1
|
Emami A, Tavassoli Razavi F, Salari N, Haghmorad D, Hoseinzadeh A, Baharlou R. Nanobody-based immunotoxins: A precision tool in the treatment of solid tumors. Int Immunopharmacol 2025; 158:114801. [PMID: 40347884 DOI: 10.1016/j.intimp.2025.114801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/22/2025] [Accepted: 05/01/2025] [Indexed: 05/14/2025]
Abstract
Solid tumors, the main cause of cancer-related death, represent a significant therapeutic challenge due to the high-density microenvironment and intolerance to conventional treatments. Nanobody-based immunotoxins (NbITs) are an exciting candidate, combining the ultimate specificity of nanobodies (single-domain antibody fragments of camelid antibodies) and detrimental effects of the toxin. These nanobodies are small (one-tenth of conventional antibody size), thermostable with high specificity, high antigen binding affinity which give it the ability to penetrate into solid tumors. Specific delivery to tumor cells is achieved through conjugating nanobodies with cytotoxic agents of bacterial origin or synthetic drugs. This phenomenon is initially attracted to the cells by the antigen-antibody interaction that is further enhanced by receptor-mediated internalization and cytotoxic payload release that subdues essential cellular processes and, as a consequence, damages the cells. This review discusses the mechanisms that underlie the effectiveness of NbITs, such as tumor antigen recognition, toxin release, and cellular signaling pathways elicited by the internalized toxins. We also discuss the application of NbITs in treating cancers such as HER2-positive breast cancer and EGFR-overexpressing lung cancer, and other cancers, highlighting their ability to address limitations of conventional therapies. Key challenges in NbIT development, including stability, immunogenicity, and efficient delivery, are critically evaluated. Current advances such as the creation of bispecific nanobody constructs, optimization of linker strategies, as well as the incorporation of nanoparticle-based delivery systems are maximizing the therapeutic potential of these molecules. This review synthesizes recent progress and addresses current obstacles in NbIT development, showcasing their transformative potential as a targeted therapeutic approach for solid tumors. It also covers future opportunities to develop and advance this emerging treatment strategy.
Collapse
Affiliation(s)
- Atena Emami
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Tavassoli Razavi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Nasrin Salari
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Akram Hoseinzadeh
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Rasoul Baharlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
2
|
Reshadmanesh T, Mohebi R, Behnoush AH, Reshadmanesh A, Khalaji A, Norouzi M, Javanmardi E, Pishdad R, Jafarzadeh SR, Ghondaghsaz E, Chaparro S. The effects of sodium-glucose cotransporter-2 inhibitors in chemotherapy-induced cardiotoxicity and mortality in patients with cancer: a systematic review and meta-analysis. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2025; 11:50. [PMID: 40426171 PMCID: PMC12107967 DOI: 10.1186/s40959-025-00343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 05/01/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND The effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors on reducing cardiovascular events in different subgroups of diabetic patients are under investigation. The current systematic review and meta-analysis investigated the effects of SGLT2 inhibitors on preventing cardiovascular events and mortality and their adverse events in patients with active cancer and diabetes undergoing cardiotoxic cancer treatment. METHODS We searched PubMed, Embase, Web of Science, and Scopus to find studies investigating the effects of SGLT2 inhibitors on patients with diabetes and confirmed cancer until 19 August 2024. Meta-analyses were conducted using the random-effects model to compare all-cause mortality, cancer-associated mortality, heart failure (HF) hospitalization, arrhythmia, and adverse event rates such as ketoacidosis, hypoglycemia, urinary tract infection, and sepsis between patients with or without SGLT2 inhibitors use. Risk ratios (RRs) with 95% confidence intervals (CI) were used to compare outcomes between SGLT2 inhibitors and non-SGLT2 inhibitors groups. RESULTS Eleven studies were included with 88,096 patients with confirmed cancer (49% male). Among the total population, 20,538 received SGLT2 inhibitors (age 61.68 ± 10.71), while 67,558 did not receive SGLT2 inhibitors (age 68.24 ± 9.48). The meta-analysis found that the patients who received SGLT2 inhibitors had a significantly lower mortality rate than those who did not receive SGLT2 inhibitors (RR 0.46, 95% CI 0.34 to 0.63, p-value < 0.0001). Similarly, the cancer-associated mortality rate was also lower (RR 0.29, 95% CI 0.27 to 0.30, p-value < 0.0001). Further analysis found that the SGLT2 inhibitor group had a lower rate of HF hospitalization, compared to controls (RR 0.44, 95% CI 0.27 to 0.70, p-value = 0.0007). Moreover, patients receiving SGLT2 inhibitors had a statistically lower rate of arrhythmia (RR 0.38, 95% CI 0.26 to 0.56, p-value < 0.0001). Finally, patients in the SGLT2 inhibitors group had a lower rate of adverse events (RR 0.51, 95% CI 0.42 to 0.62, p-value < 0.0001). CONCLUSIONS SGLT2 inhibitors are effective in reducing mortality (all-cause and cancer-associated), HF hospitalization, arrhythmia, and drug adverse events in patients with cancer. If confirmed in future studies, these agents could be a potentially ideal candidate to prevent cardiotoxicity of cancer therapies.
