1
|
Mu X, Zhang H, Zhang J. How Accurately Does Bone Mineral Density Predict Bone Strength? A Clinical Observational Study of Osteoporosis Vertebral Compression Fractures in Postmenopausal Women. Orthop Surg 2025; 17:1067-1074. [PMID: 39780751 PMCID: PMC11962276 DOI: 10.1111/os.14354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES Dual energy x-ray absorptiometry (DXA) provides incomplete information about bone strength. There are few data on the relationship between osteoporosis-related examinations and bone strength. The objective of the present study was to determine which osteoporosis-related examinations best predicted trabecular bone strength, and to enhance a formula for predicting bone strength on the basis of bone density examination. METHODS This observational study included postmenopausal women (aged over 50 years) who underwent unilateral percutaneous kyphoplasty (PKP) surgery in the lumbar spine between September 2021 and June 2023. The pressure within each balloon expansion circle was extracted to reflect the true bone strength. The NHANES 2013-2014 data were used to assess the performance of the formula. The performance of the formula was compared with that of the observed actual fractures. Bland-Altman analysis was used to compare the agreement between the formula and the fracture risk assessment tool (FRAX) score. RESULTS A total of 40 postmenopausal women (mean age ± standard deviation, 70.90 years ± 10.30) were enrolled. The average balloon pressure was 59.23 psi (± 12.40, means ± SDs). The mean BMD of total lumbar spine (average of L1-L4) was 0.89 g/cm2 ± 0.20 (mean ± standard), and the Pearson correlation coefficient between lumbar BMD and bone strength was 0.516. After adjusting for age and BMI, the DXA response rate to bone strength reached 72%. Calibration plots of the observed actual fractures versus those estimated via the bone strength formula were considered good fits. The Bland-Altman analysis revealed a nonsignificant difference between the formula and the FRAX score in predicting fracture risk. CONCLUSIONS After adjustment, the DXA response rate to bone strength reached 72%, indicating a strong correlation. In addition, Bone Strength = DXA × 27 - Age × 0.585-BMI × 0.887 + 98.
Collapse
Affiliation(s)
- Xuemeng Mu
- Department of Orthopedic SurgeryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Hengyan Zhang
- Department of Orthopedic SurgeryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Jia Zhang
- Department of Orthopedic SurgeryPeking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
2
|
Luo Y. Biomechanical perspectives on image-based hip fracture risk assessment: advances and challenges. Front Endocrinol (Lausanne) 2025; 16:1538460. [PMID: 40104137 PMCID: PMC11915145 DOI: 10.3389/fendo.2025.1538460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/27/2025] [Indexed: 03/20/2025] Open
Abstract
Hip fractures pose a significant health challenge, particularly in aging populations, leading to substantial morbidity and economic burden. Most hip fractures result from a combination of osteoporosis and falls. Accurate assessment of hip fracture risk is essential for identifying high-risk individuals and implementing effective preventive strategies. Current clinical tools, such as the Fracture Risk Assessment Tool (FRAX), primarily rely on statistical models of clinical risk factors derived from large population studies. However, these tools often lack specificity in capturing the individual biomechanical factors that directly influence fracture susceptibility. Consequently, image-based biomechanical approaches, primarily leveraging dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT), have garnered attention for their potential to provide a more precise evaluation of bone strength and the impact forces involved in falls, thereby enhancing risk prediction accuracy. Biomechanical approaches rely on two fundamental components: assessing bone strength and predicting fall-induced impact forces. While significant advancements have been made in image-based finite element (FE) modeling for bone strength analysis and dynamic simulations of fall-induced impact forces, substantial challenges remain. In this review, we examine recent progress in these areas and highlight the key challenges that must be addressed to advance the field and improve fracture risk prediction.
Collapse
Affiliation(s)
- Yunhua Luo
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
- Department of Biomedical Engineering (Graduate Program), University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Hong GAT, Tobalske BW, van Staaveren N, Leishman EM, Widowski TM, Powers DR, Harlander A. Hen-durance training-effects of an exercise regimen on laying hen muscle architecture and fracture prevalence. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241191. [PMID: 40012755 PMCID: PMC11858752 DOI: 10.1098/rsos.241191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/24/2024] [Accepted: 12/11/2024] [Indexed: 02/28/2025]
Abstract
Domestic chickens kept for egg laying navigate inclines such as ramps in some commercial housing systems to aid in transitions between housing tiers. Laying hens use their wings and hindlimbs in a locomotion called wing-assisted incline running (WAIR) to ascend steep inclines. There is a potential relationship between the strength of the main flight muscles and the health of the keel bone from which they originate. We sought to test the effects of a controlled, WAIR-based exercise regimen during rearing on keel bone health and muscle properties of white- and brown-feathered laying hens. The WAIR exercise regimen, which consisted of exercise twice weekly for 16 weeks did not promote increases in muscle mass or physiological cross-sectional area at 21 weeks of age (WOA) and did not provide long-term benefits on keel fracture prevalence at 40 WOA. However, the brown-feathered birds were found to have lower amounts of keel fractures at 40 WOA in comparison with the white-feathered birds. Future studies should test for training that begins before chicks become fully feathered, exercises that emphasize full excursion of the wing during downstroke and different levels of intensity, frequency and duration to optimize flight muscle architecture and promote keel bone health.
Collapse
Affiliation(s)
- Grace A. T. Hong
- Department of Animal Biosciences, Campbell Centre for the Study of Animal Welfare, University of Guelph, Guelph, OntarioN1G 2W1, Canada
- Department of Animal Biosciences, Centre for Nutrition Modelling, University of Guelph, Guelph, OntarioN1G 2W1, Canada
| | - Bret W. Tobalske
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT59812, USA
| | - Nienke van Staaveren
- Department of Animal Biosciences, Campbell Centre for the Study of Animal Welfare, University of Guelph, Guelph, OntarioN1G 2W1, Canada
- Department Population Health Sciences, Utrecht University, Heidelberglaan 8, Utrecht3584 CS, The Netherlands
| | - Emily M. Leishman
- Department of Animal Biosciences, Campbell Centre for the Study of Animal Welfare, University of Guelph, Guelph, OntarioN1G 2W1, Canada
- Department of Animal Biosciences, Centre for Nutrition Modelling, University of Guelph, Guelph, OntarioN1G 2W1, Canada
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, OntarioN1G 2W1, Canada
| | - Tina M. Widowski
- Department of Animal Biosciences, Campbell Centre for the Study of Animal Welfare, University of Guelph, Guelph, OntarioN1G 2W1, Canada
| | - Donald R. Powers
- Department of Biology, George Fox University, 414N Meridian Street, Newberg, OR97132, USA
| | - Alexandra Harlander
- Department of Animal Biosciences, Campbell Centre for the Study of Animal Welfare, University of Guelph, Guelph, OntarioN1G 2W1, Canada
| |
Collapse
|
4
|
Frara S, Acanfora M, Franzese V, Brandi ML, Losa M, Giustina A. Novel approach to bone comorbidity in resistant acromegaly. Pituitary 2024; 27:813-823. [PMID: 39570564 DOI: 10.1007/s11102-024-01468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2024] [Indexed: 11/22/2024]
Abstract
Active acromegaly may lead to irreversible complications. Among them, acromegaly osteopathy and fragility (vertebral and hip) fractures have emerged as frequent and precocious events in the natural history of the disease, being correlated with longer disease duration and higher growth hormone (GH) levels, accounting for patients' reported poor quality of life, physical performance and other life-impacting complications. Differently from primary osteoporosis, bone mineral density is not a reliable tool to predict fracture risk in this clinical setting, as patients with active disease frequently have normal or slightly reduced bone mass; whereas bone quality is particularly compromised, as determined by low trabecular bone score (TBS) in patients with active disease as compared to healthy controls or patients with cured/controlled disease. The evidence of impaired bone microstructure has been profoundly investigated with different computed tomography (CT) techniques, reporting low trabecular number and thickness as well as wide but more porous cortical bone, providing an explanation for such a high prevalence of vertebral fractures (up to 40-50% in selected cohorts). Since data on bone-active drugs are scanty, disease control remains a cornerstone to prevent fractures. Nonetheless, some potential protective effects may derive from vitamin D supplementation and pasireotide therapies, independently from disease status. Aim of this manuscript is to review the current and emerging evidence on skeletal fragility in patients with active and resistant acromegaly.
Collapse
Affiliation(s)
- Stefano Frara
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, Via Olgettina, 58, Milan, 20132, Italy.
