1
|
Gummadi R, Nori LP, Pindiprolu SKSS, Dasari N, Ahmad Z, Km M. Nanomaterials for delivery of drugs and genes to disrupt notch signaling pathway in breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04082-2. [PMID: 40392305 DOI: 10.1007/s00210-025-04082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/20/2025] [Indexed: 05/22/2025]
Abstract
Breast cancer, marked by considerable heterogeneity and intricate molecular subgroups, poses substantial obstacles to therapy. Epithelial-mesenchymal transition (EMT) and the existence of tumor-initiating cells (TICs) facilitate treatment resistance, metastasis, and worse prognosis. The Notch signaling system has garnered significant interest for its involvement in promoting epithelial-mesenchymal transition (EMT), maintaining tumor-initiating cells (TIC), and facilitating cancer progression, especially in truculent subtypes such as triple-negative breast cancer (TNBC). Targeting the Notch system represents a promising therapeutic strategy; nevertheless, traditional inhibitors frequently encounter obstacles, including inadequate selectivity and bioavailability. Nanocarrier-based drug delivery systems provide novel therapeutic strategies to these difficulties by augmenting the targeted delivery of Notch inhibitors and enhancing therapeutic efficacy. Solid lipid nanoparticles (SLNs), polymeric nanoparticles, lipid-based nanocarriers, and micelles exhibit promise in delivering Notch inhibitors to neoplastic cells, altering the Notch signaling pathway, and surmounting drug resistance. This review examines recent breakthroughs in nanocarrier systems aimed at the Notch signaling pathway in breast cancer, highlighting the therapeutic potential of integrating nanomedicine with Notch inhibition to disrupt epithelial-mesenchymal transition (EMT), tumor-initiating cells (TICs), and metastasis, thereby enhancing clinical outcomes.
Collapse
Affiliation(s)
- Ramakrishna Gummadi
- School of Pharmacy, Aditya University, Surampalem, 533437, India
- Department of Pharmaceutics, Shri Vishnu College of Pharmacy, Bhimavaram, India
| | | | | | - Nagasen Dasari
- School of Pharmacy, Aditya University, Surampalem, 533437, India
| | - Zubair Ahmad
- Centre of Bee Research and Its Products, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Applied College, Mahala Campus, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Muhasina Km
- Department of Pharmaceutical Analysis, Prime College of Pharmacy, Erattayal, Kodumbu, Palakkad, Kerala, 678551, India
| |
Collapse
|
2
|
Hussan SS, Ali MS, Fatima M, Altaf M, Sadaf S. Epigenetically dysregulated NOTCH-Delta-HES signaling cascade can serve as a subtype classifier for acute lymphoblastic leukemia. Ann Hematol 2024; 103:511-523. [PMID: 37922005 DOI: 10.1007/s00277-023-05515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/15/2023] [Indexed: 11/05/2023]
Abstract
The NOTCH-Delta-HES signaling cascade is regarded as a double-edged sword owing to its dual tumor-suppressor and oncogenic roles, in different cellular environments. In the T-cells, it supports leukemogenesis by promoting differentiation while in B-cells, it controls leukemogenesis by inhibiting early differentiation/inducing growth arrest in the lead to apoptosis. The present study was undertaken to assess if this bi-faceted behavior of NOTCH family can be exploited as a diagnostic biomarker or subtype classifier of acute lymphoblastic leukemia (ALL). In this pursuit, expression of seven NOTCH cascade genes was analyzed in bone marrow (BM) biopsy and blood plasma (BP) of pediatric ALL patients using quantitative PCR (qPCR). Further, promoter DNA methylation status of the differentially expressed genes (DEGs) was assessed by methylation-specific qMSP and validated through bisulphite amplicon sequencing. Whereas hypermethylation of JAG1, DLL1, and HES-2, HES-4, and HES-5 was observed in all patients, NOTCH3 was found hypermethylated specifically in Pre-B ALL cases while DLL4 in Pre-T ALL cases. Aberrant DNA methylation strongly correlated with downregulated gene expression, which restored at complete remission stage as observed in "follow-up/post-treatment" subjects. The subtype-specific ROC curve analysis and Kaplan-Meier survival analysis predicted a clinically applicable diagnostic and prognostic potential of the panel. Moreover, the logistic regression model (Pre-B vs Pre-T ALL) was found to be the best-fitted model (McFadden's R2 = 0.28, F1 measure = 0.99). Whether analyzed in BM-aspirates or blood plasma, the NOTCH epigenetic signatures displayed comparable results (p < 0.001), advocating the potential of NOTCH-Delta-HES cascade, as a subtype classifier, in minimally invasive diagnosis of ALL.
Collapse
Affiliation(s)
- Syeda Saliah Hussan
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Shrafat Ali
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Mishal Fatima
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Memoona Altaf
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Saima Sadaf
- Biopharmaceuticals and Biomarkers Discovery Lab., School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
3
|
Choo Z, Loh AHP, Chen ZX. Destined to Die: Apoptosis and Pediatric Cancers. Cancers (Basel) 2019; 11:cancers11111623. [PMID: 31652776 PMCID: PMC6893512 DOI: 10.3390/cancers11111623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 01/10/2023] Open
Abstract
Apoptosis (programmed cell death) is a systematic and coordinated cellular process that occurs in physiological and pathophysiological conditions. Sidestepping or resisting apoptosis is a distinct characteristic of human cancers including childhood malignancies. This review dissects the apoptosis pathways implicated in pediatric tumors. Understanding these pathways not only unraveled key molecules that may serve as potential targets for drug discovery, but also molecular nodes that integrate with other signaling networks involved in processes such as development. This review presents current knowledge of the complex regulatory system that governs apoptosis with respect to other processes in pediatric cancers, so that fresh insights may be derived regarding treatment resistance or for more effective treatment options.
