2
|
Chudinova AV, Rossel M, Vergunst A, Le-Masson G, Camu W, Raoul C, Lumbroso S, Mouzat K. Theme 4 In vivo experimental models. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20:160-187. [PMID: 31702459 DOI: 10.1080/21678421.2019.1646992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: In 90% of Amyotrophic Lateral Sclerosis (ALS) cases, the disease is sporadic, the remaining 10% being familial. Many genes have been associated with the disease. The use of next generation sequencing has allowed increasing the number of genes analysed in routine diagnostics. However, this increase raises the issue of genetic variants interpretation within a growing number of ALS-associated-genes. Variant classification is based on a combinatory analysis of multiple factors. Among them, functional analyses provide strong arguments on pathogenicity interpretation.Objectives: We developed a simple animal model, the Zebrafish, for the functional analysis of candidate variants pathogenicity identified by routine genetic testing.Methods: Transient overexpression of different ALS associated genetic variants has been performed by mRNA injection in 1-cell stage zebrafish eggs. Validation of protein overexpression has been done by western blot. Embryos mortality, developmental delay and morphological abnormalities have been assessed within the first two days of development. Cellular phenotype has been investigated by the analysis of axonal length of 2-days old larvae with confocal microscopy. Motor phenotype of 5-days old larvae has been explored by touched-evoked response assay.Results: The model has been validated by the analysis of well-described ALS mutations, SOD1-Gly93Ala and OPTN Glu478Gly. Overexpression of this mutated protein was shown to provoke a shortening of axons and a premature axonal branching, as well as an impairment of motor performances as expected. We did not observe these aberrations in SOD1-WT injected fishes. Two candidate variants observed in ALS-patients have been explored with our model: SOD1 NM_000454.4:c.400_402del, p.Glu134del and OPTN NM_021980.4:c.1475T > G, p. Leu492Arg. Overexpression of both variants induced morphological abnormalities and motor impairment, suggesting a pathogenic involvement of these variants in ALS-patients.Discussion and conclusions: We developed for the first time a simple animal model, the Zebrafish, useful for the functional analysis of variant pathogenicity in order to assist ALS molecular diagnosis. Our model has been used to assess the pathogenicity of SOD1 and OPTN candidate variants, allowing to improve genetic testing interpretation.
Collapse
Affiliation(s)
- Aleksandra V Chudinova
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Nîmes et Université de Montpellier, Nimes, France.,INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France
| | - Mireille Rossel
- 3MMDN, Univ. Montpellier, EPHE, INSERM, U1198, PSL Research University, Montpellier, France
| | | | - Gwendal Le-Masson
- Department of Neurology, Nerve-Muscle Unit and Centre de Référence Des Pathologies Neuromusculaires CHU Bordeaux (Groupe Hospitalier Pellegrin), University of Bordeaux, Bordeaux, France
| | - William Camu
- INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France.,ALS Center, Département de Neurologie, CHU Gui de Chauliac, Montpellier, France
| | - Cédric Raoul
- INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France
| | - Serge Lumbroso
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Nîmes et Université de Montpellier, Nimes, France.,INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France
| | - Kevin Mouzat
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Nîmes et Université de Montpellier, Nimes, France.,INSERM UMR1051, Institut des Neurosciences de Montpellier, Hôpital Saint Eloi, Montpellier, France
| |
Collapse
|
3
|
Nizovtseva EV, Todolli S, Olson WK, Studitsky VM. Towards quantitative analysis of gene regulation by enhancers. Epigenomics 2017; 9:1219-1231. [PMID: 28799793 DOI: 10.2217/epi-2017-0061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Enhancers are regulatory DNA sequences that can activate transcription over large distances. Recent studies have revealed the widespread role of distant activation in eukaryotic gene regulation and in the development of various human diseases, including cancer. Here we review recent progress in the field, focusing on new experimental and computational approaches that quantify the role of chromatin structure and dynamics during enhancer-promoter interactions in vitro and in vivo.
Collapse
Affiliation(s)
- Ekaterina V Nizovtseva
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA
| | - Stefjord Todolli
- Department of Chemistry & Chemical Biology, Center for Quantitative Biology, Rutgers, the State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854, USA
| | - Wilma K Olson
- Department of Chemistry & Chemical Biology, Center for Quantitative Biology, Rutgers, the State University of New Jersey, 610 Taylor Rd., Piscataway, NJ 08854, USA
| | - Vasily M Studitsky
- Cancer Epigenetics Program, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA 19422, USA.,Biology Faculty, Moscow State University, Moscow 119991, Russia.,Laboratory of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Enhancers and chromatin structures: regulatory hubs in gene expression and diseases. Biosci Rep 2017; 37:BSR20160183. [PMID: 28351896 PMCID: PMC5408663 DOI: 10.1042/bsr20160183] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/23/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
Gene expression requires successful communication between enhancer and promoter regions, whose activities are regulated by a variety of factors and associated with distinct chromatin structures; in addition, functionally related genes and their regulatory repertoire tend to be arranged in the same subchromosomal regulatory domains. In this review, we discuss the importance of enhancers, especially clusters of enhancers (such as super-enhancers), as key regulatory hubs to integrate environmental cues and encode spatiotemporal instructions for genome expression, which are critical for a variety of biological processes governing mammalian development. Furthermore, we emphasize that the enhancer–promoter interaction landscape provides a critical context to understand the aetiologies and mechanisms behind numerous complex human diseases and provides new avenues for effective transcription-based interventions.
Collapse
|