- Endocrinology Unit, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Matteo Acanfora
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, Via Olgettina, 58, Milan, 20132, Italy
- Endocrinology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vincenzo Franzese
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, Via Olgettina, 58, Milan, 20132, Italy
- Endocrinology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maria Luisa Brandi
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, Via Olgettina, 58, Milan, 20132, Italy
- Endocrinology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marco Losa
- Chair of Neurosurgery, Università Vita-Salute San Raffaele, Milan, Italy
- Neurosurgery department, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, Via Olgettina, 58, Milan, 20132, Italy
- Endocrinology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
5
|
Chiloiro S, Costanza F, Giampietro A, Infante A, Mattogno PP, Angelini F, Gullì C, Lauretti L, Rigante M, Olivi A, De Marinis L, Doglietto F, Bianchi A, Pontecorvi A. GH receptor polymorphisms guide second-line therapies to prevent acromegaly skeletal fragility: preliminary results of a pilot study. Front Endocrinol (Lausanne) 2024; 15:1414101. [PMID: 39280003 PMCID: PMC11395836 DOI: 10.3389/fendo.2024.1414101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024] Open
Abstract
Background Skeletal fragility is characterized by increased frequency of vertebral fractures (VFs) in acromegaly. Several trials were conducted to identify modifiable risk factors and predictors of VFs, with limited data on the prognostic role of GH receptor (GHR) isoforms. In this study, we investigated the potential role of GHR polymorphism on the occurrence of incidental VFs (i-VFs), in patients treated with second-line medical therapies. Methods A longitudinal, retrospective, observational study was conducted on a cohort of 45 acromegalic patients not-responsive to first-generation somatostatin receptor ligands (fg-SRLs) and treated with GHR antagonist (Pegvisomant) or with the second-generation SRLs (Pasireotide long-acting release). Results Second line treatments were Pegvisomant plus fg-SRLs in 26 patients and Pasireotide LAR in 19 patients. From the group treated with fg-SRLs+Peg-V, the fl-GHR isoform was identified in 18 patients (69.2%) and the d3-GHR isoform in 8 patients (30.8%). I-VFs arose exclusively in fl-GHR isoform carriers (p=0.039). From the group treated with Pasireotide LAR, the fl-GHR isoform was identified in 11 patients (57.9%), and the d3-GHR isoform in 8 patients (42.1%). I-VFs arose exclusively in d3-GHR isoform carriers (p=0.018). Patients with fl-GHR isoform had a higher risk for i-VFs if treated with fg-SRL+Peg-V (OR: 1.6 95%IC: 1.1-2.3, p=0.04), and a lower risk if treated with Pasi-LAR (OR: 0.26 IC95%: 0.11-0.66, p=0.038). Conclusions Our data support a predictive role of the GHR isoforms for the occurrence of i-VFs in acromegalic patients treated with second-line drugs, tailored to the individual patient. The knowledge of the GHR polymorphism may facilitate the choice of second-line therapies, improving the therapeutic approach, in the context of personalized medicine.
Collapse
Affiliation(s)
- Sabrina Chiloiro
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Flavia Costanza
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Antonella Giampietro
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Amato Infante
- Dipartimento di Diagnostica per Immagini e radioterapia oncologica, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Pier Paolo Mattogno
- Dipartimento di Neurochirugia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
- Dipartimento di Science dell’invecchiamento, neuroscienze, delle scienze del capo-collo, ed ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Flavia Angelini
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Consolato Gullì
- Dipartimento di Diagnostica per Immagini e radioterapia oncologica, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Liverana Lauretti
- Dipartimento di Neurochirugia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
- Dipartimento di Science dell’invecchiamento, neuroscienze, delle scienze del capo-collo, ed ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mario Rigante
- Unità di Otorinologingoiatria, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Alessandro Olivi
- Dipartimento di Neurochirugia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
- Dipartimento di Science dell’invecchiamento, neuroscienze, delle scienze del capo-collo, ed ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura De Marinis
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Francesco Doglietto
- Dipartimento di Neurochirugia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
- Dipartimento di Science dell’invecchiamento, neuroscienze, delle scienze del capo-collo, ed ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Bianchi
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Alfredo Pontecorvi
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| |
Collapse
|
6
|
Kuliczkowska-Płaksej J, Zdrojowy-Wełna A, Jawiarczyk-Przybyłowska A, Gojny Ł, Bolanowski M. Diagnosis and therapeutic approach to bone health in patients with hypopituitarism. Rev Endocr Metab Disord 2024; 25:513-539. [PMID: 38565758 DOI: 10.1007/s11154-024-09878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
The results of many studies in recent years indicate a significant impact of pituitary function on bone health. The proper function of the pituitary gland has a significant impact on the growth of the skeleton and the appearance of sexual dimorphism. It is also responsible for achieving peak bone mass, which protects against the development of osteoporosis and fractures later in life. It is also liable for the proper remodeling of the skeleton, which is a physiological mechanism managing the proper mechanical resistance of bones and the possibility of its regeneration after injuries. Pituitary diseases causing hypofunction and deficiency of tropic hormones, and thus deficiency of key hormones of effector organs, have a negative impact on the skeleton, resulting in reduced bone mass and susceptibility to pathological fractures. The early appearance of pituitary dysfunction, i.e. in the pre-pubertal period, is responsible for failure to achieve peak bone mass, and thus the risk of developing osteoporosis in later years. This argues for the need for a thorough assessment of patients with hypopituitarism, not only in terms of metabolic disorders, but also in terms of bone disorders. Early and properly performed treatment may prevent patients from developing the bone complications that are so common in this pathology. The aim of this review is to discuss the physiological, pathophysiological, and clinical insights of bone involvement in pituitary disease.
Collapse
Affiliation(s)
- Justyna Kuliczkowska-Płaksej
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, Wrocław, 50-367, Poland
| | - Aleksandra Zdrojowy-Wełna
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, Wrocław, 50-367, Poland
| | - Aleksandra Jawiarczyk-Przybyłowska
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, Wrocław, 50-367, Poland.
| | - Łukasz Gojny
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, Wrocław, 50-367, Poland
| | - Marek Bolanowski
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, Wybrzeże Pasteura 4, Wrocław, 50-367, Poland
| |
Collapse
|
7
|
Das L, Laway BA, Sahoo J, Dhiman V, Singh P, Rao SD, Korbonits M, Bhadada SK, Dutta P. Bone mineral density, turnover, and microarchitecture assessed by second-generation high-resolution peripheral quantitative computed tomography in patients with Sheehan's syndrome. Osteoporos Int 2024; 35:919-927. [PMID: 38507080 DOI: 10.1007/s00198-024-07062-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
UNLABELLED Sheehan's syndrome (SS) is a rare but well-characterized cause of hypopituitarism. Data on skeletal health is limited and on microarchitecture is lacking in SS patients. PURPOSE We aimed to explore skeletal health in SS with bone mineral density (BMD), turnover, and microarchitecture. METHODS Thirty-five patients with SS on stable replacement therapy for respective hormone deficiencies and 35 age- and BMI-matched controls were recruited. Hormonal profile and bone turnover markers (BTMs) were measured using electrochemiluminescence assay. Areal BMD and trabecular bone score were evaluated using DXA. Bone microarchitecture was assessed using a second-generation high-resolution peripheral quantitative computed tomography. RESULTS The mean age of the patients was 45.5 ± 9.3 years with a lag of 8.3 ± 7.2 years prior to diagnosis. Patients were on glucocorticoid (94%), levothyroxine (94%), and estrogen-progestin replacement (58%). None had received prior growth hormone (GH) replacement. BTMs (P1NP and CTX) were not significantly different between patients and controls. Osteoporosis (26% vs. 16%, p = 0.01) and osteopenia (52% vs. 39%, p = 0.007) at the lumbar spine and femoral neck (osteoporosis, 23% vs. 10%, p = 0.001; osteopenia, 58% vs. 29%, p = 0.001) were present in greater proportion in SS patients than matched controls. Bone microarchitecture analysis revealed significantly lower cortical volumetric BMD (vBMD) (p = 0.02) at the tibia, with relative preservation of the other parameters. CONCLUSION Low areal BMD (aBMD) is highly prevalent in SS as compared to age- and BMI-matched controls. However, there were no significant differences in bone microarchitectural measurements, except for tibial cortical vBMD, which was lower in adequately treated SS patients.
Collapse
Affiliation(s)
- Liza Das
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
- Department of Telemedicine, PGIMER, Chandigarh, India
| | - Bashir Ahmad Laway
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Jayaprakash Sahoo
- Department of Endocrinology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Vandana Dhiman
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | | | - Sudhaker Dhanwada Rao
- Division of Endocrinology, Metabolism and Bone and Mineral Disorders, and Bone and Mineral Research Laboratory, Henry Ford Health, Detroit, MI, USA
- Michigan State University College of Human Medicine, East Lansing, MI, USA
| | - Márta Korbonits
- Department of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Pinaki Dutta
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
8
|
Warden SJ, Dick A, Simon JE, Manini TM, Russ DW, Lyssikatos C, Clark LA, Clark BC. Fracture discrimination capability of ulnar flexural rigidity measured via Cortical Bone Mechanics Technology: study protocol for The STRONGER Study. JBMR Plus 2024; 8:ziad002. [PMID: 38690126 PMCID: PMC11059995 DOI: 10.1093/jbmrpl/ziad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Osteoporosis is characterized by low bone mass and structural deterioration of bone tissue, which leads to bone fragility (ie, weakness) and an increased risk for fracture. The current standard for assessing bone health and diagnosing osteoporosis is DXA, which quantifies areal BMD, typically at the hip and spine. However, DXA-derived BMD assesses only one component of bone health and is notably limited in evaluating the bone strength, a critical factor in fracture resistance. Although multifrequency vibration analysis can quickly and painlessly assay bone strength, there has been limited success in advancing a device of this nature. Recent progress has resulted in the development of Cortical Bone Mechanics Technology (CBMT), which conducts a dynamic 3-point bending test to assess the flexural rigidity (EI) of ulnar cortical bone. Data indicate that ulnar EI accurately estimates ulnar whole bone strength and provides unique and independent information about cortical bone compared to DXA-derived BMD. Consequently, CBMT has the potential to address a critical unmet need: Better identification of patients with diminished bone strength who are at high risk of experiencing a fragility fracture. However, the clinical utility of CBMT-derived EI has not yet been demonstrated. We have designed a clinical study to assess the accuracy of CBMT-derived ulnar EI in discriminating post-menopausal women who have suffered a fragility fracture from those who have not. These data will be compared to DXA-derived peripheral and central measures of BMD obtained from the same subjects. In this article, we describe the study protocol for this multi-center fracture discrimination study (The STRONGER Study).