Collapse
Affiliation(s)
- Zhang'e Choo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| | - Amos Hong Pheng Loh
- VIVA-KKH Pediatric Brain and Solid Tumor Program, KK Women's and Children's Hospital, Singapore 229899, Singapore.
- Department of Pediatric Surgery, KK Women's and Children's Hospital, Singapore 229899, Singapore.
| | - Zhi Xiong Chen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
- VIVA-KKH Pediatric Brain and Solid Tumor Program, KK Women's and Children's Hospital, Singapore 229899, Singapore.
- National University Cancer Institute, Singapore, Singapore 119074, Singapore.
| |
Collapse
|
4
|
Long W, Zhao W, Ning B, Huang J, Chu J, Li L, Ma Q, Xing C, Wang HY, Liu Q, Wang RF. PHF20 collaborates with PARP1 to promote stemness and aggressiveness of neuroblastoma cells through activation of SOX2 and OCT4. J Mol Cell Biol 2019; 10:147-160. [PMID: 29452418 DOI: 10.1093/jmcb/mjy007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/09/2018] [Indexed: 12/22/2022] Open
Abstract
The differentiation status of neuroblastoma (NB) strongly correlates with its clinical outcomes; however, the molecular mechanisms driving maintenance of stemness and differentiation remain poorly understood. Here, we show that plant homeodomain finger-containing protein 20 (PHF20) functions as a critical epigenetic regulator in sustaining stem cell-like phenotype of NB by using CRISPR/Cas9-based targeted knockout (KO) for high-throughput screening of gene function in NB cell differentiation. The expression of PHF20 in NB was significantly associated with high aggressiveness of the tumor and poor outcomes for NB patients. Deletion of PHF20 inhibited NB cell proliferation, invasive migration, and stem cell-like traits. Mechanistically, PHF20 interacts with poly(ADP-ribose) polymerase 1 (PARP1) and directly binds to promoter regions of octamer-binding transcription factor 4 (OCT4) and sex determining region Y-box 2 (SOX2) to modulate a histone mark associated with active transcription, trimethylation of lysine 4 on histone H3 protein subunit (H3K4me3). Overexpression of OCT4 and SOX2 restored growth and progression of PHF20 KO tumor cells. Consistently, OCT4 and SOX2 protein levels in clinical NB specimens were positively correlated with PHF20 expression. Our results establish PHF20 as a key driver of NB stem cell-like properties and aggressive behaviors, with implications for prognosis and therapy.
Collapse
Affiliation(s)
- Wenyong Long
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Wei Zhao
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA.,Key Laboratory of Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo Ning
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA.,Institute Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jing Huang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Junjun Chu
- Key Laboratory of Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Linfeng Li
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Qianquan Ma
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha 410008, China.,Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Changsheng Xing
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Helen Y Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Qing Liu
- Department of Neurosurgery in Xiangya Hospital, Central South University, Changsha 410008, China
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.,Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Lu Q, Lu M, Li D, Zhang S. MicroRNA‑34b promotes proliferation, migration and invasion of Ewing's sarcoma cells by downregulating Notch1. Mol Med Rep 2018; 18:3577-3588. [PMID: 30106161 PMCID: PMC6131584 DOI: 10.3892/mmr.2018.9365] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/23/2018] [Indexed: 01/15/2023] Open
Abstract
Ewing's sarcoma is the second most frequent bone and soft tissue sarcoma, which is commonly driven by the Ewing's sarcoma breakpoint region 1-friend leukemia integration 1 transcription factor (EWS-FLI1) fusion gene. Since microRNAs (miRs) can act as either oncogenes or tumor suppressor genes in human cancer, and miR-34b has been reported to act as a tumor suppressor, the role of miR-34b in Ewing's sarcoma was investigated in the present study. The results demonstrated that miR-34b expression levels were higher in tumor samples compared within normal tissue samples. Notably, miR-34b expression levels were significantly higher in EWS-FLI1-positive samples compared within EWS-FLI1-negative samples. The effects of miR-34b expression on cell proliferation, migration and invasion were also examined. miR-34b expression was inhibited using small interfering (si)RNA targeting the fusion gene. Transfection of a miR-34b precursor sequence into siRNA-treated tumor cells resulted in a significant increase in cell growth, migration and invasion compared within the control group. In addition, the adhesive ability was increased in the Ewing's sarcoma cell line RD-ES, but not A673, following miR-34b upregulation. Conversely, downregulation of miR-34b expression led to a significant decrease in cell growth, migration and invasion. Notch has previously been reported to serve either oncogenic or tumor suppressive roles in human cancer. The results indicated that Notch1 and its target genes, Hes family BHLH transcription factor 1 and Hes-related family BHLH transcription factor with YRPW motif 1, were suppressed by miR-34b directly In conclusion, EWS-FLI1 may modulate miR-34b expression directly or indirectly, and miR-34b potentially has an oncogenic role in Ewing's sarcoma by downregulating Notch1.
