1
|
Drug Regimen for Patients after a Pneumonectomy. JOURNAL OF RESPIRATION 2021. [DOI: 10.3390/jor1020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pneumonectomy is an entire lung removal and is indicated for both malignant and benign diseases. Due to its invasiveness and postoperative complications, pneumonectomy is still associated with high mortality and morbidity. Appropriate postoperative management is crucial in pneumonectomy patients to improve quality of life and overall survival rates. Diverse drug regimens are under development to be used in adjuvant chemotherapy or to improve respiratory health after a pneumonectomy. The most common causes for a pneumonectomy are non-small cell lung cancer, malignant pleural mesothelioma, and tuberculosis; thus, an appropriate drug regimen is necessary. The uncommon incidence of pneumonectomy cases remains the major obstacle in studies of postoperative drug regimens. As the majority of current studies include post-lobectomy and post-segmentectomy patients, it is highly recommended that further research of postoperative drug regimens be focused on post-pneumonectomy patients.
Collapse
|
2
|
Miyake N, Ochi N, Yamane H, Fukazawa T, Ikeda T, Yokota E, Takeyama M, Nakagawa N, Nakanishi H, Kohara H, Nagasaki Y, Kawahara T, Ichiyama N, Yamatsuji T, Naomoto Y, Takigawa N. Targeting ROR1 in combination with pemetrexed in malignant mesothelioma cells. Lung Cancer 2019; 139:170-178. [PMID: 31809978 DOI: 10.1016/j.lungcan.2019.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/24/2019] [Accepted: 10/24/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is overexpressed in a subset of malignant cells. However, it remains unknown whether ROR1 is targetable in malignant mesothelioma (MM). Therefore, in this study, we investigated the effects of ROR1 inhibition in mesothelioma cells. MATERIALS AND METHODS Growth inhibition, colony formation, apoptosis, and mRNA/protein levels using siRNA-transfected MM cells were evaluated. Cluster analysis using Gene Expression Omnibus repository of transcriptomic information was also performed. RESULTS Our results indicated that in three (H2052, H2452, and MESO-1) among four MM cell lines, ROR1 inhibition had anti-proliferative and apoptotic effects and suppressed the activation of AKT and STAT3. Although growth inhibition by siROR1 was minimal in another mesothelioma cell line (H28), colony formation was significantly suppressed. Microarray, quantitative polymerase chain reaction, and Western blot analyses showed that there were differences in the suppression of mRNA and proteins between H2452 and H28 cells transfected with siROR1 compared with those transfected with control siRNA. Cluster analysis further showed that MM tumors had relatively high ROR1 expression, although the cluster in them was different from that in MM cell lines. Thymidylate synthase, a target of pemetrexed, was downregulated in H2452 cells transfected with siROR1. Accordingly, a combination of pemetrexed with siROR1 was found to be effective in the three MM cell lines we studied. CONCLUSION Our findings may provide novel therapeutic insight into the treatment of advanced MM.
Collapse
Affiliation(s)
- Noriko Miyake
- General Medical Center Research Unit, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan
| | - Nobuaki Ochi
- Department of General Internal Medicine 4, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan
| | - Hiromichi Yamane
- Department of General Internal Medicine 4, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan
| | - Takuya Fukazawa
- General Medical Center Research Unit, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan; Department of General Surgery, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan
| | - Tomoko Ikeda
- General Medical Center Research Unit, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan
| | - Etsuko Yokota
- General Medical Center Research Unit, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan
| | - Masami Takeyama
- Department of General Internal Medicine 4, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan
| | - Nozomu Nakagawa
- Department of General Internal Medicine 4, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan
| | - Hidekazu Nakanishi
- Department of General Internal Medicine 4, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan
| | - Hiroyuki Kohara
- Department of General Internal Medicine 4, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan
| | - Yasunari Nagasaki
- Department of General Internal Medicine 4, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan
| | - Tatsuyuki Kawahara
- Department of General Internal Medicine 4, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan
| | - Naruhiko Ichiyama
- Department of General Internal Medicine 4, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan
| | - Tomoki Yamatsuji
- Department of General Surgery, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan
| | - Yoshio Naomoto
- Department of General Surgery, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan
| | - Nagio Takigawa
- General Medical Center Research Unit, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan; Department of General Internal Medicine 4, Kawasaki Medical School, 2-6-1 Nakasange, Kita-ku, Okayama 700-8505, Japan.
