuzana Nedelska
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jan Laczo
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Meng Wang
- Department of Clinical Neurosciences, Cumming School of Medicine, Calgary, AB, Canada.,Department of Community Health Sciences, Cumming School of Medicine, Calgary, AB, Canada
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
12
|
Iaccarino L, Sala A, Caminiti SP, Presotto L, Perani D. In vivo MRI Structural and PET Metabolic Connectivity Study of Dopamine Pathways in Alzheimer's Disease. J Alzheimers Dis 2021; 75:1003-1016. [PMID: 32390614 DOI: 10.3233/jad-190954] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by an involvement of brain dopamine (DA) circuitry, the presence of which has been associated with emergence of both neuropsychiatric symptoms and cognitive deficits. OBJECTIVE In order to investigate whether and how the DA pathways are involved in the pathophysiology of AD, we assessed by in vivo neuroimaging the structural and metabolic alterations of subcortical and cortical DA pathways and targets. METHODS We included 54 healthy control participants, 53 amyloid-positive subjects with mild cognitive impairment due to AD (MCI-AD), and 60 amyloid-positive patients with probable dementia due to AD (ADD), all with structural 3T MRI and 18F-FDG-PET scans. We assessed MRI-based gray matter reductions in the MCI-AD and ADD groups within an anatomical a priori-defined Nigrostriatal and Mesocorticolimbic DA pathways, followed by 18F-FDG-PET metabolic connectivity analyses to evaluate network-level metabolic connectivity changes. RESULTS We found significant tissue loss in the Mesocorticolimbic over the Nigrostriatal pathway. Atrophy was evident in the ventral striatum, orbitofrontal cortex, and medial temporal lobe structures, and already plateaued in the MCI-AD stage. Degree of atrophy in Mesocorticolimbic regions positively correlated with the severity of depression, anxiety, and apathy in MCI-AD and ADD subgroups. Additionally, we observed significant alterations of metabolic connectivity between the ventral striatum and fronto-cingulate regions in ADD, but not in MCI-AD. There were no metabolic connectivity changes within the Nigrostriatal pathway. CONCLUSION Our cross-sectional data support a clinically-meaningful, yet stage-dependent, involvement of the Mesocorticolimbic system in AD. Longitudinal and clinical correlation studies are needed to further establish the relevance of DA system involvement in AD.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Arianna Sala
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Paola Caminiti
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Presotto
- In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy.,In vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, San Raffaele Hospital, Milan, Italy
| | | |
Collapse
|
13
|
Kunst J, Marecek R, Klobusiakova P, Balazova Z, Anderkova L, Nemcova-Elfmarkova N, Rektorova I. Patterns of Grey Matter Atrophy at Different Stages of Parkinson's and Alzheimer's Diseases and Relation to Cognition. Brain Topogr 2018; 32:142-160. [PMID: 30206799 DOI: 10.1007/s10548-018-0675-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022]
Abstract
Using MRI, a characteristic pattern of grey matter (GM) atrophy has been described in the early stages of Alzheimer's disease (AD); GM patterns at different stages of Parkinson's disease (PD) have been inconclusive. Few studies have directly compared structural changes in groups with mild cognitive impairment (MCI) caused by different pathologies (AD, PD). We used several analytical methods to determine GM changes at different stages of both PD and AD. We also evaluated associations between GM changes and cognitive measurements. Altogether 144 subjects were evaluated: PD with normal cognition (PD-NC; n = 23), PD with MCI (PD-MCI; n = 24), amnestic MCI (aMCI; n = 27), AD (n = 12), and age-matched healthy controls (HC; n = 58). All subjects underwent structural MRI and cognitive examination. GM volumes were analysed using two different techniques: voxel-based morphometry (VBM) and source-based morphometry (SBM), which is a multivariate method. In addition, cortical thickness (CT) was evaluated to assess between-group differences in GM. The cognitive domain z-scores were correlated with GM changes in individual patient groups. GM atrophy in the anterior and posterior cingulate, as measured by VBM, in the temporo-fronto-parietal component, as measured by SBM, and in the posterior cortical regions as well as in the anterior cingulate and frontal region, as measured by CT, differentiated aMCI from HC. Major hippocampal and temporal lobe atrophy (VBM, SBM) and to some extent occipital atrophy (SBM) differentiated AD from aMCI and from HC. Correlations with cognitive deficits were present only in the AD group. PD-MCI showed greater GM atrophy than PD-NC in the orbitofrontal regions (VBM), which was related to memory z-scores, and in the left superior parietal lobule (CT); more widespread limbic and fronto-parieto-occipital neocortical atrophy (all methods) differentiated this group from HC. Only CT revealed subtle GM atrophy in the anterior cingulate, precuneus, and temporal neocortex in PD-NC as compared to HC. None of the methods differentiated PD-MCI from aMCI. Both MCI groups showed distinct limbic and fronto-temporo-parietal neocortical atrophy compared to HC with no specific between-group differences. AD subjects displayed a typical pattern of major temporal lobe atrophy which was associated with deficits in all cognitive domains. VBM and CT were more sensitive than SBM in identifying frontal and posterior cortical atrophy in PD-MCI as compared to PD-NC. Our data support the notion that the results of studies using different analytical methods cannot be compared directly. Only CT measures revealed some subtle differences between HC and PD-NC.
Collapse
Affiliation(s)
- Jonas Kunst
- Medical Faculty, Masaryk University, Brno, Czech Republic.,Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | - Radek Marecek
- Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | - Patricia Klobusiakova
- Medical Faculty, Masaryk University, Brno, Czech Republic.,Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | - Zuzana Balazova
- Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | - Lubomira Anderkova
- Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic
| | | | - Irena Rektorova
- Brain and Mind Research Programme, CEITEC Masaryk University, Brno, Czech Republic. .,Movement Disorders Centre, First Department of Neurology, St Anne's University Hospital, Masaryk University, Pekarska 53, 656 91, Brno, Czech Republic.
| |
Collapse
|