Collapse
Affiliation(s)
- Stuart J Warden
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University, Indianapolis, IN, 46202, United States
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Andrew Dick
- OsteoDx Inc., Athens, OH, 45701, United States
| | - Janet E Simon
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, 45701, United States
- School of Applied Health and Wellness, Ohio University, Athens, OH, 45701, United States
| | - Todd M Manini
- Institute on Aging, University of Florida, Gainesville, FL, 32611, United States
| | - David W Russ
- School of Physical Therapy and Rehabilitation, University of South Florida, Tampa, FL, 33620, United States
| | - Charalampos Lyssikatos
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Leatha A Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, 45701, United States
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, United States
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, 45701, United States
- Department of Biomedical Sciences, Ohio University, Athens, OH, 45701, United States
| |
Collapse
|
9
|
Gao X, Din RU, Cheng X, Yang H. Biomechanical MRI detects reduced bone strength in subjects with vertebral fractures. Bone 2023; 173:116810. [PMID: 37207989 DOI: 10.1016/j.bone.2023.116810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Vertebral fracture is one of the most serious consequences of osteoporosis. Estimation of vertebral strength from magnetic resonance imaging (MRI) scans may provide a new approach for the prediction of vertebral fractures. To that end, we sought to establish a biomechanical MRI (BMRI) method to compute vertebral strength and test its ability to distinguish fracture from non-fracture subjects. This case-control study included 30 subjects without vertebral fractures and 15 subjects with vertebral fractures. All subjects underwent MRI with a mDIXON-Quant sequence and quantitative computed tomography (QCT), from which proton fat fraction-based bone marrow adipose tissue (BMAT) content and volumetric bone mineral density (vBMD) were measured, respectively. Nonlinear finite element analysis was applied to MRI and QCT scans of L2 vertebrae to compute vertebral strength (BMRI- and BCT-strength). The differences in BMAT content, vBMD, BMRI-strength and BCT-strength between the two groups were examined by t-tests. Receiver operating characteristic (ROC) analysis was performed to assess the ability of each measured parameter to distinguish fracture from non-fracture subjects. Results showed that the fracture group had 23 % lower BMRI-strength (P < .001) and 19 % higher BMAT content (P < .001) than the non-fracture group, whereas no significant difference in vBMD was detected between the two groups. A poor correlation was found between vBMD and BMRI-strength (R2 = 0.33). Compared to vBMD and BMAT content, BMRI- and BCT-strength had the larger area under the curve (0.82 and 0.84, respectively) and provided better sensitivity and specificity in separating fracture from non-fracture subjects. In conclusion, BMRI is capable of detecting reduced bone strength in patients with vertebral fracture, and may serve as a new approach for risk assessment of vertebral fracture.
Collapse
Affiliation(s)
- Xing Gao
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rahman Ud Din
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
10
|
Haverfield ZA, Agnew AM, Hunter RL. Differential Cortical Volumetric Bone Mineral Density within the Human Rib. J Clin Densitom 2023; 26:101358. [PMID: 36710221 DOI: 10.1016/j.jocd.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The human rib provides a vital role in the protection of thoracic contents. Rib fractures are linked to injuries and health complications that can be fatal. Current clinical methods to assess fracture risk and bone quality are insufficient to quantify intra-element differences in bone mineral density (BMD) or to identify at-risk populations. Utilizing quantitative computed tomography (QCT) provides accurate measures of volumetric BMD (vBMD) along the length of the rib which can help delineate factors influencing differential fracture risk. METHODOLOGY One mid-level rib was obtained from 54 post-mortem human subjects (PMHS) and scanned using QCT. Volumes of interest (VOIs) were created for sites at 30%, 50%, and 75% of rib total curve length. Mean Hounsfield units (HU) from each VOI were converted to vBMD using a scan-specific cortical phantom calibration curve. Additionally, rib and lumbar areal BMD (aBMD) were obtained from a sub-sample of 33 PMHS. RESULTS Significant differences in vBMD were found between all sites within the rib (p<0.01). When analyzed by sex, vBMD between the 30% and 50% site were no longer different in either males or females (p>0.05). Separating the sample into discrete age groups demonstrated the relative differences in vBMD between sites diminished with age. Further, age as a continuous variable significantly predicted rib vBMD at all sites (p<0.05), but with little practical or clinical utility (R2, 14.7- 22.8%). Similarly, only small amounts of variation in rib vBMD were explained from DXA lumbar and rib aBMD (R2 , 1.1-21.8%). CONCLUSIONS vBMD significantly decreased from the posterior (30%) site to the anterior (75%) site within the rib which may represent adaptation to localized mechanical loading. These differences could result in differential fracture risk across the rib. As thoracic injury can be fatal, using comprehensive assessments of bone quality that accounts for variation within the rib may provide more accurate identification of at-risk populations.
Collapse
Affiliation(s)
- Zachary A Haverfield
- Injury Biomechanics Research Center, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States.
| | - Amanda M Agnew
- Injury Biomechanics Research Center, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Randee L Hunter
- Injury Biomechanics Research Center, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
11
|
Biamonte E, Levi R, Carrone F, Vena W, Brunetti A, Battaglia M, Garoli F, Savini G, Riva M, Ortolina A, Tomei M, Angelotti G, Laino ME, Savevski V, Mollura M, Fornari M, Barbieri R, Lania AG, Grimaldi M, Politi LS, Mazziotti G. Artificial intelligence-based radiomics on computed tomography of lumbar spine in subjects with fragility vertebral fractures. J Endocrinol Invest 2022; 45:2007-2017. [PMID: 35751803 DOI: 10.1007/s40618-022-01837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/06/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE There is emerging evidence that radiomics analyses can improve detection of skeletal fragility. In this cross-sectional study, we evaluated radiomics features (RFs) on computed tomography (CT) images of the lumbar spine in subjects with or without fragility vertebral fractures (VFs). METHODS Two-hundred-forty consecutive individuals (mean age 60.4 ± 15.4, 130 males) were evaluated by radiomics analyses on opportunistic lumbar spine CT. VFs were diagnosed in 58 subjects by morphometric approach on CT or XR-ray spine (D4-L4) images. DXA measurement of bone mineral density (BMD) was performed on 17 subjects with VFs. RESULTS Twenty RFs were used to develop the machine learning model reaching 0.839 and 0.789 of AUROC in the train and test datasets, respectively. After correction for age, VFs were significantly associated with RFs obtained from non-fractured vertebrae indicating altered trabecular microarchitecture, such as low-gray level zone emphasis (LGLZE) [odds ratio (OR) 1.675, 95% confidence interval (CI) 1.215-2.310], gray level non-uniformity (GLN) (OR 1.403, 95% CI 1.023-1.924) and neighboring gray-tone difference matrix (NGTDM) contrast (OR 0.692, 95% CI 0.493-0.971). Noteworthy, no significant differences in LGLZE (p = 0.94), GLN (p = 0.40) and NGDTM contrast (p = 0.54) were found between fractured subjects with BMD T score < - 2.5 SD and those in whom VFs developed in absence of densitometric diagnosis of osteoporosis. CONCLUSIONS Artificial intelligence-based analyses on spine CT images identified RFs associated with fragility VFs. Future studies are needed to test the predictive value of RFs on opportunistic CT scans in identifying subjects with primary and secondary osteoporosis at high risk of fracture.
Collapse
Affiliation(s)
- E Biamonte
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS, Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - R Levi
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy
- Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - F Carrone
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS, Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - W Vena
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS, Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - A Brunetti
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS, Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - M Battaglia
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy
- Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - F Garoli
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy
- Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - G Savini
- Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - M Riva
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy
- Neurosurgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - A Ortolina
- Neurosurgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - M Tomei
- Neurosurgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - G Angelotti
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - M E Laino
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - V Savevski
- Artificial Intelligence Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - M Mollura
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - M Fornari
- Neurosurgery Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - R Barbieri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - A G Lania
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS, Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - M Grimaldi
- Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - L S Politi
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy.
- Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy.
| | - G Mazziotti
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS, Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| |
Collapse
|
12
|
Mazziotti G, Lania AG, Canalis E. Skeletal disorders associated with the growth hormone-insulin-like growth factor 1 axis. Nat Rev Endocrinol 2022; 18:353-365. [PMID: 35288658 DOI: 10.1038/s41574-022-00649-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 11/08/2022]
Abstract
Growth hormone (GH) and insulin-like growth factor 1 (IGF1) are important regulators of bone remodelling and metabolism and have an essential role in the achievement and maintenance of bone mass throughout life. Evidence from animal models and human diseases shows that both GH deficiency (GHD) and excess are associated with changes in bone remodelling and cause profound alterations in bone microstructure. The consequence is an increased risk of fractures in individuals with GHD or acromegaly, a condition of GH excess. In addition, functional perturbations of the GH-IGF1 axis, encountered in individuals with anorexia nervosa and during ageing, result in skeletal fragility and osteoporosis. The effect of interventions used to treat GHD and acromegaly on the skeleton is variable and dependent on the duration of the disease, the pre-existing skeletal state, coexistent hormone alterations (such as those occurring in hypogonadism) and length of therapy. This variability could also reflect the irreversibility of the skeletal structural defect occurring during alterations of the GH-IGF1 axis. Moreover, the effects of the treatment of GHD and acromegaly on locally produced IGF1 and IGF binding proteins are uncertain and in need of further study. This Review highlights the pathophysiological, clinical and therapeutic aspects of skeletal fragility associated with perturbations in the GH-IGF1 axis.
Collapse
Affiliation(s)
- Gherardo Mazziotti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy.