Collapse
Affiliation(s)
- Qunshan Lu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Mei Lu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dong Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shuai Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
6
|
García-Heredia JM, Verdugo Sivianes EM, Lucena-Cacace A, Molina-Pinelo S, Carnero A. Numb-like (NumbL) downregulation increases tumorigenicity, cancer stem cell-like properties and resistance to chemotherapy. Oncotarget 2018; 7:63611-63628. [PMID: 27613838 PMCID: PMC5325389 DOI: 10.18632/oncotarget.11553] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/12/2016] [Indexed: 12/23/2022] Open
Abstract
NumbL, or Numb-like, is a close homologue of Numb, and is part of an evolutionary conserved protein family implicated in some important cellular processes. Numb is a protein involved in cell development, in cell adhesion and migration, in asymmetric cell division, and in targeting proteins for endocytosis and ubiquitination. NumbL exhibits some overlapping functions with Numb, but its role in tumorigenesis is not fully known. Here we showed that the downregulation of NumbL alone is sufficient to increase NICD nuclear translocation and induce Notch pathway activation. Furthermore, NumbL downregulation increases epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC)-related gene transcripts and CSC-like phenotypes, including an increase in the CSC-like pool. These data suggest that NumbL can act independently as a tumor suppressor gene. Furthermore, an absence of NumbL induces chemoresistance in tumor cells. An analysis of human tumors indicates that NumbL is downregulated in a variable percentage of human tumors, with lower levels of this gene correlated with worse prognosis in colon, breast and lung tumors. Therefore, NumbL can act as an independent tumor suppressor inhibiting the Notch pathway and regulating the cancer stem cell pool.
Collapse
Affiliation(s)
- José M García-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain.,Department of Vegetal Biochemistry and Molecular Biology, University of Seville, Seville, Spain
| | - Eva M Verdugo Sivianes
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Antonio Lucena-Cacace
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| | - Sonia Molina-Pinelo
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain.,Present address: Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Seville, Spain
| |
Collapse
|
7
|
Abstract
NUMB, and its close homologue NUMBL, behave as tumor suppressor genes by regulating the Notch pathway. The downregulation of these genes in tumors is common, allowing aberrant Notch pathway activation and tumor progression. However, some known differences between NUMB and NUMBL have raised unanswered questions regarding the redundancy and/or combined regulation of the Notch pathway by these genes during the tumorigenic process. We have found that NUMB and NUMBL exhibit mutual exclusivity in human tumors, suggesting that the associated tumor suppressor role is regulated by only one of the two proteins in a specific cell, avoiding duplicate signaling and simplifying the regulatory network. We have also found differences in gene expression due to NUMB or NUMBL downregulation. These differences in gene regulation extend to pathways, such as WNT or Hedgehog. In addition to these differences, the downregulation of either gene triggers a cancer stem cell-like related phenotype. These results show the importance of both genes as an intersection with different effects over cancer stem cell signaling pathways.
Collapse
|
8
|
Garcia-Heredia JM, Lucena-Cacace A, Verdugo-Sivianes EM, Pérez M, Carnero A. The Cargo Protein MAP17 (PDZK1IP1) Regulates the Cancer Stem Cell Pool Activating the Notch Pathway by Abducting NUMB. Clin Cancer Res 2017; 23:3871-3883. [PMID: 28153862 DOI: 10.1158/1078-0432.ccr-16-2358] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Cancer stem cells (CSC) are self-renewing tumor cells, with the ability to generate diverse differentiated tumor cell subpopulations. They differ from normal stem cells in the deregulation of the mechanisms that normally control stem cell physiology. CSCs are the origin of metastasis and highly resistant to therapy. Therefore, the understanding of the CSC origin and deregulated pathways is important for tumor control.Experimental Design: We have included experiments in vitro, in cell lines and tumors of different origins. We have used patient-derived xenografts (PDX) and public transcriptomic databases of human tumors.Results: MAP17 (PDZKIP1), a small cargo protein overexpressed in tumors, interacts with NUMB through the PDZ-binding domain activating the Notch pathway, leading to an increase in stem cell factors and cancer-initiating-like cells. Identical behavior was mimicked by inhibiting NUMB. Conversely, MAP17 downregulation in a tumor cell line constitutively expressing this gene led to Notch pathway inactivation and a marked reduction of stemness. In PDX models, MAP17 levels directly correlated with tumorsphere formation capability. Finally, in human colon, breast, or lung there is a strong correlation of MAP17 expression with a signature of Notch and stem cell genes.Conclusions: MAP17 overexpression activates Notch pathway by sequestering NUMB. High levels of MAP17 correlated with tumorsphere formation and Notch and Stem gene transcription. Its direct modification causes direct alteration of tumorsphere number and Notch and Stem pathway transcription. This defines a new mechanism of Notch pathway activation and Stem cell pool increase that may be active in a large percentage of tumors. Clin Cancer Res; 23(14); 3871-83. ©2017 AACR.
Collapse
Affiliation(s)
- Jose Manuel Garcia-Heredia
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocio/Universidad de Sevilla/Consejo Superior de Investigaciones Cientificas, Seville, Spain
- Department of Vegetal Biochemistry and Molecular Biology, University of Seville, Seville, Spain
- CIBER de Cancer, Seville, Spain
| | - Antonio Lucena-Cacace
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocio/Universidad de Sevilla/Consejo Superior de Investigaciones Cientificas, Seville, Spain
- CIBER de Cancer, Seville, Spain
| | - Eva M Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocio/Universidad de Sevilla/Consejo Superior de Investigaciones Cientificas, Seville, Spain
- CIBER de Cancer, Seville, Spain
| | - Marco Pérez
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocio/Universidad de Sevilla/Consejo Superior de Investigaciones Cientificas, Seville, Spain
- CIBER de Cancer, Seville, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS/Hospital Universitario Virgen del Rocio/Universidad de Sevilla/Consejo Superior de Investigaciones Cientificas, Seville, Spain.