Collapse
Affiliation(s)
- Tara Reshadmanesh
- School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | - Reza Mohebi
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Amir Hossein Behnoush
- School of Medicine, Tehran University of Medical Sciences, Poursina St., Keshavarz Blvd, Tehran, 1417613151, Iran.
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Azadeh Reshadmanesh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirmohammad Khalaji
- School of Medicine, Tehran University of Medical Sciences, Poursina St., Keshavarz Blvd, Tehran, 1417613151, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Norouzi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Elmira Javanmardi
- School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | - Reza Pishdad
- Division of Endocrinology, Diabetes, and Metabolism, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - S Reza Jafarzadeh
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Elina Ghondaghsaz
- Undergraduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Sandra Chaparro
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Miami Cardiac and Vascular Institute, Baptist Health South Florida, Miami, FL, USA
| |
Collapse
|
3
|
Orleanska J, Bik E, Baranska M, Majzner K. Mechanisms of mitotic inhibition in human aorta endothelial cells: Molecular and morphological in vitro spectroscopic studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124623. [PMID: 39002470 DOI: 10.1016/j.saa.2024.124623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/15/2024]
Abstract
Mitotic inhibitors are drugs commonly used in chemotherapy, but their nonspecific and indiscriminate distribution throughout the body after intravenous administration can lead to serious side effects, particularly on the cardiovascular system. In this context, our investigation into the mechanism of the cytotoxic effects on endothelial cells of mitotic inhibitors widely used in cancer treatment, such as paclitaxel (also known as Taxol) and Vinca alkaloids, holds significant practical implications. Understanding these mechanisms can lead to more targeted and less harmful cancer treatments. Human aorta endothelial cells (HAECs) were incubated with selected mitotic inhibitors in a wide range of concentrations close to those in human plasma during anticancer therapy. The analysis of single cells imaged by Raman spectroscopy allowed for visualization of the nuclear, cytoplasmic, and perinuclear areas to assess biochemical changes induced by the drug's action. The results showed significant changes in the morphology and molecular composition of the nucleus. Moreover, an effect of a given drug on the cytoplasm was observed, which can be related to its mechanism of action (MoA). Raman data supported by fluorescence microscopy measurements identified unique changes in DNA form and proteins and revealed drug-induced inflammation of endothelial cells. The primary goal of mitotic inhibitors is based on the impairment of tubulin formation and the inhibition of the mitosis process. While all three drugs affect microtubules and disrupt cell division, they do so through different MoA, i.e., Vinca alkaloids inhibit microtubule formation, whereas paclitaxel stabilizes microtubules. To sum up, the work shows how a specific drug can interact with endothelial cells.