- Endocrinology, Diabetology and Andrology Unit - Bone Diseases and Osteoporosis Section, IRCCS, Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Andrea G Lania
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele Milan, Italy
- Endocrinology, Diabetology and Andrology Unit - Bone Diseases and Osteoporosis Section, IRCCS, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Ernesto Canalis
- Departments of Orthopaedic Surgery and Medicine, UConn Health, Farmington, CT, USA
| |
Collapse
|
13
|
Imamudeen N, Basheer A, Iqbal AM, Manjila N, Haroon NN, Manjila S. Management of Osteoporosis and Spinal Fractures: Contemporary Guidelines and Evolving Paradigms. Clin Med Res 2022; 20:95-106. [PMID: 35478096 PMCID: PMC9242734 DOI: 10.3121/cmr.2021.1612] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/17/2021] [Indexed: 01/24/2023]
Abstract
Physicians involved in treating spine fractures secondary to osteopenia and osteoporosis should know the pathogenesis and current guidelines on managing the underlying diminished bone mineral density, as worldwide fracture prevention campaigns are trailing behind in meeting their goals. This is a narrative review exploring the various imaging and laboratory tests used to diagnose osteoporotic fractures and a comprehensive compilation of contemporary medical and surgical management. We have incorporated salient recommendations from the Endocrine Society, the American Association of Clinical Endocrinology (AACE), and the American Society for Bone and Mineral Research (ASBMR). The use of modern scoring systems such as Fracture Risk Assessment Tool (FRAX®) for evaluating fracture risk in osteoporosis with a 10-year probability of hip fracture and major fractures in the spine, forearm, hip, or shoulder is highlighted. This osteoporosis risk assessment tool can be easily incorporated into the preoperative bone health optimization strategies, especially before elective spine surgery in osteoporotic patients. The role of primary surgical intervention for vertebral compression fracture and secondary fracture prevention with pharmacological therapy is described, with randomized clinical trial-based wisdom on its timing and dosage, drug holiday, adverse effects, and relevant evidence-based literature. We also aim to present an evidence-based clinical management algorithm for treating osteoporotic vertebral body compression fractures, tumor-induced osteoporosis, or hardware stabilization in elderly trauma patients in the setting of their impaired bone health. The recent guidelines and recommendations on surgical intervention by various medical societies are covered, along with outcome studies that reveal the efficacy of cement augmentation of vertebral compression fractures via vertebroplasty and balloon kyphoplasty versus conservative medical management in the elderly population.
Collapse
Affiliation(s)
- Nasvin Imamudeen
- Department of Medicine, Marshfield Medical Center, Marshfield, Wisconsin, USA
| | - Amjad Basheer
- Department of Medicine, University of Connecticut, CT, USA
| | - Anoop Mohamed Iqbal
- Division of Pediatric Endocrinology, Marshfield Medical Center, Marshfield, Wisconsin, USA
| | - Nihal Manjila
- Department of History and Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nisha Nigil Haroon
- Department of Neurosurgery, Ayer Neuroscience Institute, The Hospital of Central Connecticut, New Britain, Connecticut, USA
| | - Sunil Manjila
- Division of Pediatric Endocrinology, Marshfield Medical Center, Marshfield, Wisconsin, USA
| |
Collapse
|
14
|
Sewing L, Potasso L, Baumann S, Schenk D, Gazozcu F, Lippuner K, Kraenzlin M, Zysset P, Meier C. Bone Microarchitecture and Strength in Long-Standing Type 1 Diabetes. J Bone Miner Res 2022; 37:837-847. [PMID: 35094426 PMCID: PMC9313576 DOI: 10.1002/jbmr.4517] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/09/2022] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
Type 1 diabetes (T1DM) is associated with an increased fracture risk, specifically at nonvertebral sites. The influence of glycemic control and microvascular disease on skeletal health in long-standing T1DM remains largely unknown. We aimed to assess areal (aBMD) and volumetric bone mineral density (vBMD), bone microarchitecture, bone turnover, and estimated bone strength in patients with long-standing T1DM, defined as disease duration ≥25 years. We recruited 59 patients with T1DM (disease duration 37.7 ± 9.0 years; age 59.9 ± 9.9 years.; body mass index [BMI] 25.5 ± 3.7 kg/m2 ; 5-year median glycated hemoglobin [HbA1c] 7.1% [IQR 6.82-7.40]) and 77 nondiabetic controls. Dual-energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HRpQCT) at the ultradistal radius and tibia, and biochemical markers of bone turnover were assessed. Group comparisons were performed after adjustment for age, gender, and BMI. Patients with T1DM had lower aBMD at the hip (p < 0.001), distal radius (p = 0.01), lumbar spine (p = 0.04), and femoral neck (p = 0.05) as compared to controls. Cross-linked C-telopeptide (CTX), a marker of bone resorption, was significantly lower in T1DM (p = 0.005). At the distal radius there were no significant differences in vBMD and bone microarchitecture between both groups. In contrast, patients with T1DM had lower cortical thickness (estimate [95% confidence interval]: -0.14 [-0.24, -0.05], p < 0.01) and lower cortical vBMD (-28.66 [-54.38, -2.93], p = 0.03) at the ultradistal tibia. Bone strength and bone stiffness at the tibia, determined by homogenized finite element modeling, were significantly reduced in T1DM compared to controls. Both the altered cortical microarchitecture and decreased bone strength and stiffness were dependent on the presence of diabetic peripheral neuropathy. In addition to a reduced aBMD and decreased bone resorption, long-standing, well-controlled T1DM is associated with a cortical bone deficit at the ultradistal tibia with reduced bone strength and stiffness. Diabetic neuropathy was found to be a determinant of cortical bone structure and bone strength at the tibia, potentially contributing to the increased nonvertebral fracture risk. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lilian Sewing
- Department of Endocrinology, Diabetology and Metabolism University Hospital Basel, Basel, Switzerland
| | - Laura Potasso
- Department of Endocrinology, Diabetology and Metabolism University Hospital Basel, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Sandra Baumann
- Department of Endocrinology, Diabetology and Metabolism University Hospital Basel, Basel, Switzerland
| | - Denis Schenk
- ARTORG Center, University of Bern, Bern, Switzerland
| | - Furkan Gazozcu
- Department of Osteoporosis, University Hospital Bern, Bern, Switzerland
| | - Kurt Lippuner
- Department of Osteoporosis, University Hospital Bern, Bern, Switzerland
| | | | | | - Christian Meier
- Department of Endocrinology, Diabetology and Metabolism University Hospital Basel, Basel, Switzerland.,Endocrine Clinic and Laboratory, Basel, Switzerland
| |
Collapse
|
15
|
Han X, Hu J, Zhao W, Lu H, Dai J, He Q. Hexapeptide induces M2 macrophage polarization via the JAK1/STAT6 pathway to promote angiogenesis in bone repair. Exp Cell Res 2022; 413:113064. [PMID: 35167829 DOI: 10.1016/j.yexcr.2022.113064] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 01/14/2023]
Abstract
Angiogenesis is essential for successful bone defect repair. In normal tissue repair, the physiological inflammatory response is the main regulator of angiogenesis through the activity of macrophages and the cytokines secreted by them. In particular, M2 macrophages which secrete high levels of PDGF-BB are typically considered to promote angiogenesis. A hexapeptide [WKYMVm, (Trp-Lys-Tyr-Met-Val-D-Met-NH2)] has been reported to modulate inflammatory activities. However, the underlying mechanisms by which WKYMVm regulates macrophages remain unclear. In this study, the possible involvement by which WKYMVm induces the polarization of macrophages and affects their behaviors was evaluated. In vitro results showed that macrophages were induced to an M2 rather than M1 phenotype and the M2 phenotype was enhanced by WKYMVm through activation of the JAK1/STAT6 signaling pathway. It was also found that WKYMVm played an important role in the PDGF-BB production increase and proangiogenic abilities in M2 macrophages. Consistent with the results in vitro, the elevated M2/M0 ratio induced by WKYMVm enhanced the formation of new blood vessels in a femoral defect mouse model. These findings suggest that WKYMVm could be a promising alternative strategy for angiogenesis in bone repair by inducing M2 macrophage polarization.
Collapse
Affiliation(s)
- Xinyun Han
- Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing, 400715, China; Department of Orthopedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Junxian Hu
- Department of Orthopedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wenbo Zhao
- Department of Orthopedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Hongwei Lu
- Department of Orthopedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jingjin Dai
- Department of Biomedical Materials Science, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qingyi He
- Department of Orthopedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
16
|
Kesavan C, Rundle C, Mohan S. Repeated mild traumatic brain injury impairs fracture healing in male mice. BMC Res Notes 2022; 15:25. [PMID: 35093144 PMCID: PMC8801079 DOI: 10.1186/s13104-022-05906-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/11/2022] [Indexed: 11/20/2022] Open
Abstract
Objectives The goal of this study was to evaluate the long-term impact of repeated (r) mild traumatic brain injury (mTBI) on the healing of fractures in a mouse model. Ten week-old male mice were subjected to r-mTBI once per day for 4 days followed by closed femoral fracture using a three-point bending technique, 1 week post impact and fracture healing phenotype evaluated at 20 weeks of age. Results Micro-CT analysis of the fracture callus region at nine weeks post fracture revealed reduced bone volume (30%, p < 0.05) in the r-mTBI fracture group compared to the control-fracture group. The connectivity density of the fracture callus bone was reduced by 40% (p < 0.01) in the r-mTBI fracture group. Finite element analysis of the fracture callus region showed reduced failure load (p = 0.08) in the r-mTBI group compared to control group. There was no residual cartilage in the fracture callus region of either the r-mTBI or control fracture group. The reduced fracture callus bone volume and mechanical strength of fracture callus in r-mTBI mice 9 weeks post fracture are consistent with negative effects of r-mTBI on fracture healing over a long-term resulting in decreased mechanical strength of the fracture callus.