- CIBER de Cancer, Seville, Spain
| |
Collapse
|
9
|
JARID1B Expression Plays a Critical Role in Chemoresistance and Stem Cell-Like Phenotype of Neuroblastoma Cells. PLoS One 2015; 10:e0125343. [PMID: 25951238 PMCID: PMC4423965 DOI: 10.1371/journal.pone.0125343] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/14/2015] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is a common neural crest-derived extracranial solid cancer in children. Among all childhood cancers, NB causes devastating loss of young lives as it accounts for 15% of childhood cancer mortality. Neuroblastoma, especially high-risk stage 4 NB with MYCN amplification has limited treatment options and associated with poor prognosis. This necessitates the need for novel effective therapeutic strategy. JARID1B, also known as KDM5B, is a histone lysine demethylase, identified as an oncogene in many cancer types. Clinical data obtained from freely-accessible databases show a negative correlation between JARID1B expression and survival rates. Here, we demonstrated for the first time the role of JARID1B in the enhancement of stem cell-like activities and drug resistance in NB cells. We showed that JARID1B may be overexpressed in either MYCN amplification (SK-N-BE(2)) or MYCN-non-amplified (SK-N-SH and SK-N-FI) cell lines. JARID1B expression was found enriched in tumor spheres of SK-N-BE(2) and SK-N-DZ. Moreover, SK-N-BE(2) spheroids were more resistant to chemotherapeutics as compared to parental cells. In addition, we demonstrated that JARID1B-silenced cells acquired a decreased propensity for tumor invasion and tumorsphere formation, but increased sensitivity to cisplatin treatment. Mechanistically, reduced JARID1B expression led to the downregulation of Notch/Jagged signaling. Collectively, we provided evidence that JARID1B via modulation of stemness-related signaling is a putative novel therapeutic target for treating malignant NB.
Collapse
|
10
|
Fiaschetti G, Schroeder C, Castelletti D, Arcaro A, Westermann F, Baumgartner M, Shalaby T, Grotzer MA. NOTCH ligands JAG1 and JAG2 as critical pro-survival factors in childhood medulloblastoma. Acta Neuropathol Commun 2014; 2:39. [PMID: 24708907 PMCID: PMC4023630 DOI: 10.1186/2051-5960-2-39] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 11/14/2022] Open
Abstract
Medulloblastoma (MB), the most common pediatric malignant brain cancer, typically arises as pathological result of deregulated developmental pathways, including the NOTCH signaling cascade. Unlike the evidence supporting a role for NOTCH receptors in MB development, the pathological functions of NOTCH ligands remain largely unexplored. By examining the expression in large cohorts of MB primary tumors, and in established in vitro MB models, this research study demonstrates that MB cells bear abnormal levels of distinct NOTCH ligands. We explored the potential association between NOTCH ligands and the clinical outcome of MB patients, and investigated the rational of inhibiting NOTCH signaling by targeting specific ligands to ultimately provide therapeutic benefits in MB. The research revealed a significant over-expression of ligand JAG1 in the vast majority of MBs, and proved that JAG1 mediates pro-proliferative signals via activation of NOTCH2 receptor and induction of HES1 expression, thus representing an attractive therapeutic target. Furthermore, we could identify a clinically relevant association between ligand JAG2 and the oncogene MYC, specific for MYC-driven Group 3 MB cases. We describe for the first time a mechanistic link between the oncogene MYC and NOTCH pathway in MB, by identifying JAG2 as MYC target, and by showing that MB cells acquire induced expression of JAG2 through MYC-induced transcriptional activation. Finally, the positive correlation of MYC and JAG2 also with aggressive anaplastic tumors and highly metastatic MB stages suggested that high JAG2 expression may be useful as additional marker to identify aggressive MBs.
Collapse
|
11
|
Espinoza I, Pochampally R, Xing F, Watabe K, Miele L. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther 2013; 6:1249-59. [PMID: 24043949 PMCID: PMC3772757 DOI: 10.2147/ott.s36162] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Notch signaling is an evolutionarily conserved pathway involved in cell fate control during development, stem cell self-renewal, and postnatal tissue differentiation. Roles for Notch in carcinogenesis, the biology of cancer stem cells, tumor angiogenesis, and epithelial-to-mesenchymal transition (EMT) have been reported. This review describes the role of Notch in the "stemness" program in cancer cells and in metastases, together with a brief update on the Notch inhibitors currently under investigation in oncology. These agents may be useful in targeting cancer stem cells and to reverse the EMT process.
Collapse
Affiliation(s)
- Ingrid Espinoza
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - Radhika Pochampally
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fei Xing
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kounosuke Watabe
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Microbiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lucio Miele
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
12
|
Abstract
Notch signaling is an evolutionarily conserved cell signaling pathway involved in cell fate during development, stem cell renewal and differentiation in postnatal tissues. Roles for Notch in carcinogenesis, in the biology of cancer stem cells and tumor angiogenesis have been reported. These features identify Notch as a potential therapeutic target in oncology. Based on the molecular structure of Notch receptor, Notch ligands and Notch activators, a set of Notch pathway inhibitors have been developed. Most of these inhibitors had shown anti-tumor effects in preclinical studies. At the same time, the combinatorial effect of these inhibitors with current chemotherapeutical drugs is still under study in different clinical trials. In this review, we describe the basics of Notch signaling and the role of Notch in normal and cancer stem cells as a logic way to develop different Notch inhibitors and their current stage of progress for cancer patient's treatment.