Collapse
Affiliation(s)
- Jagoda Orleanska
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, 30-348 Krakow, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Ewelina Bik
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland; Academic Centre for Materials and Nanotechnology, AGH University of Krakow, Mickiewicza Av. 30, 30-059 Krakow, Poland
| | - Malgorzata Baranska
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348 Krakow, Poland
| | - Katarzyna Majzner
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
4
|
Li J, Zhang T, Wu D, He C, Weng H, Zheng T, Liu J, Yao H, Chen J, Ren Y, Zhu Z, Xu J, Xu S. Palladium-Mediated Bioorthogonal System for Prodrug Activation of N-Benzylbenzamide-Containing Tubulin Polymerization Inhibitors for the Treatment of Solid Tumors. J Med Chem 2024; 67:19905-19924. [PMID: 39484713 DOI: 10.1021/acs.jmedchem.4c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Bioorthogonal cleavage reactions have been developed as an intriguing strategy to enhance the safety of chemotherapeutics. Aiming to reduce the toxicity and improve the targeted release properties of the colchicine binding site inhibitors (CBSIs) based on previous work, a series of biologically inert prodrugs were further designed and synthesized through a bioorthogonal prodrug strategy. The therapeutic effects of prodrugs could be "turned-on" once combined with palladium resins. Particularly, prodrug 2b was 68.3-fold less cytotoxic compared to the parent compound, while its cytotoxicity was recovered in situ in the presence of palladium resins. Mechanism studies confirmed that 2b inhibited cell growth in the same manner as CBSIs. More importantly, in vivo efficacy studies demonstrated the efficient activation of 2b by palladium resins, resulting in significant inhibition of tumor growth (63.2%). These results suggest that prodrug 2b with improved safety and targeted release property catalyzed by a Pd-mediated bioorthogonal cleavage reaction deserves further investigation.
Collapse
Affiliation(s)
- Jinlong Li
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Tong Zhang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Di Wu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Chen He
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Haoxiang Weng
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Tiandong Zheng
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Jie Liu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Hong Yao
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yansong Ren
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Jinyi Xu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Shengtao Xu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
- Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou 215132, P.R. China
| |
Collapse
|
5
|
Safaie N, Idari G, Ghasemi D, Hajiabbasi M, Alivirdiloo V, Masoumi S, Zavvar M, Majidi Z, Faridvand Y. AMPK activation; a potential strategy to mitigate TKI-induced cardiovascular toxicity. Arch Physiol Biochem 2024:1-13. [PMID: 39526616 DOI: 10.1080/13813455.2024.2426494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The introduction of Tyrosine Kinase Inhibitors (TKIs) has revolutionised cancer treatment, yet concerns regarding cardiovascular toxicity have surfaced. This piece delves into the interplay between AMP-activated protein kinase (AMPK) signalling and TKI-induced cardiovascular toxicity. The study unravels the intricate relationship between AMPK activation and TKI-induced cardiovascular toxicity, aiming to ascertain whether AMPK can play a strategic role in mitigating adverse effects. Beyond unravelling mechanistic insights, the research sets the stage for future therapeutic approaches, envisioning AMPK activation as a pivotal connection for balancing effective cancer treatment with cardiovascular well-being. As research advances, the potential of AMPK activation not only addresses challenges in TKI-induced cardiovascular toxicity but also shapes the future landscape of personalised anticancer therapies. The article explores the mechanisms of TKI-induced toxicity, AMPK's impact on cardiovascular health, and the potential therapeutic implications of AMPK activation in alleviating TKI-associated toxicities.