| |
Collapse
|
3
|
Kang HC, Kim HK, Lee S, Mendez P, Kim JW, Woodard G, Yoon JH, Jen KY, Fang LT, Jones K, Jablons DM, Kim IJ. Whole exome and targeted deep sequencing identify genome-wide allelic loss and frequent SETDB1 mutations in malignant pleural mesotheliomas. Oncotarget 2016; 7:8321-31. [PMID: 26824986 PMCID: PMC4884995 DOI: 10.18632/oncotarget.7032] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/15/2016] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM), a rare malignancy with a poor prognosis, is mainly caused by exposure to asbestos or other organic fibers, but the underlying genetic mechanism is not fully understood. Genetic alterations and causes for multiple primary cancer development including MPM are unknown. We used whole exome sequencing to identify somatic mutations in a patient with MPM and two additional primary cancers who had no evidence of venous, arterial, lymphovascular, or perineural invasion indicating dissemination of a primary lung cancer to the pleura. We found that the MPM had R282W, a key TP53 mutation, and genome-wide allelic loss or loss of heterozygosity, a distinct genomic alteration not previously described in MPM. We identified frequent inactivating SETDB1 mutations in this patient and in 68 additional MPM patients (mutation frequency: 10%, 7/69) by targeted deep sequencing. Our observations suggest the possibility of a new genetic mechanism in the development of either MPM or multiple primary cancers. The frequent SETDB1 inactivating mutations suggest there could be new diagnostic or therapeutic options for MPM.
Collapse
Affiliation(s)
- Hio Chung Kang
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Hong Kwan Kim
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Pedro Mendez
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Gavitt Woodard
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jun-Hee Yoon
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kuang-Yu Jen
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Li Tai Fang
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kirk Jones
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Il-Jin Kim
- Thoracic Oncology Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Benedetti S, Nuvoli B, Catalani S, Galati R. Reactive oxygen species a double-edged sword for mesothelioma. Oncotarget 2016; 6:16848-65. [PMID: 26078352 PMCID: PMC4627278 DOI: 10.18632/oncotarget.4253] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/29/2015] [Indexed: 12/13/2022] Open
Abstract
It is well known that oxidative stress can lead to chronic inflammation which, in turn, could mediate most chronic diseases including cancer. Oxidants have been implicated in the activity of crocidolite and amosite, the most powerful types of asbestos associated to the occurrence of mesothelioma. Currently rates of mesothelioma are rising and estimates indicate that the incidence of mesothelioma will peak within the next 10-15 years in the western world, while in Japan the peak is predicted not to occur until 40 years from now. Although the use of asbestos has been banned in many countries around the world, production of and the potentially hazardous exposure to asbestos is still present with locally high incidences of mesothelioma. Today a new man-made material, carbon nanotubes, has arisen as a concern; carbon nanotubes may display 'asbestos-like' pathogenicity with mesothelioma induction potential. Carbon nanotubes resulted in the greatest reactive oxygen species generation. How oxidative stress activates inflammatory pathways leading to the transformation of a normal cell to a tumor cell, to tumor cell survival, proliferation, invasion, angiogenesis, chemoresistance, and radioresistance, is the aim of this review.
Collapse
Affiliation(s)
- Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Barbara Nuvoli
- Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Simona Catalani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Rossella Galati
- Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
5
|
Lee KA, Lee SH, Lee YJ, Baeg SM, Shim JH. Hesperidin Induces Apoptosis by Inhibiting Sp1 and Its Regulatory Protein in MSTO-211H Cells. Biomol Ther (Seoul) 2013; 20:273-9. [PMID: 24130923 PMCID: PMC3794523 DOI: 10.4062/biomolther.2012.20.3.273] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/07/2012] [Accepted: 04/10/2012] [Indexed: 12/30/2022] Open
Abstract
Hesperidin, a flavanone present in citrus fruits, has been studied as potential therapeutic agents that have anti-tumor activity and apoptotic effects in several cancers, but there is no report about the apoptotic effect of hesperidin in human malignant pleural mesothelioma through the specificity protein 1 (Sp1) protein. We investigated whether hesperidin inhibited cell growth and regulated Sp1 target proteins by suppressing the levels of Sp1 protein in MSTO-211H cells. The IC50 value of hesperidin was determined to be 152.3 μM in MSTO-211H cells for 48 h. Our results suggested that hesperidin (0-160 μM) decreased cell viability, and induced apoptotic cell death. Hesperidin increased Sub-G1 population in MSTO-211H cells. Hesperidin significantly suppressed mRNA/protein level of Sp1 and modulated the expression level of the Sp1 regulatory protein such as p27, p21, cyclin D1, Mcl-1, and survivin in mesothelioma cells. Also, hesperidin induced apoptotic signaling including: cleavages of Bid, caspase-3, and PARP, upregulation of Bax, and down-regulation of Bcl-xl in mesothelioma cells. These results show that hesperidin suppressed mesothelioma cell growth through inhibition of Sp1. In this study, we demonstrated that Sp1 acts as a novel molecular target of hesperidin in human malignant pleural mesothelioma.