Collapse
Affiliation(s)
- Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA.,Departments of Medicine, Loma Linda University, 11234 Anderson St, Loma Linda, CA, 92354, USA
| | - Charles Rundle
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA.,Departments of Medicine, Loma Linda University, 11234 Anderson St, Loma Linda, CA, 92354, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA. .,Departments of Medicine, Loma Linda University, 11234 Anderson St, Loma Linda, CA, 92354, USA. .,Orthopedic Surgery, Loma Linda University, 11234 Anderson St, Loma Linda, CA, 92354, USA.
| |
Collapse
|
17
|
Bone Organic-Inorganic Phase Ratio Is a Fundamental Determinant of Bone Material Quality. Appl Bionics Biomech 2021; 2021:4928396. [PMID: 34754330 PMCID: PMC8572605 DOI: 10.1155/2021/4928396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/02/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Background Bone mineral density is widely used by clinicians for screening osteoporosis and assessing bone strength. However, its effectiveness has been reported unsatisfactory. In this study, it is demonstrated that bone organic-inorganic phase ratio is a fundamental determinant of bone material quality measured by stiffness, strength, and toughness. Methods and Results Two-hundred standard bone specimens were fabricated from bovine legs, with a specialized manufacturing method that was designed to reduce the effect of bone anisotropy. Bone mechanical properties of the specimens, including Young's modulus, yield stress, peak stress, and energy-to-failure, were measured by mechanical testing. Organic and inorganic mass contents of the specimens were then determined by bone ashing. Bone density and organic-inorganic phase ratio in the specimens were calculated. Statistical methods were applied to study relationships between the measured mechanical properties and the organic-inorganic phase ratios. Statistical characteristics of organic-inorganic phase ratios in the specimens with top material quality were investigated. Bone organic-inorganic phase ratio had strong Spearman correlation with bone material properties. Bone specimens that had the highest material quality had a very narrow scope of organic-inorganic phase ratio, which could be considered as the “optimal” ratio among the tested specimens. Conclusion Bone organic-inorganic phase ratio is a fundamental determinant of bone material quality. There may exist an “optimal” ratio for the bone to achieve top material quality. Deviation from the “optimal” ratio is probably the fundamental cause of various bone diseases. This study suggests that bone organic-inorganic phase ratio should be considered in clinical assessment of fracture risk.
Collapse
|
18
|
Loundagin LL, Bredbenner TL, Jepsen KJ, Edwards WB. Bringing Mechanical Context to Image-Based Measurements of Bone Integrity. Curr Osteoporos Rep 2021; 19:542-552. [PMID: 34269975 DOI: 10.1007/s11914-021-00700-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Image-based measurements of bone integrity are used to estimate failure properties and clinical fracture risk. This paper (1) reviews recent imaging studies that have enhanced our understanding of the mechanical pathways to bone fracture and (2) discusses the influence that inter-individual differences in image-based measurements may have on the clinical assessment of fracture risk RECENT FINDINGS: Increased tissue mineralization is associated with improved bone strength but reduced fracture toughness. Trabecular architecture that is important for fatigue resistance is less important for bone strength. The influence of porosity on bone failure properties is heavily dependent on pore location and size. The interaction of various characteristics, such as bone area and mineral content, can further complicate their influence on bone failure properties. What is beneficial for bone strength is not always beneficial for bone toughness or fatigue resistance. Additionally, given the large amount of imaging data that is clinically available, there is a need to develop effective translational strategies to better interpret non-invasive measurements of bone integrity.
Collapse
Affiliation(s)
- Lindsay L Loundagin
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, 105 Administration Place, Saskatoon, SK, S7N 5A2, Canada
| | - Todd L Bredbenner
- Department of Mechanical and Aerospace Engineering, University of Colorado Colorado Springs, Colorado Springs, CO, USA
| | - Karl J Jepsen
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, Alberta, T2N 1N4, Canada.
- McCaig Institute for Bone and Joint Health, University of Calgary, HRIC 3A08, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.
| |
Collapse
|
19
|
Time-resolved in situ synchrotron-microCT: 4D deformation of bone and bone analogues using digital volume correlation. Acta Biomater 2021; 131:424-439. [PMID: 34126266 DOI: 10.1016/j.actbio.2021.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
Digital volume correlation (DVC) in combination with high-resolution micro-computed tomography (microCT) imaging and in situ mechanical testing is gaining popularity for quantifying 3D full-field strains in bone and biomaterials. However, traditional in situ time-lapsed (i.e., interrupted) mechanical testing cannot fully capture the dynamic strain mechanisms in viscoelastic biological materials. The aim of this study was to investigate the time-resolved deformation of bone structures and analogues via continuous in situ synchrotron-radiation microCT (SR-microCT) compression and DVC to gain a better insight into their structure-function relationships. Fast SR-microCT imaging enabled the deformation behaviour to be captured with high temporal and spatial resolution. Time-resolved DVC highlighted the relationship between local strains and damage initiation and progression in the different biostructures undergoing plastic deformation, bending and/or buckling of their main microstructural elements. The results showed that SR-microCT continuous mechanical testing complemented and enhanced the information obtained from time-lapsed testing, which may underestimate the 3D strain magnitudes as a result of the stress relaxation occurring in between steps before image acquisition in porous biomaterials. Altogether, the findings of this study highlight the importance of time-resolved in situ experiments to fully characterise the time-dependent mechanical behaviour of biological tissues and biomaterials and to further explore their micromechanics under physiologically relevant conditions. STATEMENT OF SIGNIFICANCE: Time-resolved synchrotron X-ray tomography in combination with in situ mechanical testing provided the first four-dimensional analysis of the mechanical deformation of bone and bone analogues. To unravel the interplay of damage initiation and progression with local deformation, digital volume correlation was used to map the local strain field while microstructural changes were tracked with high temporal and spatial resolution. The results highlighted the importance of fast imaging and time-resolved in situ experiments to capture the real deformation of complex porous materials to fully characterize the local strain-damage relationship. The findings are notably improving the understanding of time-dependent mechanical behaviour of bone tissue, with the potential to be extend to highly viscoelastic biomaterials and soft tissues.
Collapse
|
20
|
Li Y, Tseng WJ, de Bakker CMJ, Zhao H, Chung R, Liu XS. Peak trabecular bone microstructure predicts rate of estrogen-deficiency-induced bone loss in rats. Bone 2021; 145:115862. [PMID: 33493654 PMCID: PMC7920939 DOI: 10.1016/j.bone.2021.115862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 01/11/2023]
Abstract
Postmenopausal osteoporosis affects a large number of women worldwide. Reduced estrogen levels during menopause lead to accelerated bone remodeling, resulting in low bone mass and increased fracture risk. Both peak bone mass and the rate of bone loss are important predictors of postmenopausal osteoporosis risk. However, whether peak bone mass and/or bone microstructure directly influence the rate of bone loss following menopause remains unclear. Our study aimed to establish the relationship between peak bone mass/microstructure and the rate of bone loss in response to estrogen deficiency following ovariectomy (OVX) surgery in rats of homogeneous background by tracking the skeletal changes using in vivo micro-computed tomography (μCT) and three-dimensional (3D) image registrations. Linear regression analyses demonstrated that the peak bone microstructure, but not peak bone mass, was highly predictive of the rate of OVX-induced bone loss. In particular, the baseline trabecular thickness was found to have the highest correlation with the degree of OVX-induced bone loss and trabecular stiffness reduction. Given the same bone mass, the rats with thicker baseline trabeculae had a lower rate of trabecular microstructure and stiffness deterioration after OVX. Moreover, further evaluation to track the changes within each individual trabecula via our novel individual trabecular dynamics (ITD) analysis suggested that a trabecular network with thicker trabeculae is less likely to disconnect or perforate in response to estrogen deficiency, resulting a lower degree of bone loss. Taken together, these findings indicate that the rate of estrogen-deficiency-induced bone loss could be predicted by peak bone microstructure, most notably the trabecular thickness. Given the same bone mass, a trabecular bone phenotype with thin trabeculae may be a risk factor toward accelerated postmenopausal bone loss.
Collapse
Affiliation(s)
- Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Chantal M J de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Radiology, Cumming School of Medicine, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada.
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - Rebecca Chung
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
21
|
The relationship between orthopedic clinical imaging and bone strength prediction. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
22
|
Lewis JR, Voortman T, Ioannidis JP. Evaluating and Strengthening the Evidence for Nutritional Bone Research: Ready to Break New Ground? J Bone Miner Res 2021; 36:219-226. [PMID: 33503301 DOI: 10.1002/jbmr.4236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 01/19/2023]
Abstract
A healthy diet is essential to attain genetically determined peak bone mass and maintain optimal skeletal health across the adult lifespan. Despite the importance of nutrition for bone health, many of the nutritional requirements of the skeleton across the lifespan remain underexplored, poorly understood, or controversial. With increasingly aging populations, combined with rapidly changing diets and lifestyles globally, one anticipates large increases in the prevalence of osteoporosis and incidence of osteoporotic fractures. Robust, transparent, and reproducible nutrition research is a cornerstone for developing reliable public health recommendations to prevent osteoporosis and osteoporotic fractures. However, nutrition research is often criticized or ignored by healthcare professionals due to the overemphasis of weak science, conflicting, confusing or implausible findings, industry interests, common misconceptions, and strong opinions. Conversely, spurious research findings are often overemphasized or misconstrued by the media or prominent figures especially via social media, potentially leading to confusion and a lack of trust by the general public. Recently, reforms of the broader discipline of nutrition science have been suggested and promoted, leading to new tools and recommendations to attempt to address these issues. In this perspective, we provide a brief overview of what has been achieved in the field on nutrition and bone health, focusing on osteoporosis and osteoporotic fractures. We discuss what we view as some of the challenges, including inherent difficulties in assessing diet and its change, disentangling complex interactions between dietary components and between diet and other factors, selection of bone-related outcomes for nutrition studies, obtaining evidence with more unbiased designs, and perhaps most importantly, ensuring the trust of the public and healthcare professionals. This perspective also provides specific recommendations and highlights new developments and future opportunities for scientists studying nutrition and bone health. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Joshua R Lewis
- Institute for Nutrition Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Medical School, The University of Western Australia, Perth, WA, Australia.,Centre for Kidney Research, Children's Hospital at Westmead, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - John Pa Ioannidis
- Department of Medicine, Stanford Prevention Research Center, Stanford University, Stanford, CA, USA.,Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA.,Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.,Department of Statistics, Stanford University, Stanford, CA, USA.,Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, CA, USA
| |
Collapse
|
23
|
Messina C, Rinaudo L, Cesana BM, Maresca D, Piodi LP, Sconfienza LM, Sardanelli F, Ulivieri FM. Prediction of osteoporotic fragility re-fracture with lumbar spine DXA-based derived bone strain index: a multicenter validation study. Osteoporos Int 2021; 32:85-91. [PMID: 32936366 DOI: 10.1007/s00198-020-05620-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022]
Abstract
UNLABELLED A new qualitative index of bone strength, based on finite element analysis and named bone strain index, has been recently developed from lumbar DXA scan. This study shows that BSI predicts subsequent re-fracture in osteoporotic patients affected by fragility fractures. INTRODUCTION Dual-energy X-ray absorptiometry (DXA) can provide quantitative (bone mineral density, BMD) and qualitative (trabecular bone score, TBS) indexes of bone status, able to predict fragility fractures in most osteoporotic patients. A new qualitative index of bone strength, based on finite element analysis and named bone strain index (BSI), has been recently developed from lumbar DXA scan. This study presents the validation results of BSI prediction for re-fracture in osteoporotic patients with fragility fractures. METHODS In three academic hospitals, 234 consecutive fractured patients with primary osteoporosis (209 females) performed a spine X-ray for the calculation of spine deformity index (SDI) and DXA densitometry for BMD, TBS and BSI at the basal time and in the follow-up at each clinical check. A subsequent fracture was considered as one unity increase of SDI. RESULTS For each unit increase of the investigated indexes, the univariate hazard ratio of re-fracture, 95% CI, p value and proportionality test p value are for age 1.040, 1.017-1.064, 0.0007 and 0.2529, respectively, and for BSI 1.372, 1.038-1.813, 0.0261 and 0.5179, respectively. BSI remained in the final multivariate model as a statistically significant independent predictor of a subsequent re-fracture (1.332, 1.013-1.752 and 0.0399) together with age (1.039, 1.016-1.064 and 0.0009); for this multivariate model proportionality test, p value is 0.4604. CONCLUSIONS BSI appears to be a valid DXA index of prediction of re-fracture, and it can be used for a more refined risk assessment of osteoporotic patients.