Collapse
Affiliation(s)
- Nasser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Idari
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Diba Ghasemi
- Stem Cell research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Alivirdiloo
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramasr, Iran
| | - Shahab Masoumi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Vanderbilt University of Medical center, Nashville, TN, USA
| | - Mahdi Zavvar
- Department of Medical Laboratory Science, School of Allied Medicine Sciences (SAMS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ziba Majidi
- Department of Medical Laboratory Science, School of Allied Medicine Sciences (SAMS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Tsai JF, Yu FY, Liu BH. Citrinin disrupts microtubule assembly in cardiac cells: Impact on mitochondrial organization and function. CHEMOSPHERE 2024; 365:143352. [PMID: 39293683 DOI: 10.1016/j.chemosphere.2024.143352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Citrinin (CTN) is a mycotoxin commonly present in various foods and feeds worldwide, as well as dietary supplements in Asian countries, but the risks and cellular mechanisms associated with its cardiotoxicity remains unclear. In this study, RNA-seq analysis of CTN-treated H9c2 cardiac cells demonstrated significant perturbations in pathways related to microtubule cytoskeleton and mitochondrial network organization. CTN disrupted microtubule polymerization and downregulated mRNA levels of microtubule-assembling genes, Map2 and Tpx2, in H9c2 cardiac cells. Additionally, CTN interfered with the distribution of mitochondrial network along the microtubules, leading to the accumulation of dysfunctional mitochondria characterized by elevated superoxide levels and reduced membrane potential. This disruption also caused the buildup of lysosomes and ubiquitinated proteins, which hindered waste clearance in microtubule-disassembled H9c2 cells. Molecular docking analysis indicated that CTN could bind to the colchicine binding site on β-tubulin, thereby mimicking the microtubule-disrupting effect of colchicine. This study provides morphological, transcriptomic, and mechanistic evidence to elucidate the cardiotoxic mechanisms of CTN, which involve the dysregulated microtubule network, subsequent mitochondrial mislocalization, and impaired proteolysis of damaged proteins/organelles in cardiac cells. Our findings may enhance the fundamental understanding and facilitate future risk assessment of CTN.
Collapse
Affiliation(s)
- Jui-Feng Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Nagy A, Börzsei D, Hoffmann A, Török S, Veszelka M, Almási N, Varga C, Szabó R. A Comprehensive Overview on Chemotherapy-Induced Cardiotoxicity: Insights into the Underlying Inflammatory and Oxidative Mechanisms. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07574-0. [PMID: 38492161 DOI: 10.1007/s10557-024-07574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
While oncotherapy has made rapid progress in recent years, side effects of anti-cancer drugs and treatments have also come to the fore. These side effects include cardiotoxicity, which can cause irreversible cardiac damages with long-term morbidity and mortality. Despite the continuous in-depth research on anti-cancer drugs, an improved knowledge of the underlying mechanisms of cardiotoxicity are necessary for early detection and management of cardiac risk. Although most reviews focus on the cardiotoxic effect of a specific individual chemotherapeutic agent, the aim of our review is to provide comprehensive insight into various agents that induced cardiotoxicity and their underlying mechanisms. Characterization of these mechanisms are underpinned by research on animal models and clinical studies. In order to gain insight into these complex mechanisms, we emphasize the role of inflammatory processes and oxidative stress on chemotherapy-induced cardiac changes. A better understanding and identification of the interplay between chemotherapy and inflammatory/oxidative processes hold some promise to prevent or at least mitigate cardiotoxicity-associated morbidity and mortality among cancer survivors.
Collapse
Affiliation(s)
- András Nagy
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Denise Börzsei
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Alexandra Hoffmann
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Szilvia Török
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Médea Veszelka
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Nikoletta Almási
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Renáta Szabó
- Department of Physiology, Anatomy, and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary.
| |
Collapse
|
8
|
Abdul-Rahman T, Dunham A, Huang H, Bukhari SMA, Mehta A, Awuah WA, Ede-Imafidon D, Cantu-Herrera E, Talukder S, Joshi A, Sundlof DW, Gupta R. Chemotherapy Induced Cardiotoxicity: A State of the Art Review on General Mechanisms, Prevention, Treatment and Recent Advances in Novel Therapeutics. Curr Probl Cardiol 2023; 48:101591. [PMID: 36621516 DOI: 10.1016/j.cpcardiol.2023.101591] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
As medicine advances to employ sophisticated anticancer agents to treat a vast array of oncological conditions, it is worth considering side effects associated with several chemotherapeutics. One adverse effect observed with several classes of chemotherapy agents is cardiotoxicity which leads to reduced ejection fraction (EF), cardiac arrhythmias, hypertension and Ischemia/myocardial infarction that can significantly impact the quality of life and patient outcomes. Research into possible mechanisms has elucidated several mechanisms, such as ROS generation, calcium overload and apoptosis. However, there is a relative scarcity of literature detailing the relationship between the exact mechanism of cardiotoxicity for each anticancer agent and observed clinical effects. This review comprehensively describes cardiotoxicity associated with various classes of anticancer agents and possible mechanisms. Further research exploring possible mechanisms for cardiotoxicity observed with anticancer agents could provide valuable insight into susceptibility for developing symptoms and management guidelines. Chemotherapeutics are associated with several side effects. Several classes of chemotherapy agents cause cardiotoxicity leading to a reduced ejection fraction (EF), cardiac arrhythmias, hypertension, and Ischemia/myocardial infarction. Research into possible mechanisms has elucidated several mechanisms, such as ROS generation, calcium overload, and apoptosis. However, there is a relative scarcity of literature detailing the relationship between the exact mechanism of cardiotoxicity for each anticancer agent and observed clinical effects. This review describes cardiotoxicity associated with various classes of anticancer agents and possible mechanisms. Further research exploring mechanisms for cardiotoxicity observed with anticancer agents could provide insight that will guide management.