Collapse
Affiliation(s)
- Ingrid Espinoza
- University of Mississippi, Cancer Institute, Jackson, Mississippi
| | - Lucio Miele
- University of Mississippi, Cancer Institute, Jackson, Mississippi
| |
Collapse
|
13
|
Epigenetic inactivation of Notch-Hes pathway in human B-cell acute lymphoblastic leukemia. PLoS One 2013; 8:e61807. [PMID: 23637910 PMCID: PMC3637323 DOI: 10.1371/journal.pone.0061807] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/19/2013] [Indexed: 12/11/2022] Open
Abstract
The Notch pathway can have both oncogenic and tumor suppressor roles, depending on cell context. For example, Notch signaling promotes T cell differentiation and is leukemogenic in T cells, whereas it inhibits early B cell differentiation and acts as a tumor suppressor in B cell leukemia where it induces growth arrest and apoptosis. The regulatory mechanisms that contribute to these opposing roles are not understood. Aberrant promoter DNA methylation and histone modifications are associated with silencing of tumor suppressor genes and have been implicated in leukemogenesis. Using methylated CpG island amplification (MCA)/DNA promoter microarray, we identified Notch3 and Hes5 as hypermethylated in human B cell acute lymphoblastic leukemia (ALL). We investigated the methylation status of other Notch pathway genes by bisulfite pyrosequencing. Notch3, JAG1, Hes2, Hes4 and Hes5 were frequently hypermethylated in B leukemia cell lines and primary B-ALL, in contrast to T-ALL cell lines and patient samples. Aberrant methylation of Notch3 and Hes5 in B-ALL was associated with gene silencing and was accompanied by decrease of H3K4 trimethylation and H3K9 acetylation and gain of H3K9 trimethylation and H3K27 trimethylation. 5-aza-2′-deoxycytidine treatment restored Hes5 expression and decreased promoter hypermethylation in most leukemia cell lines and primary B-ALL samples. Restoration of Hes5 expression by lentiviral transduction resulted in growth arrest and apoptosis in Hes5 negative B-ALL cells but not in Hes5 expressing T-ALL cells. These data suggest that epigenetic modifications are implicated in silencing of tumor suppressor of Notch/Hes pathway in B-ALL.
Collapse
|
14
|
Kannan S, Sutphin RM, Hall MG, Golfman LS, Fang W, Nolo RM, Akers LJ, Hammitt RA, McMurray JS, Kornblau SM, Melnick AM, Figueroa ME, Zweidler-McKay PA. Notch activation inhibits AML growth and survival: a potential therapeutic approach. ACTA ACUST UNITED AC 2013; 210:321-37. [PMID: 23359069 PMCID: PMC3570106 DOI: 10.1084/jem.20121527] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activating Notch with a Notch agonist peptide induces apoptosis in AML patient samples. Although aberrant Notch activation contributes to leukemogenesis in T cells, its role in acute myelogenous leukemia (AML) remains unclear. Here, we report that human AML samples have robust expression of Notch receptors; however, Notch receptor activation and expression of downstream Notch targets are remarkably low, suggesting that Notch is present but not constitutively activated in human AML. The functional role of these Notch receptors in AML is not known. Induced activation through any of the Notch receptors (Notch1–4), or through the Notch target Hairy/Enhancer of Split 1 (HES1), consistently leads to AML growth arrest and caspase-dependent apoptosis, which are associated with B cell lymphoma 2 (BCL2) loss and enhanced p53/p21 expression. These effects were dependent on the HES1 repressor domain and were rescued through reexpression of BCL2. Importantly, activated Notch1, Notch2, and HES1 all led to inhibited AML growth in vivo, and Notch inhibition via dnMAML enhanced proliferation in vivo, thus revealing the physiological inhibition of AML growth in vivo in response to Notch signaling. As a novel therapeutic approach, we used a Notch agonist peptide that led to significant apoptosis in AML patient samples. In conclusion, we report consistent Notch-mediated growth arrest and apoptosis in human AML, and propose the development of Notch agonists as a potential therapeutic approach in AML.
Collapse
Affiliation(s)
- Sankaranarayanan Kannan
- Division of Pediatrics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yu X, Zhang W, Ning Q, Luo X. MicroRNA-34a inhibits human brain glioma cell growth by down-regulation of Notch1. ACTA ACUST UNITED AC 2012; 32:370-374. [PMID: 22684560 DOI: 10.1007/s11596-012-0064-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Indexed: 12/20/2022]
Abstract
The effects of microRNA-34a (miR-34a)-regulated Notch1 gene on the proliferation and apoptosis of the human glioma cell line U87 were investigated in this study. The U87 cells were divided into miR-34a mimics, negative control, mock transfection and blank control groups in terms of different treatments. In miR-34a mimics group, human U87 glioma cells were transfected with miR-34a mimics by using lipofectamine 2000. The cells transfected with nonsense microRNA were set up as negative control group. Those treated with lipofectamine 2000 only were designated to the mock tranfection group. In the blank control group, the cells were cultured routinely and no treatment was given. The expression of miR-34a and Notch1 was detected by using real-time RT-PCR. Western blotting was employed to monitor the change in Notch1 protein. Cell proliferation and apoptosis were measured by CCK-8 and flow cytometry. The results showed that the proliferative ability of U87 cells was significantly reduced and the apoptotic cells increased in miR-34a mimics group relative to control groups. The expression of miR-34a was significantly up-regulated in mimics group as compared with control groups (P<0.05). Furthermore, Notch1 protein levels were significantly decreased in miR-34a mimics group when compared with control groups (P<0.05), but the mRNA expression of Notch1 showed no significant difference among these groups. It was concluded that miR-34a may suppress the proliferation and induce apoptosis of U87 cells by decreasing the expression of target gene Notch1, suggesting that miR-34a may become a promising gene therapeutic target for brain glioma.