Collapse
Affiliation(s)
- C Messina
- Unità di Radiologia Diagnostica e Interventistica, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milano, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20100, Milano, Italy
| | - L Rinaudo
- TECHNOLOGIC Srl, Lungo Dora Voghera 34/36, 10153, Torino, Italy
| | - B M Cesana
- Unità di Statistica Medica, Biometria e Bioinformatica "Giulio A. Maccacaro", Dipartimento di Scienze Cliniche e Salute della Comunità, Università degli Studi di Milano, Via Vanzetti 5, 20100, Milano, Italy
| | - D Maresca
- Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Via Festa del Perdono 7, 20122, Milano, Italy
| | | | - L M Sconfienza
- Unità di Radiologia Diagnostica e Interventistica, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milano, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20100, Milano, Italy
| | - F Sardanelli
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal 36, 20100, Milano, Italy
- Unità di Radiologia, IRCCS Policlinico San Donato, Piazza Edmondo Malan 2, 20097, San Donato Milanese, MI, Italy
| | - F M Ulivieri
- Unità di Medicina Nucleare, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122, Milano, Italy.
| |
Collapse
|
24
|
Chaudhari AJ, Raynor WY, Gholamrezanezhad A, Werner TJ, Rajapakse CS, Alavi A. Total-Body PET Imaging of Musculoskeletal Disorders. PET Clin 2021; 16:99-117. [PMID: 33218607 PMCID: PMC7684980 DOI: 10.1016/j.cpet.2020.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imaging of musculoskeletal disorders, including arthritis, infection, osteoporosis, sarcopenia, and malignancies, is often limited when using conventional modalities such as radiography, computed tomography (CT), and MR imaging. As a result of recent advances in Positron Emission Tomography (PET) instrumentation, total-body PET/CT offers a longer axial field-of-view, higher geometric sensitivity, and higher spatial resolution compared with standard PET systems. This article discusses the potential applications of total-body PET/CT imaging in the assessment of musculoskeletal disorders.
Collapse
Affiliation(s)
- Abhijit J Chaudhari
- Department of Radiology, University of California Davis, 4860 Y Street, Sacramento, CA 95825, USA.
| | - William Y Raynor
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA
| | - Ali Gholamrezanezhad
- Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Los Angeles, CA 90033, USA
| | - Thomas J Werner
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Chamith S Rajapakse
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Galbusera F, Cina A, Panico M, Albano D, Messina C. Image-based biomechanical models of the musculoskeletal system. Eur Radiol Exp 2020; 4:49. [PMID: 32789547 PMCID: PMC7423821 DOI: 10.1186/s41747-020-00172-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
Finite element modeling is a precious tool for the investigation of the biomechanics of the musculoskeletal system. A key element for the development of anatomically accurate, state-of-the art finite element models is medical imaging. Indeed, the workflow for the generation of a finite element model includes steps which require the availability of medical images of the subject of interest: segmentation, which is the assignment of each voxel of the images to a specific material such as bone and cartilage, allowing for a three-dimensional reconstruction of the anatomy; meshing, which is the creation of the computational mesh necessary for the approximation of the equations describing the physics of the problem; assignment of the material properties to the various parts of the model, which can be estimated for example from quantitative computed tomography for the bone tissue and with other techniques (elastography, T1rho, and T2 mapping from magnetic resonance imaging) for soft tissues. This paper presents a brief overview of the techniques used for image segmentation, meshing, and assessing the mechanical properties of biological tissues, with focus on finite element models of the musculoskeletal system. Both consolidated methods and recent advances such as those based on artificial intelligence are described.
Collapse
Affiliation(s)
| | - Andrea Cina
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Matteo Panico
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedicine, Neuroscience and Advanced Diagnostics, Università degli Studi di Palermo, Palermo, Italy
| | - Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
26
|
Chang H, Xiang H, Yao Z, Yang S, Tu M, Zhang X, Yu B. Strontium-substituted calcium sulfate hemihydrate/hydroxyapatite scaffold enhances bone regeneration by recruiting bone mesenchymal stromal cells. J Biomater Appl 2020; 35:97-107. [PMID: 32233720 DOI: 10.1177/0885328220915816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fabrication of osteoconductive scaffold with osteoinductive capability and appropriate resorption rate is of great significance for treating bone defects. To achieve this aim, strontium-substituted calcium sulfate hemihydrate (Sr-CSH) and hydroxyapatite (HA) were mixed to develop a novel composite. Sr-CSH containing 5% and 10% strontium was mixed with HA at the weight ratio of 6:4, respectively. Female Sprague-Dawley rats underwent bone defect surgery in left tibia were randomly assigned to three different treatment groups filled with CSH/HA, 5% and 10% Sr-CSH/HA. Micro-CT analysis showed increased new bone formation in 10% Sr-CSH/HA group compared to CSH/HA group. In addition, histological analysis showed large amounts of chondrocytes and osteoblasts within the pores of Sr-CSH/HA composites as a result of the CSH resorption. Further, CFU-F assay demonstrated the increased amount of bone marrow mesenchymal stromal cells (BMSCs) colonies in 10% Sr-CSH/HA group. In primary BMSCs, extraction from Sr-CSH/HA composite significantly increased the migration of cells, up-regulated the expression of osteoblastic marker genes, and increased the area of mineralized nodules. Together, Sr-CSH/HA may promote bone formation by recruiting and stimulating osteogenic differentiation of BMSCs. Therefore, this composite may be proposed as an ideal substitute to repair bone defects.
Collapse
Affiliation(s)
- Hong Chang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Orthopaedics, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Haibo Xiang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Orthopaedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zilong Yao
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shenyu Yang
- Laboratory of Materials Science and Engineering, Academy of Chemistry and Materials, Jinan University, Guangzhou, China
| | - Mei Tu
- Laboratory of Materials Science and Engineering, Academy of Chemistry and Materials, Jinan University, Guangzhou, China
| | - Xianrong Zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Katz Y, Yosibash Z. New insights on the proximal femur biomechanics using Digital Image Correlation. J Biomech 2020; 101:109599. [DOI: 10.1016/j.jbiomech.2020.109599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/27/2019] [Accepted: 12/31/2019] [Indexed: 01/22/2023]
|
28
|
Lee JS, Kim K, Jeon YK, Kim J, Jung DH, Kim SH, Shin MJ, Shin YB. Effects of Traction on Interpretation of Lumbar Bone Mineral Density in Patients with Duchenne Muscular Dystrophy: A New Measurement Method and Diagnostic Criteria Based on Comparison of Dual-Energy X-Ray Absorptiometry and Quantitative Computed Tomography. J Clin Densitom 2020; 23:53-62. [PMID: 30143440 DOI: 10.1016/j.jocd.2018.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION This study aimed to compare the performance of dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) in evaluating bone mineral density (BMD) of patients with Duchenne muscular dystrophy and scoliosis. METHODOLOGY Twenty-nine participants (mean age 19.72 ± 6.13 years) underwent whole spine radiography, DXA before and after traction, and QCT alone without traction. Scoliosis and vertebral rotation angles obtained before and after traction were compared, and BMD values from DXA were compared to those obtained via QCT. The scoliosis angle, presented as Cobb's angle of L1-L4, was measured. RESULTS Cobb's angle significantly decreased from 30.38° ± 24.83° before traction to 22.78° ± 20.41° after traction (p < 0.0001) and the Z-score decreased from -1.88 ± 1.59 to -2.86 ± 2.16 (p < 0.0001). Changes in rotation angle, BMD, and bone mineral content were not significant. Post-traction BMD values and Z-scores showed a higher correlation with QCT measurements than pretraction. Moreover, pre and post-traction Z-scores (≤-1.1 and -1.36, respectively) were more accurate in identifying patients with osteoporosis according to QCT scans compared with the preexisting Z-score of -2 or less. CONCLUSION Lumbar BMD measured via DXA and scoliosis allowed a more accurate diagnosis of osteoporosis when traction was applied.