Collapse
Affiliation(s)
| | - Alden Dunham
- University of South Florida Morsani College of Medicine, FL
| | - Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Science, Dublin, Ireland
| | | | - Aashna Mehta
- University of Debrecen-Faculty of Medicine, Debrecen, Hungary
| | - Wireko A Awuah
- Sumy State University, Toufik's World Medical Association, Ukraine
| | | | - Emiliano Cantu-Herrera
- Department of Clinical Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza García, Nuevo León, México
| | | | - Amogh Joshi
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA
| | - Deborah W Sundlof
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA
| | - Rahul Gupta
- Department of Cardiology, Lehigh Valley Health Network, Allentown, PA.
| | | |
Collapse
|
9
|
Zagami P, Nicolò E, Corti C, Valenza C, Curigliano G. New Concepts in Cardio-Oncology. Cancer Treat Res 2023; 188:303-341. [PMID: 38175351 DOI: 10.1007/978-3-031-33602-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cancer and cardiovascular disease are the two major causes of morbidity and mortality in worldwide. Discovering new therapeutic agents for the management of breast cancer (BC) has increased the numbers of cancer survivors but with the risk of cardiovascular adverse events (CV-AEs). All drugs can potentially damage the cardiovascular system, with different types of clinical manifestations from ischemic myocardial disease to vasculitis, thrombosis or pericarditis. An early detection of CV-AEs guarantees an earlier treatment, which is associated with better outcomes. Cardio-oncology field enlarged its studies to improve prevention, monitoring and treatment of all cardiotoxic manifestations related to old or modern oncological agents. A multidisciplinary approach with a close partnership between oncologists and cardiologists is essential for an optimal management and therapeutic decision-making. The aim of this chapter is to review all types of cardiotoxic manifestations related to novel and old agents approved for treatment of BC patients including chemotherapy, anti-HER2 agents, cyclin-dependent kinase 4/6 inhibitors, PolyADP-ribose polymerase (PARP) inhibitors, antiangiogenic drugs and immunotherapy. We also focused our discussion on prevention, monitoring, treatment, and management of CV-AEs.
Collapse
Affiliation(s)
- Paola Zagami
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hematology, University of Milano, Milan, Italy.
| | - Eleonora Nicolò
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Chiara Corti
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Carmine Valenza
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hematology, University of Milano, Milan, Italy
| |
Collapse
|
10
|
Leng J, Zhao Y, Sheng P, Xia Y, Chen T, Zhao S, Xie S, Yan X, Wang X, Yin Y, Kong L. Discovery of Novel N-Heterocyclic-Fused Deoxypodophyllotoxin Analogues as Tubulin Polymerization Inhibitors Targeting the Colchicine-Binding Site for Cancer Treatment. J Med Chem 2022; 65:16774-16800. [PMID: 36471625 DOI: 10.1021/acs.jmedchem.2c01595] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural products are a major source of anticancer agents and play critical roles in anticancer drug development. Inspired by the complexity-to-diversity strategy, novel deoxypodophyllotoxin (DPT) analogues were designed and synthesized. Among them, compound C3 exhibited the potent antiproliferative activity against four human cancer cell lines with IC50 values in the low nanomolar range. Additionally, it showed marked activity against paclitaxel-resistant MCF-7 cells and A549 cells. Moreover, compound C3 can inhibit tubulin polymerization by targeting the colchicine-binding site of tubulin. Further study revealed that compound C3 could arrest cancer cells in the G2/M phase and disrupt the angiogenesis in human umbilical vein endothelial cells. Meanwhile, C3 remarkably inhibited cancer cell motility and migration, as well as considerably inhibited tumor growth in MCF-7 and MCF-7/TxR xenograft model without obvious toxicity. Collectively, these results indicated that compound C3 may be a promising tubulin polymerization inhibitor development for cancer treatment.