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wendi Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Zage PE, Nolo R, Fang W, Stewart J, Garcia-Manero G, Zweidler-McKay PA. Notch pathway activation induces neuroblastoma tumor cell growth arrest. Pediatr Blood Cancer 2012; 58:682-9. [PMID: 21744479 PMCID: PMC3264695 DOI: 10.1002/pbc.23202] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 04/21/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Notch pathway signaling has critical roles in differentiation, proliferation, and survival, and has oncogenic or tumor suppressor effects in a variety of malignancies. The goal of this study was to evaluate the effects of Notch activation on human neuroblastoma cells. PROCEDURE Quantitative RT-PCR, immunoblots, and immunohistochemistry were used to determine the expression of Notch receptors (Notch1-4), cleaved Notch1 (ICN1), and downstream targets (HES1-5) in human neuroblastoma cell lines and patient tumor samples. Notch pathway signaling was induced using intracellular Notch (ICN1-3) and HES gene constructs or direct culture on Notch ligands. Quantitative methylation-specific PCR was used to quantify methylation of the HES gene promoters, and the effects of treatment with decitabine were measured. RESULTS Neuroblastoma cells express varying levels of Notch receptors and low levels of HES genes at baseline. However, no endogenous activation of the Notch pathway was detected in neuroblastoma cell lines or patient tumor samples. Expression of activated Notch intracellular domains and HES gene products led to growth arrest. The HES2 and HES5 gene promoters were found to be heavily methylated in most neuroblastoma lines, and HES gene expression could be induced through treatment with decitabine. CONCLUSIONS We report that neuroblastoma cell lines express multiple Notch receptors, which are inactive at baseline. Activation of the Notch pathway via ligand binding consistently resulted in growth arrest. HES gene expression appears to be regulated epigenetically and could be induced with decitabine. These findings support a tumor suppressor role for Notch signaling in neuroblastoma.
Collapse
Affiliation(s)
- Peter E Zage
- Division of Pediatrics, Children's Cancer Hospital, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
17
|
Garcia A, Kandel JJ. Notch: a key regulator of tumor angiogenesis and metastasis. Histol Histopathol 2012; 27:151-6. [PMID: 22207549 DOI: 10.14670/hh-27.151] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Notch signaling pathway is critical for many developmental processes including physiologic angiogenesis. Notch is also implicated in having a key role in tumor angiogenesis. Preclinical and clinical experience with anti-angiogenic strategies indicates that they may be limited by tumor resistance and recurrence, which has led to the search for alternative angiogenic treatment strategies. Significant progress has been made in shedding light on the complex mechanisms by which Notch signaling can influence tumor growth by disrupting vasculature in an array of tumor models (Ridgway et al., 2006). These results have led to the consideration of Notch as an attractive target to block tumor angiogenesis and inhibit growth. However, studies of inhibition of Notch signaling in different tumor models have uncovered similarly variable results, and some unexpected adverse effects. The ability of Notch to function in a context-dependent manner as a determinant of cell fate, a tumor suppressor, and an oncogene may partially explain the complexity in interpreted the role of Notch signaling inhibitors in preclinical tumor studies. In addition, Notch may also play an important role in metastasis via its direct effects on the vasculature and by modulation of epithelial-mesenchymal transition in tumor cells. Here we present a current understanding of Notch signaling in tumor angiogenesis, and discuss recent work on the role of Notch in tumor metastatic progression.
Collapse
Affiliation(s)
- Alejandro Garcia
- Division of Pediatric Surgery, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| | | |
Collapse
|
18
|
Falix FA, Aronson DC, Lamers WH, Gaemers IC. Possible roles of DLK1 in the Notch pathway during development and disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:988-95. [PMID: 22353464 DOI: 10.1016/j.bbadis.2012.02.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/18/2012] [Accepted: 02/06/2012] [Indexed: 12/13/2022]
Abstract
The Delta-Notch pathway is an evolutionarily conserved signaling pathway which controls a broad range of developmental processes including cell fate determination, terminal differentiation and proliferation. In mammals, four Notch receptors (NOTCH1-4) and five activating canonical ligands (JAGGED1, JAGGED2, DLL1, DLL3 and DLL4) have been described. The precise function of noncanonical Notch ligands remains unclear. Delta-like 1 homolog (DLK1), the best studied noncanonical Notch ligand, has been shown to act as an inhibitor of Notch signaling in vitro, but its function in vivo is poorly understood. In this review we summarize Notch signaling during development and highlight recent studies in DLK1expression that reveal new insights into its function.
Collapse
Affiliation(s)
- Farah A Falix
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
19
|
Pancewicz J, Nicot C. Current views on the role of Notch signaling and the pathogenesis of human leukemia. BMC Cancer 2011; 11:502. [PMID: 22128846 PMCID: PMC3262490 DOI: 10.1186/1471-2407-11-502] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 11/30/2011] [Indexed: 12/28/2022] Open
Abstract
The Notch signaling pathway is highly conserved from Drosophila to humans and plays an important role in the regulation of cellular proliferation, differentiation and apoptosis.Constitutive activation of Notch signaling has been shown to result in excessive cellular proliferation and a wide range of malignancies, including leukemia, glioblastoma and lung and breast cancers. Notch can also act as a tumor suppressor, and its inactivation has been associated with an increased risk of spontaneous squamous cell carcinoma. This minireview focuses on recent advances related to the mechanisms and roles of activated Notch1, Notch2, Notch3 and Notch4 signaling in human lymphocytic leukemia, myeloid leukemia and B cell lymphoma, as well as their significance, and recent advances in Notch-targeted therapies.