Collapse
Affiliation(s)
- Je-Sang Lee
- Department of Rehabilitation Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, South Korea
| | - Keunyoung Kim
- Department of Nuclear Medicine and Biomedical Research Institute, Pusan National University Hospital, South Korea
| | - Yun Kyung Jeon
- Division of Endocrinology, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, South Korea; Medical Research Institute, Pusan National University, Busan, South Korea
| | - Jinmi Kim
- Department of Biostatistics, Clinical Trial Center, Biomedical Research Institute, Pusan National University Hospital, South Korea
| | - Da Hwi Jung
- Department of Rehabilitation Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, South Korea
| | - Sang Hun Kim
- Department of Rehabilitation Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, South Korea
| | - Myung Jun Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, South Korea
| | - Yong Beom Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, South Korea.
| |
Collapse
|
29
|
Xie Y, Zhang L, Xiong Q, Gao Y, Ge W, Tang P. Bench-to-bedside strategies for osteoporotic fracture: From osteoimmunology to mechanosensation. Bone Res 2019; 7:25. [PMID: 31646015 PMCID: PMC6804735 DOI: 10.1038/s41413-019-0066-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is characterized by a decrease in bone mass and strength, rendering people prone to osteoporotic fractures caused by low-energy forces. The primary treatment strategy for osteoporotic fractures is surgery; however, the compromised and comminuted bones in osteoporotic fracture sites are not conducive to optimum reduction and rigid fixation. In addition, these patients always exhibit accompanying aging-related disorders, including high inflammatory status, decreased mechanical loading and abnormal skeletal metabolism, which are disadvantages for fracture healing around sites that have undergone orthopedic procedures. Since the incidence of osteoporosis is expected to increase worldwide, orthopedic surgeons should pay more attention to comprehensive strategies for improving the poor prognosis of osteoporotic fractures. Herein, we highlight the molecular basis of osteoimmunology and bone mechanosensation in different healing phases of elderly osteoporotic fractures, guiding perioperative management to alleviate the unfavorable effects of insufficient mechanical loading, high inflammatory levels and pathogen infection. The well-informed pharmacologic and surgical intervention, including treatment with anti-inflammatory drugs and sufficient application of antibiotics, as well as bench-to-bedside strategies for bone augmentation and hardware selection, should be made according to a comprehensive understanding of bone biomechanical properties in addition to the remodeling status of osteoporotic bones, which is necessary for creating proper biological and mechanical environments for bone union and remodeling. Multidisciplinary collaboration will facilitate the improvement of overall osteoporotic care and reduction of secondary fracture incidence.
Collapse
Affiliation(s)
- Yong Xie
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qi Xiong
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Yanpan Gao
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
30
|
Rajapakse CS, Gupta N, Evans M, Alizai H, Shukurova M, Hong AL, Cruickshank NJ, Tejwani N, Egol K, Honig S, Chang G. Influence of bone lesion location on femoral bone strength assessed by MRI-based finite-element modeling. Bone 2019; 122:209-217. [PMID: 30851438 PMCID: PMC6486650 DOI: 10.1016/j.bone.2019.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/21/2022]
Abstract
Currently, clinical determination of pathologic fracture risk in the hip is conducted using measures of defect size and shape in the stance loading condition. However, these measures often do not consider how changing lesion locations or how various loading conditions impact bone strength. The goal of this study was to determine the impact of defect location on bone strength parameters in both the sideways fall and stance-loading conditions. We recruited 20 female subjects aged 48-77 years for this study and performed MRI of the proximal femur. Using these images, we simulated 10-mm pathologic defects in greater trochanter, superior, middle, and inferior femoral head, superior, middle, and inferior femoral neck, and lateral, middle, and medial proximal diaphysis to determine the effect of defect location on change in bone strength by performing finite element analysis. We compared the effect of each osteolytic lesion on bone stiffness, strength, resilience, and toughness. For the sideways fall loading, defects in the inferior femoral head (12.21%) and in the greater trochanter (6.43%) resulted in the greatest overall reduction in bone strength. For the stance loading, defects in the mid femoral head (-7.91%) and superior femoral head (-7.82%) resulted in the greatest overall reduction in bone strength. Changes in stiffness, yield force, ultimate force, resilience, and toughness were not found to be significantly correlated between the sideways fall and stance-loading for the majority of defect locations, suggesting that calculations based on the stance-loading condition are not predictive of the change in bone strength experienced in the sideways fall condition. While stiffness was significantly related to yield force (R2 > 0.82), overall force (R2 > 0.59), and resilience (R2 > 0.55), in both, the stance-loading and sideways fall conditions for most defect locations, stiffness was not significantly related to toughness. Therefore, structure-dependent measure such as stiffness may not fully explain the post-yield measures, which depend on material failure properties. The data showed that MRI-based models have the sensitivity to determine the effect of pathologic lesions on bone strength.
Collapse
Affiliation(s)
| | - Nishtha Gupta
- University of Pennsylvania, Philadelphia, PA, United States of America
| | - Marissa Evans
- University of Pennsylvania, Philadelphia, PA, United States of America
| | - Hamza Alizai
- New York University, New York, NY, United States of America
| | - Malika Shukurova
- University of Pennsylvania, Philadelphia, PA, United States of America
| | - Abigail L Hong
- University of Pennsylvania, Philadelphia, PA, United States of America
| | | | - Nirmal Tejwani
- New York University, New York, NY, United States of America
| | - Kenneth Egol
- New York University, New York, NY, United States of America
| | - Stephen Honig
- New York University, New York, NY, United States of America
| | - Gregory Chang
- New York University, New York, NY, United States of America
| |
Collapse
|
31
|
Peña Fernández M, Dall'Ara E, Kao AP, Bodey AJ, Karali A, Blunn GW, Barber AH, Tozzi G. Preservation of Bone Tissue Integrity with Temperature Control for In Situ SR-MicroCT Experiments. MATERIALS 2018; 11:ma11112155. [PMID: 30388813 PMCID: PMC6266162 DOI: 10.3390/ma11112155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 01/08/2023]
Abstract
Digital volume correlation (DVC), combined with in situ synchrotron microcomputed tomography (SR-microCT) mechanics, allows for 3D full-field strain measurement in bone at the tissue level. However, long exposures to SR radiation are known to induce bone damage, and reliable experimental protocols able to preserve tissue properties are still lacking. This study aims to propose a proof-of-concept methodology to retain bone tissue integrity, based on residual strain determination using DVC, by decreasing the environmental temperature during in situ SR-microCT testing. Compact and trabecular bone specimens underwent five consecutive full tomographic data collections either at room temperature or 0 °C. Lowering the temperature seemed to reduce microdamage in trabecular bone but had minimal effect on compact bone. A consistent temperature gradient was measured at each exposure period, and its prolonged effect over time may induce localised collagen denaturation and subsequent damage. DVC provided useful information on irradiation-induced microcrack initiation and propagation. Future work is necessary to apply these findings to in situ SR-microCT mechanical tests, and to establish protocols aiming to minimise the SR irradiation-induced damage of bone.
Collapse
Affiliation(s)
- Marta Peña Fernández
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, Portsmouth, UK.
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism and INSIGNEO Institute for in Silico Medicine, University of Sheffield, S1 3DJ, Sheffield, UK.
| | - Alexander P Kao
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, Portsmouth, UK.
| | | | - Aikaterina Karali
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, Portsmouth, UK.
| | - Gordon W Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, PO1 2DT, Portsmouth, UK.
| | - Asa H Barber
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, Portsmouth, UK.
- School of Engineering, London South Bank University, SE1 0AA, London, UK.
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, Portsmouth, UK.
| |
Collapse
|
32
|
Reilly CC, Raynor WY, Hong AL, Kargilis DC, Lee JS, Alecxih AG, Gupta N, Lim MK, Al-Zaghal A, Werner TJ, Rhodes SS, Alavi A, Rajapakse CS. Diagnosis and Monitoring of Osteoporosis With 18F-Sodium Fluoride PET: An Unavoidable Path for the Foreseeable Future. Semin Nucl Med 2018; 48:535-540. [PMID: 30322479 DOI: 10.1053/j.semnuclmed.2018.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of metabolic bone diseases particularly osteoporosis and its precursor, osteopenia, continue to grow as serious global health issues today. On a worldwide perspective, 200million people suffer from osteoporosis and in 2005, over 2million fracture incidents were estimated due to osteoporosis in the United States. Currently, osteoporosis and other metabolic bone diseases are evaluated primarily through dual energy X-ray absorptiometry, and rarely by bone biopsy with tetracycline labeling or Technetium-99m (99mTc) based bone scintigraphy. Deficiencies in these methods have prompted the use of more precise methods of assessment. This review highlights the use of 18F-sodium fluoride (NaF) with PET (NaF-PET), NaF-PET/CT, or NaF-PET/MRI in the evaluation of osteoporosis and osteopenia in the lumbar spine and hip. This imaging modality provides a molecular perspective with respect to the underlying metabolic alterations that lead to osseous disorders by measuring bone turnover through standardized uptake values. Its sensitivity and ability to examine the entire skeletal system make it a more superior imaging modality compared to standard structural imaging techniques. Further research is needed to determine its accuracy in reflecting the efficacy of therapeutic interventions in metabolic bone diseases.
