1
|
Zhao J, Liu L, Lv S, Wang C, Yue H, Zhang Z. PFN1 Gene Polymorphisms and the Bone Mineral Density Response to Alendronate Therapy in Postmenopausal Chinese Women with Low Bone Mass. Pharmgenomics Pers Med 2022; 14:1669-1678. [PMID: 34992429 PMCID: PMC8711734 DOI: 10.2147/pgpm.s344818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/15/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Alendronate is a widely used anti-osteoporotic drug. PFN1 gene is a newly identified early-onset Paget’s disease pathogenic gene. The purpose of this study is to study whether the genetic variations in this gene affect the clinical efficacy of alendronate in postmenopausal Chinese women with low bone mass. Patients and Methods Seven single nucleotide polymorphisms in PFN1 gene were genotyped. A total of 500 postmenopausal women with osteoporosis or osteopenia were included. All participants were treated with weekly alendronate 70 mg for 12 months. A total of 466 subjects completed the follow-up. Bone mineral density (BMD) of lumbar spine, femoral neck and total hip were measured at baseline and after treatment. Results After 12 months of treatment, the BMD of lumbar spine, femoral neck and total hip all increased significantly (all P < 0.001), with an average increase of 4.72 ± 5.31%, 2.08 ± 4.45%, and 2.42 ± 3.46%, respectively. At baseline, there were no significant differences in BMD at lumbar spine, femoral neck and total hip between different genotype groups (P > 0.05). We failed to identify any significant association between the genotypes or haplotypes of PFN1 and the BMD response to alendronate therapy. Conclusion Genetic polymorphisms of PFN1 may not be a major contributor to the therapeutic response to alendronate treatment in Chinese women with low bone mass.
Collapse
Affiliation(s)
- Jiao Zhao
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Li Liu
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Shanshan Lv
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Chun Wang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Hua Yue
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Western-type diet differentially modulates osteoblast, osteoclast, and lipoblast differentiation and activation in a background of APOE deficiency. J Transl Med 2018; 98:1516-1526. [PMID: 30206314 DOI: 10.1038/s41374-018-0107-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/26/2018] [Accepted: 06/20/2018] [Indexed: 11/08/2022] Open
Abstract
During the past few years, considerable evidence has uncovered a strong relationship between fat and bone metabolism. Consequently, alterations in plasma lipid metabolic pathways strongly affect bone mass and quality. We recently showed that the deficiency of apolipoprotein A-1 (APOA1), a central regulator of high-density lipoprotein cholesterol (HDL-C) metabolism, results in reduced bone mass in C57BL/6 mice. It is documented that apolipoprotein E (APOE), a lipoprotein know for its atheroprotective functions and de novo biogenesis of HDL-C, is associated with the accumulation of fat in the liver and other organs and regulates bone mass in mice. We further studied the mechanism of APOE in bone metabolism using well-characterized APOE knockout mice. We found that bone mass was remarkably reduced in APOE deficient mice fed Western-type diet (WTD) compared to wild type counterparts. Static (microCT-based) and dynamic histomorphometry showed that the reduced bone mass in APOΕ-/- mice is attributed to both decreased osteoblastic bone synthesis and elevated osteoclastic bone resorption. Interestingly, histologic analysis of femoral sections revealed a significant reduction in the number of bone marrow lipoblasts in APOΕ-/- compared to wild type mice under WTD. Analyses of whole bone marrow cells obtained from femora of both animal groups showed that APOE null mice had significantly reduced levels of the osteoblastic (RUNX2 and Osterix) and lipoblastic (PPARγ and CEBPα) cardinal regulators. Additionally, the modulators of bone remodeling RANK, RANKL, and cathepsin K were greatly increased, while OPG and the OPG/RANKL ratio were remarkably decreased in APOΕ-/- mice fed WTD, compared to their wild-type counterparts. These findings suggest that APOE deficiency challenged with WTD reduces osteoblastic and lipoblastic differentiation and activity, whereas it enhances osteoclastic function, ultimately resulting in reduced bone mass, in mice.