Collapse
Affiliation(s)
- Kyung-Ae Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University
| | | | | | | | | |
Collapse
|
6
|
Dao T, Yan S, Veomett N, Pankov D, Zhou L, Korontsvit T, Scott A, Whitten J, Maslak P, Casey E, Tan T, Liu H, Zakhaleva V, Curcio M, Doubrovina E, O'Reilly RJ, Liu C, Scheinberg DA. Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Sci Transl Med 2013; 5:176ra33. [PMID: 23486779 DOI: 10.1126/scitranslmed.3005661] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Wilms tumor 1 (WT1) oncoprotein is an intracellular, oncogenic transcription factor that is overexpressed in a wide range of leukemias and solid cancers. RMFPNAPYL (RMF), a WT1-derived CD8+ T cell human leukocyte antigen (HLA)-A0201 epitope, is a validated target for T cell-based immunotherapy. Using phage display technology, we discovered a fully human "T cell receptor-like" monoclonal antibody (mAb), ESK1, specific for the WT1 RMF peptide/HLA-A0201 complex. ESK1 bound to several leukemia and solid tumor cell lines and primary leukemia cells, in a WT1- and HLA-A0201-restricted manner, with high avidity [dissociation constant (Kd)=0.1 nM]. ESK1 mediated antibody-dependent human effector cell cytotoxicity in vitro. Low doses of naked ESK1 antibody cleared established, disseminated, human acute lymphocytic leukemia and Philadelphia chromosome-positive leukemia in nonobese diabetic/severe combined immunodeficient γc-/- (NSG) mouse models. At therapeutic doses, no toxicity was seen in HLA-A0201 transgenic mice. ESK1 is a potential therapeutic agent for a wide range of cancers overexpressing the WT1 oncoprotein. This finding also provides preclinical validation for the strategy of developing therapeutic mAbs targeting intracellular oncogenic proteins.
Collapse
Affiliation(s)
- Tao Dao
- Molecular Pharmacology and Chemistry Program, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Amichetti M, Lorentini S, Tonoli S, Magrini SM. Role of new radiation techniques in the treatment of pleural mesothelioma. Thorac Cancer 2013; 4:219-228. [PMID: 28920252 DOI: 10.1111/1759-7714.12008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 10/29/2012] [Indexed: 11/30/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive neoplasm arising from the surface serosal cells of the pleural cavity. Surgery remains the main therapeutic standard in the treatment of MPM with the goal of complete gross cytoreduction of the tumor. Because MPM is a diffuse disease affecting the entire mesothelial lining of the hemithorax, surgery alone can rarely achieve adequate tumor-free resection margins. The surgical choices are pleurectomy/decortication (P/D) or extrapleural pneumonectomy (EPP). Radiotherapy (RT) is usually applied postoperatively with the aim to improve local control. However, the efficacy of RT is limited by the large volume of the target to be irradiated (tumor and pleural cavity) and the radiosensitivity of the nearby organs (heart, liver, lung, spinal cord, and esophagus). These factors have historically limited the effective radiation doses that can be given to the patient. There is no role for radical RT alone, but the role of RT as part of multimodality therapy is discussed. After EPP adjuvant RT to the entire hemithorax can reduce the recurrence rate and is well tolerated if strict limits to the dose to contralateral lung are applied: the V20 and V5 (the percent volume of the lung receiving more than 20Gy and 5Gy of radiation) correlate with increased lung toxicity. The use of modern sophisticated techniques allows good target coverage, more conformal high dose delivery, and clinically relevant normal tissue sparing.
Collapse
Affiliation(s)
- Maurizio Amichetti
- ATreP - Provincial Agency for Proton Therapy and Proton Therapy Unit, S. Chiara Hospital, Trento, Italy
| | - Stefano Lorentini
- ATreP - Provincial Agency for Proton Therapy and Proton Therapy Unit, S. Chiara Hospital, Trento, Italy
| | - Sandro Tonoli
- Department of Radiation Oncology, Spedali Civili di Brescia, Brescia, Italy
| | - Stefano Maria Magrini
- Department of Radiation Oncology, Spedali Civili di Brescia, Brescia, Italy.,Faculty of Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|