1
|
Fruhwirth V, Berger L, Gattringer T, Fandler-Höfler S, Kneihsl M, Eppinger S, Ropele S, Fink A, Deutschmann H, Reishofer G, Enzinger C, Pinter D. White matter integrity and functional connectivity of the default mode network in acute stroke are associated with cognitive outcome three months post-stroke. J Neurol Sci 2024; 462:123071. [PMID: 38850772 DOI: 10.1016/j.jns.2024.123071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Knowledge about factors that are associated with post-stroke cognitive outcome is important to identify patients with high risk for impairment. We therefore investigated the associations of white matter integrity and functional connectivity (FC) within the brain's default-mode network (DMN) in acute stroke patients with cognitive outcome three months post-stroke. METHODS Patients aged between 18 and 85 years with an acute symptomatic MRI-proven unilateral ischemic middle cerebral artery infarction, who had received reperfusion therapy, were invited to participate in this longitudinal study. All patients underwent brain MRI within 24-72 h after symptom onset, and participated in a neuropsychological assessment three months post-stroke. We performed hierarchical regression analyses to explore the incremental value of baseline white matter integrity and FC beyond demographic, clinical, and macrostructural information for cognitive outcome. RESULTS The study cohort comprised 34 patients (mean age: 64 ± 12 years, 35% female). The initial median National Institutes of Health Stroke Scale (NIHSS) score was 10, and significantly improved three months post-stroke to a median NIHSS = 1 (p < .001). Nonetheless, 50% of patients showed cognitive impairment three months post-stroke. FC of the non-lesioned anterior cingulate cortex of the affected hemisphere explained 15% of incremental variance for processing speed (p = .007), and fractional anisotropy of the non-lesioned cingulum of the affected hemisphere explained 13% of incremental variance for cognitive flexibility (p = .033). CONCLUSIONS White matter integrity and functional MRI markers of the DMN in acute stroke explain incremental variance for post-stroke cognitive outcome beyond demographic, clinical, and macrostructural information.
Collapse
Affiliation(s)
- Viktoria Fruhwirth
- Department of Neurology, Medical University of Graz, Graz, Austria; Department of Neurology, Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Graz, Austria; Institute of Psychology, Department of Biological Psychology, University of Graz, Graz, Austria
| | - Lisa Berger
- Institute of Psychology, Department of Neuropsychology - Neuroimaging, University of Graz, Graz, Austria
| | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria; Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | | | - Markus Kneihsl
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Andreas Fink
- Institute of Psychology, Department of Biological Psychology, University of Graz, Graz, Austria
| | - Hannes Deutschmann
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Gernot Reishofer
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Graz, Austria; Department of Neurology, Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Graz, Austria; Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Daniela Pinter
- Department of Neurology, Medical University of Graz, Graz, Austria; Department of Neurology, Research Unit for Neuronal Plasticity and Repair, Medical University of Graz, Graz, Austria.
| |
Collapse
|
2
|
Siegel JS, Shulman GL, Corbetta M. Mapping correlated neurological deficits after stroke to distributed brain networks. Brain Struct Funct 2022; 227:3173-3187. [PMID: 35881254 PMCID: PMC12057035 DOI: 10.1007/s00429-022-02525-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/12/2022] [Indexed: 11/02/2022]
Abstract
Understanding the relationships between brain organization and behavior is a central goal of neuroscience. Traditional teaching emphasizes that the human cerebrum includes many distinct areas for which damage or dysfunction would lead to a unique and specific behavioral syndrome. This teaching implies that brain areas correspond to encapsulated modules that are specialized for specific cognitive operations. However, empirically, local damage from stroke more often produces one of a small number of clusters of deficits and disrupts brain-wide connectivity in a small number of predictable ways (relative to the vast complexity of behavior and brain connectivity). Behaviors that involve shared operations show correlated deficits following a stroke, consistent with a low-dimensional behavioral space. Because of the networked organization of the brain, local damage from a stroke can result in widespread functional abnormalities, matching the low dimensionality of behavioral deficit. In alignment with this, neurological disease, psychiatric disease, and altered brain states produce behavioral changes that are highly correlated across a range of behaviors. We discuss how known structural and functional network priors in addition to graph theoretical concepts such as modularity and entropy have provided inroads to understanding this more complex relationship between brain and behavior. This model for brain disease has important implications for normal brain-behavior relationships and the treatment of neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Joshua S Siegel
- Departments of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
| | - Gordon L Shulman