Collapse
|
3
|
Blair HC, Kalyvioti E, Papachristou NI, Tourkova IL, Syggelos SA, Deligianni D, Orkoula MG, Kontoyannis CG, Karavia EA, Kypreos KE, Papachristou DJ. Apolipoprotein A-1 regulates osteoblast and lipoblast precursor cells in mice. J Transl Med 2016; 96:763-72. [PMID: 27088511 DOI: 10.1038/labinvest.2016.51] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/11/2016] [Accepted: 03/18/2016] [Indexed: 01/18/2023] Open
Abstract
Imbalances in lipid metabolism affect bone homeostasis, altering bone mass and quality. A link between bone mass and high-density lipoprotein (HDL) has been proposed. Indeed, it has been recently shown that absence of the HDL receptor scavenger receptor class B type I (SR-B1) causes dense bone mediated by increased adrenocorticotropic hormone (ACTH). In the present study we aimed at further expanding the current knowledge as regards the fascinating bone-HDL connection studying bone turnover in apoA-1-deficient mice. Interestingly, we found that bone mass was greatly reduced in the apoA-1-deficient mice compared with their wild-type counterparts. More specifically, static and dynamic histomorphometry showed that the reduced bone mass in apoA-1(-/-) mice reflect decreased bone formation. Biochemical composition and biomechanical properties of ApoA-1(-/-) femora were significantly impaired. Mesenchymal stem cell (MSC) differentiation from the apoA-1(-/-) mice showed reduced osteoblasts, and increased adipocytes, relative to wild type, in identical differentiation conditions. This suggests a shift in MSC subtypes toward adipocyte precursors, a result that is in line with our finding of increased bone marrow adiposity in apoA-1(-/-) mouse femora. Notably, osteoclast differentiation in vitro and osteoclast surface in vivo were unaffected in the knock-out mice. In whole bone marrow, PPARγ was greatly increased, consistent with increased adipocytes and committed precursors. Further, in the apoA-1(-/-) mice marrow, CXCL12 and ANXA2 levels were significantly decreased, whereas CXCR4 were increased, consistent with reduced signaling in a pathway that supports MSC homing and osteoblast generation. In keeping, in the apoA-1(-/-) animals the osteoblast-related factors Runx2, osterix, and Col1a1 were also decreased. The apoA-1(-/-) phenotype also included augmented CEPBa levels, suggesting complex changes in growth and differentiation that deserve further investigation. We conclude that the apoA-1 deficiency generates changes in the bone cell precursor population that increase adipoblast, and decrease osteoblast production resulting in reduced bone mass and impaired bone quality in mice.
Collapse
Affiliation(s)
- Harry C Blair
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elena Kalyvioti
- Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, University of Patras School of Medicine, Patras, Greece
| | - Nicholaos I Papachristou
- Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, University of Patras School of Medicine, Patras, Greece
| | - Irina L Tourkova
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Spryros A Syggelos
- Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, University of Patras School of Medicine, Patras, Greece
| | - Despina Deligianni
- Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
| | | | - Christos G Kontoyannis
- Department of Pharmacy, University of Patras, Patras, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | - Eleni A Karavia
- Department of Pharmacology, University of Patras Medical School, Patras, Greece
| | - Kyriakos E Kypreos
- Department of Pharmacology, University of Patras Medical School, Patras, Greece
| | - Dionysios J Papachristou
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, University of Patras School of Medicine, Patras, Greece
| |
Collapse
|
4
|
Constantinou C, Karavia EA, Xepapadaki E, Petropoulou PI, Papakosta E, Karavyraki M, Zvintzou E, Theodoropoulos V, Filou S, Hatziri A, Kalogeropoulou C, Panayiotakopoulos G, Kypreos KE. Advances in high-density lipoprotein physiology: surprises, overturns, and promises. Am J Physiol Endocrinol Metab 2016; 310:E1-E14. [PMID: 26530157 DOI: 10.1152/ajpendo.00429.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/30/2015] [Indexed: 12/21/2022]
Abstract
Emerging evidence strongly supports that changes in the HDL metabolic pathway, which result in changes in HDL proteome and function, appear to have a causative impact on a number of metabolic disorders. Here, we provide a critical review of the most recent and novel findings correlating HDL properties and functionality with various pathophysiological processes and disease states, such as obesity, type 2 diabetes mellitus, nonalcoholic fatty liver disease, inflammation and sepsis, bone and obstructive pulmonary diseases, and brain disorders.