Collapse
Affiliation(s)
- Jiafu Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yongjun Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ping Sheng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yuanzheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Tingting Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shifang Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shanshan Xie
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiangyu Yan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
11
|
Kassaian SE, Gandhi B, Barac A. Cardio-oncology: Implications for Clinical Practice for Women. Curr Cardiol Rep 2022; 24:1685-1698. [PMID: 36112292 DOI: 10.1007/s11886-022-01779-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Clinical cardio-oncology considerations specific to women span across many areas and are particularly relevant for management of patients with sex-specific cancers, such as breast cancer. RECENT FINDINGS Major improvement in breast cancer survivorship over the last decade and the recognition of CV disease as the second leading cause of death among survivors point to the relevance of long-term cardiovascular (CV) safety. This review summarizes the CV effects associated with multimodality breast cancer treatments and contemporary approach to CV risk stratification, prevention, early detection, monitoring, and management at the time of cancer diagnosis, during and after completion of treatment. We highlight the growing role of a multidisciplinary, team-based approach for comprehensive CV and oncology care through the entire cancer treatment continuum, from diagnosis through survivorship.
Collapse
Affiliation(s)
- Seyed Ebrahim Kassaian
- J.D. Murphy Jr. Cardio-Oncology Fellowship Program, MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Georgetown University, 110 Irving Street, NW, Suite 1A130, Washington, DC, 20010, USA
| | - Bhumika Gandhi
- Cancer Survivorship Program, MedStar Georgetown University Hospital, 3800 Reservoir Road, Washington, DC, 20007, USA
| | - Ana Barac
- MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Georgetown University, 110 Irving Street, NW, Suite 1A130, Washington, DC, 20010, USA.
| |
Collapse
|
12
|
Zhang S, Xu X, Li Z, Yi T, Ma J, Zhang Y, Li Y. Analysis and Validation of Differentially Expressed Ferroptosis-Related Genes in Regorafenib-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2513263. [PMID: 36204517 PMCID: PMC9530921 DOI: 10.1155/2022/2513263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022]
Abstract
Background Although tyrosine kinase inhibitors (TKIs) constitute a type of anticancer drugs, the underlying mechanisms of TKI-associated cardiotoxicity remain largely unknown. Ferroptosis is a regulated cell death form that implicated in several tumors' biological processes. Our objective was to probe into the differential expression of ferroptosis-related genes in regorafenib-induced cardiotoxicity through multiple bioinformatics analysis and validation. Methods and Materials Four adult human cardiomyocyte cell lines treated with regorafenib were profiled using Gene Expression Omnibus (GEO) (GSE146096). Differentially expressed genes (DEGs) were identified using DESeq2 in R (V.3.6.3). Then, Gene Ontology (GO) Enrichment Analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis, and Gene Set Enrichment Analysis (GSEA) were used to explore DEGs' bioinformatics functions and enriched pathways. We intersected DEGs with 259 ferroptosis-related genes from the FerrDb database. Finally, the mRNA levels of differentially expressed ferroptosis-related genes (DEFRGs) were validated in regorafenib-cultured cardiomyocytes to anticipate the link between DEFRGs and cardiotoxicity. Results 747,1127,773 and 969 DEGs were screened out in adult human cardiomyocyte lines A, B, D, and E, respectively. The mechanism by which REG promotes cardiotoxicity associated with ferroptosis may be regulated by PI3K-Akt, TGF-beta, and MAPK. GSEA demonstrated that REG can promote cardiotoxicity by suppressing genes and pathways encoding extracellular matrix and related proteins, oxidative phosphorylation, or ATF-2 transcription factor network. After overlapping DEGs with ferroptosis-related genes, we got seven DEFRGs and found that ATF3, MT1G, and PLIN2 were upregulated and DDIT4 was downregulated. The ROC curve demonstrated that these genes predict regorafenib-induced cardiotoxicity well. Conclusion We identified four DEFRGs which may become potential predictors and participate in the regorafenib-induced cardiotoxicity. Our findings provide possibility that targeting these ferroptosis-related genes may be an alternative for clinical prevention and therapy of regorafenib-related cardiotoxicity.