- Departments of Neurology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
- Departments of Radiology, Washington University School of Medicine, 4525 Scott Ave St, Louis, MO, 63130, USA
| | - Maurizio Corbetta
- Departments of Neurology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
- Departments of Radiology, Washington University School of Medicine, 4525 Scott Ave St, Louis, MO, 63130, USA
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padua, 35128, Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), 35128, Padua, Italy
| |
Collapse
|
3
|
Ten Brink AF, Biesbroek JM, Oort Q, Visser-Meily JMA, Nijboer TCW. Peripersonal and extrapersonal visuospatial neglect in different frames of reference: A brain lesion-symptom mapping study. Behav Brain Res 2018; 356:504-515. [PMID: 29940260 DOI: 10.1016/j.bbr.2018.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/28/2018] [Accepted: 06/11/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Visuospatial neglect can occur in peripersonal and extrapersonal space. The dorsal visual pathway is hypothesized to be associated with peripersonal, and the ventral pathway with extrapersonal neglect. We aimed to evaluate neural substrates of peripersonal versus extrapersonal neglect, separately for egocentric and allocentric frames of reference. METHODS This was a retrospective study, including stroke patients admitted for inpatient rehabilitation. Approximately 1 month post-stroke onset, computerized cancellation (egocentric) and bisection tasks (egocentric and allocentric) were administered at 30 cm and 120 cm. We collected CT or MRI scans and performed voxel-based lesion-symptom mapping for the cancellation, and subtraction analyses for the line bisection task. RESULTS We included 98 patients for the cancellation and 129 for the bisection analyses. The right parahippocampal gyrus, hippocampus, and thalamus were associated with egocentric peripersonal neglect as measured with cancellation. These areas were also associated with extrapersonal neglect, together with the right superior parietal lobule, angular gyrus, supramarginal gyrus, lateral occipital cortex, planum temporale and superior temporal gyrus. Lesions in the right parietal, temporal and frontal areas were associated with both peripersonal and extrapersonal egocentric neglect as measured with bisection. For allocentric neglect no clear pattern of associated brain regions was observed. DISCUSSION We found right hemispheric anatomical correlates for peripersonal and extrapersonal neglect. However, no brain areas were uniquely associated with peripersonal neglect, meaning we could not conclusively verify the ventral/dorsal hypothesis. Several areas were uniquely associated with egocentric extrapersonal neglect, suggesting that these brain areas can be specifically involved in extrapersonal, but not in peripersonal, attention processes.
Collapse
Affiliation(s)
- Antonia F Ten Brink
- Center of Excellence in Rehabilitation Medicine, Brain Center Rudolf Magnus, University Medical Center Utrecht, and De Hoogstraat Rehabilitation, Utrecht, The Netherlands; Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - J Matthijs Biesbroek
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Quirien Oort
- Center of Excellence in Rehabilitation Medicine, Brain Center Rudolf Magnus, University Medical Center Utrecht, and De Hoogstraat Rehabilitation, Utrecht, The Netherlands
| | - Johanna M A Visser-Meily
- Center of Excellence in Rehabilitation Medicine, Brain Center Rudolf Magnus, University Medical Center Utrecht, and De Hoogstraat Rehabilitation, Utrecht, The Netherlands; Department of Rehabilitation, Physical Therapy Science & Sports, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Tanja C W Nijboer
- Center of Excellence in Rehabilitation Medicine, Brain Center Rudolf Magnus, University Medical Center Utrecht, and De Hoogstraat Rehabilitation, Utrecht, The Netherlands; Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Sperber C, Karnath HO. On the validity of lesion-behaviour mapping methods. Neuropsychologia 2017; 115:17-24. [PMID: 28782546 DOI: 10.1016/j.neuropsychologia.2017.07.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/11/2017] [Accepted: 07/30/2017] [Indexed: 01/13/2023]
Abstract
Brain lesion studies have been criticised for producing partly heterogeneous results; especially the validity of statistical voxel-based lesion-behaviour mapping has been discussed. In fact, planning a lesion-behaviour mapping study is associated with many methodological degrees of freedom. In the present review, we argue that not the lesion-behaviour mapping method itself produces heterogeneous results, but rather its heterogeneous or even erroneous application. We outline which methodological pitfalls and trade-offs can affect the results of lesion analyses, addressing behavioural assessment, recruitment of patients, statistical analysis, neuroimaging, and interpretation with brain atlases. Further, we discuss several methods to actually test the validity of lesion-behaviour mapping. Each of these approaches has specific advantages and disadvantages. In combination, they provide valuable tools to answer most empirical questions related to the validity of lesion-behaviour mapping.
Collapse
Affiliation(s)
- Christoph Sperber
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hans-Otto Karnath
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Psychology, University of South Carolina, Columbia, USA.
| |
Collapse
|