Collapse
Affiliation(s)
| | | | | | | | - Jae S Lee
- University of Pennsylvania, Philadelphia, PA
| | | | | | - Marie K Lim
- University of Pennsylvania, Philadelphia, PA
| | | | | | | | - Abass Alavi
- University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
33
|
Peña Fernández M, Cipiccia S, Dall'Ara E, Bodey AJ, Parwani R, Pani M, Blunn GW, Barber AH, Tozzi G. Effect of SR-microCT radiation on the mechanical integrity of trabecular bone using in situ mechanical testing and digital volume correlation. J Mech Behav Biomed Mater 2018; 88:109-119. [PMID: 30165258 DOI: 10.1016/j.jmbbm.2018.08.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/21/2018] [Accepted: 08/13/2018] [Indexed: 01/06/2023]
Abstract
The use of synchrotron radiation micro-computed tomography (SR-microCT) is becoming increasingly popular for studying the relationship between microstructure and bone mechanics subjected to in situ mechanical testing. However, it is well known that the effect of SR X-ray radiation can considerably alter the mechanical properties of bone tissue. Digital volume correlation (DVC) has been extensively used to compute full-field strain distributions in bone specimens subjected to step-wise mechanical loading, but tissue damage from sequential SR-microCT scans has not been previously addressed. Therefore, the aim of this study is to examine the influence of SR irradiation-induced microdamage on the apparent elastic properties of trabecular bone using DVC applied to in situ SR-microCT tomograms obtained with different exposure times. Results showed how DVC was able to identify high local strain levels (> 10,000 µε) corresponding to visible microcracks at high irradiation doses (~ 230 kGy), despite the apparent elastic properties remained unaltered. Microcracks were not detected and bone plasticity was preserved for low irradiation doses (~ 33 kGy), although image quality and consequently, DVC performance were reduced. DVC results suggested some local deterioration of tissue that might have resulted from mechanical strain concentration further enhanced by some level of local irradiation even for low accumulated dose.
Collapse
Affiliation(s)
- Marta Peña Fernández
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK
| | | | - Enrico Dall'Ara
- Department of Oncology and Metabolism and INSIGNEO Institute For in Silico Medicine, University of Sheffield, Sheffield, UK
| | | | - Rachna Parwani
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK
| | - Martino Pani
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK
| | - Gordon W Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Asa H Barber
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK; School of Engineering, London South Bank University, London, UK
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Engineering, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
34
|
Mazziotti G, Frara S, Giustina A. Pituitary Diseases and Bone. Endocr Rev 2018; 39:440-488. [PMID: 29684108 DOI: 10.1210/er.2018-00005] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
Neuroendocrinology of bone is a new area of research based on the evidence that pituitary hormones may directly modulate bone remodeling and metabolism. Skeletal fragility associated with high risk of fractures is a common complication of several pituitary diseases such as hypopituitarism, Cushing disease, acromegaly, and hyperprolactinemia. As in other forms of secondary osteoporosis, pituitary diseases generally affect bone quality more than bone quantity, and fractures may occur even in the presence of normal or low-normal bone mineral density as measured by dual-energy X-ray absorptiometry, making difficult the prediction of fractures in these clinical settings. Treatment of pituitary hormone excess and deficiency generally improves skeletal health, although some patients remain at high risk of fractures, and treatment with bone-active drugs may become mandatory. The aim of this review is to discuss the physiological, pathophysiological, and clinical insights of bone involvement in pituitary diseases.
Collapse
Affiliation(s)
| | - Stefano Frara
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
35
|
Time to rethink the use of bone biopsy to prevent fractures in patients with chronic kidney disease. Curr Opin Nephrol Hypertens 2018; 27:243-250. [DOI: 10.1097/mnh.0000000000000418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
36
|
Li T, Peng M, Yang Z, Zhou X, Deng Y, Jiang C, Xiao M, Wang J. 3D-printed IFN-γ-loading calcium silicate-β-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone. Acta Biomater 2018; 71:96-107. [PMID: 29549051 DOI: 10.1016/j.actbio.2018.03.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022]
Abstract
To promote vascularization of tissue-engineered bone, IFN-γ polarizing macrophages to M1 was loaded on 5% calcium silicate/β-tricalcium phosphate (CaSiO3-β-TCP) scaffolds. IFN-γ and Si released from the scaffold were designed to polarize M1 and M2 macrophages, respectively. β-TCP, CaSiO3-β-TCP, and IFN-γ@CaSiO3-β-TCP were fabricated and biocompatibilities were evaluated. Polarizations of macrophages were detected by flow cytometry. Human umbilical vein endothelial cells with GFP were cultured and induced on Matrigel with conditioned culture medium extracted from culture of macrophages loaded on scaffolds for evaluating angiogenesis. Four weeks after the scaffolds were subcutaneously implanted into C57B1/6, vascularization was evaluated by visual observation, hematoxylin and eosin staining, as well as immunohistochemistry of CD31. The results showed that IFN-γ@CaSiO3-β-TCP scaffolds released IFN-γ in the early stage (1-3 days) to stimulate macrophages to M1 polarization, followed by release of Si inducing macrophages to M2 polarization while scaffolds degraded. The activation of M1/M2 allows macrophages to secrete more cytokines, including VEGF, CXCL12 and PDGF-BB. The IFN-γ@CaSiO3-β-TCP scaffolds formed more blood vessels in vitro and in vivo compared to the control groups. The study indicated that the design of tissue-engineered scaffolds with immunomodulatory function utilized host macrophages to increase vascularization of tissue-engineered bone, providing a new strategy for accelerating vascularization and osteogenesis of tissue-engineered scaffolds and showing the potential for treatment of major bone defects. STATEMENT OF SIGNIFICANCE A 3-D printed immunomodulatory scaffold was designed for repair of massive bone defects. Through the release of interferon γ and silicon ions, the new immunomodulatory scaffold promoted the M1 and M2 polarization of macrophages, boosting angiogenesis. This scaffold provided a new strategy for accelerating vascularization and osteogenesis of tissue-engineered scaffolds and showing the potential for treatment of major bone defects.
Collapse
|
37
|
Wang Z, Wang D, Yang D, Zhen W, Zhang J, Peng S. The effect of icariin on bone metabolism and its potential clinical application. Osteoporos Int 2018; 29:535-544. [PMID: 29110063 DOI: 10.1007/s00198-017-4255-1] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/04/2017] [Indexed: 12/28/2022]
Abstract
Osteoporosis is a bone disease characterized by reduced bone mass, which leads to increased risk of bone fractures, and poses a significant risk to public health, especially in the elderly population. The traditional Chinese medicinal herb Epimedii has been utilized for centuries to treat bone fracture and bone loss. Icariin is a prenylated flavonol glycoside isolated from Epimedium herb, and has been shown to be the main bioactive component. This review provides a comprehensive survey of previous studies on icariin, including its structure and function, effect on bone metabolism, and potential for clinical application. These studies show that icariin promotes bone formation by stimulating osteogenic differentiation of BMSCs (bone marrow-derived mesenchymal stem cells), while inhibiting osteoclastogenic differentiation and the bone resorption activity of osteoclasts. Furthermore, icariin has been shown to be more potent than other flavonoid compounds in promoting osteogenic differentiation and maturation of osteoblasts. A 24-month randomized double-blind placebo-controlled clinical trial reported that icariin was effective in preventing postmenopausal osteoporosis with relatively low side effects. In conclusion, icariin may represent a class of flavonoids with bone-promoting activity, which could be used as potential treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Z Wang
- Department of Spine Surgery and Institute of Orthopaedic Research, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, China
| | - D Wang
- Department of Spine Surgery and Institute of Orthopaedic Research, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, China
| | - D Yang
- Department of Spine Surgery and Institute of Orthopaedic Research, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, China
| | - W Zhen
- Department of Spine Surgery and Institute of Orthopaedic Research, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, China
| | - J Zhang
- Department of Outpatient Clinics, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, China.
| | - S Peng
- Department of Spine Surgery and Institute of Orthopaedic Research, Shenzhen People's Hospital, Jinan University School of Medicine, Shenzhen, 518020, China.
| |
Collapse
|
38
|
SALL4 promotes osteoblast differentiation by deactivating NOTCH2 signaling. Biomed Pharmacother 2018; 98:9-17. [DOI: 10.1016/j.biopha.2017.11.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/29/2022] Open
|
39
|
Liu XS, de Bakker CMJ, Tseng WJ, Li Y, Zhao H. Response to Loucks et al.'s Comment on "Clinical Evaluation of Bone Strength and Fracture Risk". Curr Osteoporos Rep 2017; 15:398. [PMID: 28733953 DOI: 10.1007/s11914-017-0387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Chantal M J de Bakker
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei-Ju Tseng
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongbo Zhao
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Loucks AB, Clark BC, Bowman L. Response to "Clinical Evaluation of Bone Strength and Fracture Risk". Curr Osteoporos Rep 2017; 15:396-397. [PMID: 28660374 PMCID: PMC5558602 DOI: 10.1007/s11914-017-0386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We read with great interest the recent review by de Bakker et al that summarized the state of several existing and emerging technologies for estimating bone strength and fracture risk in vivo. Much of their review focused on how well the measurements of selected technologies predicted experimental measurements of bone strength by ex vivo quasistatic mechanical testing (QMT) and on how well they tracked changes in mechanical properties of bone. The authors noted that the association of many common skeletal health measurements (e.g., DXA measures of trabecular bone score and areal and volumetric BMD) are only moderately associated with bone strength. The authors did not include mechanical response tissue analysis (MRTA) in their review. MRTA is a dynamic mechanical bending test that uses a vibration analysis technique to make immediate, direct, functional measurements of the mechanical properties (mass, stiffness, and damping) of long bones in humans in vivo. In this article we note our interest in the ability of MRTA to detect large changes in bone stiffness that go undetected by DXA. We also highlight results of our proprietary improvements to MRTA technology that have resulted in unmatched accuracy in QMT-validated measurements of the bending stiffness and estimates of the bending strength (both R2 = 0.99) of human ulna bones. To distinguish our improved technique from the legacy MRTA technology, we refer to it as Cortical Bone Mechanics Technology (CBMT). Further research will determine whether such CBMT measurements are clinically useful.
Collapse
Affiliation(s)
- Anne B Loucks
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, USA
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, USA.
- Department of Biomedical Sciences, Ohio University, Athens, OH, USA.
- Division of Geriatric Medicine, Ohio University, Athens, OH, USA.
| | - Lyn Bowman
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, USA
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| |
Collapse
|