Collapse
Affiliation(s)
- Joanna Pancewicz
- Department of Pathology, Center for Viral Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | |
Collapse
|
20
|
Cabarcas SM, Mathews LA, Farrar WL. The cancer stem cell niche--there goes the neighborhood? Int J Cancer 2011; 129:2315-27. [PMID: 21792897 PMCID: PMC6953416 DOI: 10.1002/ijc.26312] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/07/2011] [Indexed: 12/11/2022]
Abstract
The niche is the environment in which stem cells reside and is responsible for the maintenance of unique stem cell properties such as self-renewal and an undifferentiated state. The heterogeneous populations which constitute a niche include both stem cells and surrounding differentiated cells. This network of heterogeneity is responsible for the control of the necessary pathways that function in determining stem cell fate. The concept that cancer stem cells, a subpopulation of cells responsible for tumor initiation and formation, reside in their own unique niche is quickly evolving and it is of importance to understand and identify the processes occurring within this environment. The necessary intrinsic pathways that are utilized by this cancer stem cell population to maintain both self-renewal and the ability to differentiate are believed to be a result of the environment where cancer stem cells reside. The ability of a specific cancer stem cell niche to provide the environment in which this population can flourish is a critical aspect of cancer biology that mandates intense investigation. This review focuses on current evidence demonstrating that homeostatic processes such as inflammation, epithelial to mesenchymal transition, hypoxia and angiogenesis contribute to the maintenance and control of cancer stem cell fate by providing the appropriate signals within the microenvironment. It is necessary to understand the key processes occurring within this highly specialized cancer stem cell niche to identify potential therapeutic targets that can serve as the basis for development of more effective anticancer treatments.
Collapse
Affiliation(s)
- Stephanie M Cabarcas
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | | | | |
Collapse
|
21
|
Belyea BC, Naini S, Bentley RC, Linardic CM. Inhibition of the Notch-Hey1 axis blocks embryonal rhabdomyosarcoma tumorigenesis. Clin Cancer Res 2011; 17:7324-36. [PMID: 21948088 DOI: 10.1158/1078-0432.ccr-11-1004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and remains refractory to combined-modality therapy in patients with high risk disease. In skeletal myogenesis, Notch signaling prevents muscle differentiation and promotes proliferation of satellite cell progeny. Given its physiologic role in myogenesis and oncogenic role in other human cancers, we hypothesized that aberrant Notch signaling may contribute to RMS tumorigenesis and present novel therapeutic opportunities. EXPERIMENTAL DESIGN Human RMS cell lines and tumors were evaluated by immunoblot, IHC, and RT-PCR to measure Notch ligand, receptor, and target gene expression. Manipulation of Notch signaling was accomplished using genetic and pharmacologic approaches. In vitro cell growth, proliferation, and differentiation were assessed using colorimetric MTT and BrdU assays, and biochemical/morphologic changes after incubation in differentiation-promoting media, respectively. In vivo tumorigenesis was assessed using xenograft formation in SCID/beige mice. RESULTS Notch signaling is upregulated in human RMS cell lines and tumors compared with primary skeletal muscle, especially in the embryonal (eRMS) subtype. Inhibition of Notch signaling using Notch1 RNAi or γ-secretase inhibitors reduced eRMS cell proliferation in vitro. Hey1 RNAi phenocopied Notch1 loss and permitted modest myogenic differentiation, while overexpression of an activated Notch moiety, ICN1, promoted eRMS cell proliferation and rescued pharmacologic inhibition. Finally, Notch inhibition using RNAi or γ-secretase inhibitors blocked tumorigenesis in vivo. CONCLUSIONS Aberrant Notch-Hey1 signaling contributes to eRMS by impeding differentiation and promoting proliferation. The efficacy of Notch pathway inhibition in vivo supports the development of Notch-Hey1 axis inhibitors in the treatment of eRMS.
Collapse
Affiliation(s)
- Brian C Belyea
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
22
|
Bennani-Baiti IM, Aryee DN, Ban J, Machado I, Kauer M, Mühlbacher K, Amann G, Llombart-Bosch A, Kovar H. Notch signalling is off and is uncoupled from HES1 expression in Ewing's sarcoma. J Pathol 2011; 225:353-63. [PMID: 21984123 DOI: 10.1002/path.2966] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 05/20/2011] [Accepted: 06/27/2011] [Indexed: 12/18/2022]
Abstract
Notch can act as an oncogene or as a tumour suppressor and thus can either promote or inhibit tumour cell growth. To establish Notch status in Ewing's sarcoma family of tumours (ESFT), we investigated the Notch pathway by gene expression profiling meta-analysis or immunohistochemistry in samples obtained from 96 and 24 ESFT patients, respectively. We found that although Notch receptors were highly expressed, Notch did not appear to be active, as evidenced by the absence of Notch receptors in cell nuclei. In contrast, we show that Notch receptors known to be active in colon adenocarcinoma, hepatocarcinoma, and pancreatic carcinoma stain cell nuclei in these tumours. High expression of the Notch effector HES1 transcription factor, usually used as a surrogate marker for active Notch, was also restricted to outside of the nucleus in the majority of ESFT, and analysis of HES1 gene targets indicated HES1 to be transcriptionally inactive. Neither forced activation nor pharmacological or genetic blocking of Notch affected HES1 expression in ESFT cells, indicating HES1 expression to be uncoupled from the Notch pathway. Additional functional studies in ESFT cell lines confirmed Notch to be switched off. Finally, unlike experiments in which HES1 expression was modulated, experimental activation of Notch in ESFT cell lines via several means blocked cell proliferation and reduced their clonogenic potential in soft agar. These indicate that HES1 is uncoupled from Notch in ESFT, that EWS-FLI1-mediated inhibition of Notch contributes to ESFT aggressive cell growth, and support a role for Notch in ESFT tumour suppression, at least partly through the Notch effector HEY1.