Collapse
Affiliation(s)
- Siyuan Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Xueming Xu
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Zhangyi Li
- Department of Biochemistry and Life Sciences, Faculty of Arts and Sciences, Queen's University, Kingston, Ontario, Canada 91761
| | - Tian Yi
- Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Jingyu Ma
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Yan Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Yilan Li
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, Heilongjiang 150000, China
| |
Collapse
|
13
|
Caporizzo MA, Prosser BL. The microtubule cytoskeleton in cardiac mechanics and heart failure. Nat Rev Cardiol 2022; 19:364-378. [PMID: 35440741 PMCID: PMC9270871 DOI: 10.1038/s41569-022-00692-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
The microtubule network of cardiac muscle cells has unique architectural and biophysical features to accommodate the demands of the working heart. Advances in live-cell imaging and in deciphering the 'tubulin code' have shone new light on this cytoskeletal network and its role in heart failure. Microtubule-based transport orchestrates the growth and maintenance of the contractile apparatus through spatiotemporal control of translation, while also organizing the specialized membrane systems required for excitation-contraction coupling. To withstand the high mechanical loads of the working heart, microtubules are post-translationally modified and physically reinforced. In response to stress to the myocardium, the microtubule network remodels, typically through densification, post-translational modification and stabilization. Under these conditions, physically reinforced microtubules resist the motion of the cardiomyocyte and increase myocardial stiffness. Accordingly, modified microtubules have emerged as a therapeutic target for reducing stiffness in heart failure. In this Review, we discuss the latest evidence on the contribution of microtubules to cardiac mechanics, the drivers of microtubule network remodelling in cardiac pathologies and the therapeutic potential of targeting cardiac microtubules in acquired heart diseases.
Collapse
Affiliation(s)
- Matthew A Caporizzo
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT, USA
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Peng Y, Shi Z, Liang Y, Ding K, Wang Y. Targeting the tumor microenvironment by an enzyme-responsive prodrug of tubulin destabilizer for triple-negative breast cancer therapy with high safety. Eur J Med Chem 2022; 236:114344. [PMID: 35405397 DOI: 10.1016/j.ejmech.2022.114344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
Abstract
In response to the long-term potential toxicity concerns of tubulin destabilizer, an enzyme-responsive prodrug therapy for triple-negative breast cancer was developed based on the different β-glucuronidase levels between tumor and normal tissues in this study. All the prodrugs synthesized herein showed remarkable stability in phosphate buffer and bovine serum solution, among which 17a was found to be more susceptible to enzymatic cleavage. 17a exhibited excellent selectivity between the in vitro antiproliferative activities against β-glucuronidase-pretreated and -untreated cancer cells (IC50 (+Enz) = 8.9-15.7 nM, IC50 (-Enz) > 50 μM), along with favorable liver microsomal metabolic stability and improved aqueous solubility. Furthermore, as a candidate prodrug 17a showed potent antitumor efficacy in MDA-MB-231 xenograft mouse model without causing perceptible injury to organs. Importantly, 17a exhibited superior safety profiles with higher LD50 value and no perceivable cardiotoxicity, which was a major dose-limiting adverse effect for the parent compound 1. These salient toxicity-reduced effects of 17a would merit further in-depth assessment of this compound for preclinical therapeutic usages.
Collapse
Affiliation(s)
- Yingyuan Peng
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhixian Shi
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yuru Liang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai, 201203, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China; Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|