1
|
O'Shaughnessy J, Gradishar W, O'Regan R, Gadi V. Risk of Recurrence in Patients with HER2+ Early-Stage Breast Cancer: Literature Analysis of Patient and Disease Characteristics. Clin Breast Cancer 2023; 23:350-362. [PMID: 37149421 DOI: 10.1016/j.clbc.2023.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 03/31/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) overexpression occurs in 15% to 20% of patients with early-stage breast cancers (EBCs). Without HER2-targeted therapy, 30% to 50% of patients relapse within 10 years, many developing incurable metastatic disease. This literature review was designed to identify and validate patient- and disease-related factors associated with recurrence in patients with HER2+ EBC. Peer-reviewed primary research articles and congress abstracts were identified by searching MEDLINE. Articles published in English from 2019 to 2022 were included to identify contemporary treatment options. Results were analyzed for the relationship between risk factors and surrogates of HER2+ EBC recurrence to determine how identified risk factors affected HER2+ EBC recurrence. Sixty-one articles and 65 abstracts that assessed age at diagnosis, body mass index (BMI), tumor size at diagnosis, hormone receptor (HR) status, pathologic complete response (pCR) status, and biomarkers were analyzed. We confirmed the results of previously published reviews reporting residual cancer burden >0, non-pCR, and fewer tumor-infiltrating lymphocytes (TILs) as risk factors of recurrence. HR status remained an important risk factor for recurrence, with HER2+/HR+ disease more likely to recur. Two or more positive lymph nodes, higher BMI, larger primary tumor size, and low Ki67 were more commonly associated with HER2+ EBC recurrence. The identification of patient and disease factors frequently associated with HER2+ EBC recurrence in the literature provides insight into potential recurrence risk factors. Further investigation into the risk factors identified in this review could lead to improved treatments for patients at high risk for HER2+ EBC recurrence.
Collapse
Affiliation(s)
- Joyce O'Shaughnessy
- Baylor University Medical Center, Dallas, TX; Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas, TX.
| | | | - Ruth O'Regan
- Department of Medicine, University of Rochester, Rochester, NY
| | - Vijayakrishna Gadi
- Department of Medicine, University of Illinois Chicago, Chicago, IL; Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL
| |
Collapse
|
2
|
Kaneko Y, Yamatsugu K, Yamashita T, Takahashi K, Tanaka T, Aki S, Tatsumi T, Kawamura T, Miura M, Ishii M, Ohkubo K, Osawa T, Kodama T, Ishikawa S, Tsukagoshi M, Chansler M, Sugiyama A, Kanai M, Katoh H. Pathological complete remission of relapsed tumor by photo-activating antibody-mimetic drug conjugate treatment. Cancer Sci 2022; 113:4350-4362. [PMID: 36121618 DOI: 10.1111/cas.15565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 02/03/2023] Open
Abstract
Antibody-mimetic drug conjugate is a novel noncovalent conjugate consisting of an antibody-mimetic recognizing a target molecule on the cancer cell surface and low-molecular-weight payloads that kill the cancer cells. In this study, the efficacy of a photo-activating antibody-mimetic drug conjugate targeting HER2-expressing tumors was evaluated in mice, by using the affibody that recognize HER2 (ZHER2:342 ) as a target molecule and an axially substituted silicon phthalocyanine (a novel potent photo-activating compound) as a payload. The first treatment with the photo-activating antibody-mimetic drug conjugates reduced the size of all HER2-expressing KPL-4 xenograft tumors macroscopically. However, during the observation period, relapsed tumors gradually appeared in approximately 50% of the animals. To evaluate the efficacy of repeated antibody-mimetic drug conjugate treatment, animals with relapsed tumors were treated again with the same regimen. After the second observation period, the mouse tissues were examined histopathologically. Unexpectedly, all relapsed tumors were eradicated, and all animals were diagnosed with pathological complete remission. After the second treatment, skin wounds healed rapidly, and no significant side effects were observed in other organs, except for occasional microscopic granulomatous tissues beneath the serosa of the liver in a few mice. Repeated treatments seemed to be well tolerated. These results indicate the promising efficacy of the repeated photo-activating antibody-mimetic drug conjugate treatment against HER2-expressing tumors.
Collapse
Affiliation(s)
- Yudai Kaneko
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Medical & Biological Laboratories Co., Ltd, Tokyo, Japan
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takefumi Yamashita
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kazuki Takahashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshiya Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Sho Aki
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshifumi Tatsumi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeshi Kawamura
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Mai Miura
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Masazumi Ishii
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kei Ohkubo
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Tsuyoshi Osawa
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Kodama
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - Akira Sugiyama
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Ramamoorthi G, Kodumudi K, Gallen C, Zachariah NN, Basu A, Albert G, Beyer A, Snyder C, Wiener D, Costa RLB, Czerniecki BJ. Disseminated cancer cells in breast cancer: Mechanism of dissemination and dormancy and emerging insights on therapeutic opportunities. Semin Cancer Biol 2021; 78:78-89. [PMID: 33626407 DOI: 10.1016/j.semcancer.2021.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/22/2020] [Accepted: 02/07/2021] [Indexed: 02/07/2023]
Abstract
Metastatic spread in breast cancer patients is the major driver of cancer-related deaths. A unique subset of cells disseminated from pre-invasive or primary tumor lesions are recognized as the main seeds for metastatic outgrowth. Disseminated cancer cells (DCCs) can migrate to distant organs and settle in a dormant state for a prolonged period until they emerge to overt metastases. Understanding the biology of breast cancer cells dissemination, dormancy and reactivation to form overt metastases has become an important focus. In this review, we discuss the recent advancements of molecular pathways involving breast cancer cell dissemination, role of chemokine-chemokine receptor networks in DCCs migration, DCCs phenotypic heterogeneity and unique genes signatures in tumor dormancy, microenvironmental regulation and specific niches that favors DCCs homing and dormancy. In addition, we also discuss recent findings relating to the role of immune response on DCC dissemination and dormancy. With recent advances in the field of immunotherapy/targeted therapy and its beneficial effects in cancer treatment, this review will focus on their impact on DCCs, reversal of stemness, tumor dormancy and metastatic relapse.
Collapse
Affiliation(s)
- Ganesan Ramamoorthi
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Krithika Kodumudi
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Corey Gallen
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Nadia Nocera Zachariah
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Amrita Basu
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Gabriella Albert
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Amber Beyer
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Colin Snyder
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Doris Wiener
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Ricardo L B Costa
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Brian J Czerniecki
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology H. Lee Moffitt Cancer Center, Tampa, FL, United States.
| |
Collapse
|