Collapse
Affiliation(s)
| | - Eleni A Karavia
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Eva Xepapadaki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Eugenia Papakosta
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Marilena Karavyraki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Evangelia Zvintzou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Serafoula Filou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Aikaterini Hatziri
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | | | - Kyriakos E Kypreos
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| |
Collapse
|
5
|
Abstract
Osteoporosis is a prevalent disease that typically reduces bone strength and predisposes to fractures. It is a multifactorial disorder resulting from the interaction of genetic and acquired factors. Candidate gene studies and, more recently, genome-wide studies have identified a number of polymorphisms significantly associated with bone mass and fractures. Anti-resorptive drugs, which inhibit the differentiation and activity of osteoclasts, are frequently used to treat patients with osteoporosis.Several candidate gene studies have explored the association of genetic factors with drug response, including some common polymorphisms of the gene encoding FDPS (Farnesyl diphosphate synthase), an enzyme that is the main target of aminobisphosphonates. Although scarce data are available, interesting opportunities are open for a better understanding of the pharmacogenetics of osteoporosis and osteoporotic fractures. They include the reanalysis of data already available from epidemiological studies and clinical trials, as well as obtaining pharmacogenetic data in new studies. However, based upon the experience with previous genome-wide association studies, large collaborative efforts would be likely needed to obtain meaningful results.
Collapse
Affiliation(s)
- José A Riancho
- Bone Laboratory, Department of Internal Medicine, Hospital U.M. Valdecilla-IDIVAL, University of Cantabria, Av. Valdecilla s/n, Santander, 39008, Spain,
| | | |
Collapse
|
6
|
Abstract
Osteoporotic fracture carries an enormous public health burden in terms of mortality and morbidity. Current approaches to identify individuals at high risk for fracture are based on assessment of bone mineral density and presence of other osteoporosis risk factors. Bone mineral density and susceptibility to osteoporotic fractures are highly heritable, and over 60 loci have been robustly associated with one or both traits through genome-wide association studies carried out over the past 7 years. In this review, we discuss opportunities and challenges for incorporating these genetic discoveries into strategies to prevent osteoporotic fracture and translating new insights obtained from these discoveries into development of new therapeutic targets.
Collapse
Affiliation(s)
- Braxton D Mitchell
- Department of Medicine and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, and Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, MD, USA
| | - Elizabeth A Streeten
- Department of Medicine and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, and Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, MD, USA
| |
Collapse
|
7
|
Ostanek B, Marc J. Osteoporosis pharmacogenomics: recent insights and future perspectives. Pharmacogenomics 2013; 14:451-4. [PMID: 23556441 DOI: 10.2217/pgs.13.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
8
|
Marini F, Brandi ML. The future of pharmacogenetics for osteoporosis. Pharmacogenomics 2013; 14:641-53. [DOI: 10.2217/pgs.13.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The possibility to predict the outcome of medical treatments, both in terms of efficacy and development of adverse effects, is the main goal of modern personalized medicine. The principal aim of pharmacogenetics is to design specific predictive genetic tests, to be performed prior to any drug treatment, and to tailor the therapy for each patient based on the results of these tests. Few pharmacogenetic tests are today validated and commonly applied in clinical practice, and none in the area of osteoporosis and bone disorders. Surely, the complex regulation of bone metabolism and the involvement of numerous different molecular pathways makes it difficult to individuate responsible genes and polymorphisms involved in the modulation of anti-osteoporotic drug response and, subsequently, in designing specific predictive analyses.
Collapse
Affiliation(s)
- Francesca Marini
- Metabolic Bone Unit, Department of Surgery & Translation Medicine, University of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Metabolic Bone Unit, Department of Surgery & Translation Medicine, University of Florence, Florence, Italy
| |
Collapse
|