Collapse
Affiliation(s)
- Idriss M Bennani-Baiti
- Children's Cancer Research Institute, St Anna Kinderkrebsforschung, Zimmermannplatz 10, A-1090 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Friedman GK, Gillespie GY. Cancer Stem Cells and Pediatric Solid Tumors. Cancers (Basel) 2011; 3:298-318. [PMID: 21394230 PMCID: PMC3050504 DOI: 10.3390/cancers3010298] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 12/21/2022] Open
Abstract
Recently, a subpopulation of cells, termed tumor-initiating cells or tumor stem cells (TSC), has been identified in many different types of solid tumors. These TSC, which are typically more resistant to chemotherapy and radiation compared to other tumor cells, have properties similar to normal stem cells including multipotency and the ability to self-renew, proliferate, and maintain the neoplastic clone. Much of the research on TSC has focused on adult cancers. With considerable differences in tumor biology between adult and pediatric cancers, there may be significant differences in the presence, function and behavior of TSC in pediatric malignancies. We discuss what is currently known about pediatric solid TSC with specific focus on TSC markers, tumor microenvironment, signaling pathways, therapeutic resistance and potential future therapies to target pediatric TSC.
Collapse
Affiliation(s)
- Gregory K. Friedman
- Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - G. Yancey Gillespie
- Department of Surgery, Division of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; E-Mail:
| |
Collapse
|
24
|
Delta-like ligand 4-Notch signaling regulates bone marrow-derived pericyte/vascular smooth muscle cell formation. Blood 2010; 117:719-26. [PMID: 20944072 DOI: 10.1182/blood-2010-05-284869] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Delta-like ligand 4 (DLL4) is essential for the formation of mature vasculature. However, the role of DLL4-Notch signaling in pericyte/vascular smooth muscle cell (vSMC) development is poorly understood. We sought to determine whether DLL4-Notch signaling is involved in pericyte/vSMC formation in vitro and during vasculogenesis in vivo using 2 Ewing sarcoma mouse models. Inhibition of DLL4 with the antibody YW152F inhibited pericyte/vSMC marker expression by bone marrow (BM) cells in vitro. Conversely, transfection of 10T1/2 cells with the active domains of Notch receptors led to increased expression of pericyte/vSMC markers. Furthermore, the blood vessels of Ewing sarcoma tumors from mice treated with YW152F had reduced numbers of BM-derived pericytes/vSMCs, fewer open lumens, and were less functional than the vessels in tumors of control-treated mice. Tumor growth was also inhibited. These data demonstrate a specific role for DLL4 in the formation of BM-derived pericytes/vSMCs and indicate that DLL4 may be a novel therapeutic target for the inhibition of vasculogenesis.
Collapse
|
25
|
Bai F, Tagen M, Colotta C, Miller L, Fouladi M, Stewart CF. Determination of the gamma-secretase inhibitor MK-0752 in human plasma by online extraction and electrospray tandem mass spectrometry (HTLC-ESI-MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci 2010; 878:2348-52. [PMID: 20702149 PMCID: PMC2926936 DOI: 10.1016/j.jchromb.2010.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 01/17/2023]
Abstract
A sensitive and rapid HTLC-ESI-MS/MS method with an advanced online sample preparation was developed for determination of the gamma-secretase inhibitor MK-0752 in human plasma using an internal standard. Plasma samples (100 microL) were diluted and injected directly onto an online extraction column (Cohesive Cyclone MAX 0.5 mm x 50 mm, > 30 microm), the sample matrix was washed out with an aqueous solution, and retained analytes were eluted out and transferred directly to the analytical column (Phenomenex Gemini 3 micron C18 110A, 50 mm x 2.0 mm at 50 degrees C) for separation using a gradient mobile phase. The eluted analytes were then detected on an API-3000 LC-MS/MS System with ESI and a negative multiple reaction monitoring mode. The monitored ion transitions were m/z 441-->175 for MK-0752 and 496-->175 for the internal standard. Online extraction recoveries were 81%. The method was validated and was linear in the range of 0.05-50 microg/mL. Within-day and between-day precisions were<8.6%, and accuracies were 0.7 and 7.1%. This method was applied to the measurement of plasma MK-0752 levels in a Phase I study of pediatric patients with recurrent or refractory brain tumors.
Collapse
Affiliation(s)
- Feng Bai
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Michael Tagen
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Courtney Colotta
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Laura Miller
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Maryam Fouladi
- Division of Hematology-Oncology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Clinton F. Stewart
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pediatrics, College of Medicine, University of Tennessee, Memphis, TN 38105, USA
| |
Collapse
|
26
|
Turner JD, Williamson R, Almefty KK, Nakaji P, Porter R, Tse V, Kalani MYS. The many roles of microRNAs in brain tumor biology. Neurosurg Focus 2010; 28:E3. [PMID: 20043718 DOI: 10.3171/2009.10.focus09207] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are now recognized as the primary RNAs involved in the purposeful silencing of the cell's own message. In addition to the established role of miRNAs as developmental regulators of normal cellular function, they have recently been shown to be important players in pathological states such as cancer. The authors review the literature on the role of miRNAs in the formation and propagation of gliomas and medulloblastomas, highlighting the potential of these molecules and their inhibitors as therapeutics.
Collapse
Affiliation(s)
- Jay D Turner
- Division of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | | | | | | | | | |
Collapse
|