1
|
Munir A, Reseland JE, Tiainen H, Haugen HJ, Sikorski P, Christiansen EF, Reinholt FP, Syversen U, Solberg LB. Osteocyte-Like Cells Differentiated From Primary Osteoblasts in an Artificial Human Bone Tissue Model. JBMR Plus 2023; 7:e10792. [PMID: 37701151 PMCID: PMC10494512 DOI: 10.1002/jbm4.10792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 09/14/2023] Open
Abstract
In vitro models of primary human osteocytes embedded in natural mineralized matrix without artificial scaffolds are lacking. We have established cell culture conditions that favored the natural 3D orientation of the bone cells and stimulated the cascade of signaling needed for primary human osteoblasts to differentiate into osteocytes with the characteristically phenotypical dendritic network between cells. Primary human osteoblasts cultured in a 3D rotating bioreactor and incubated with a combination of vitamins A, C, and D for up to 21 days produced osteospheres resembling native bone. Osteocyte-like cells were identified as entrapped, stellate-shaped cells interconnected through canaliculi embedded in a structured, mineralized, collagen matrix. These cells expressed late osteoblast and osteocyte markers such as osteocalcin (OCN), podoplanin (E11), dentin matrix acidic phosphoprotein 1 (DMP1), and sclerostin (SOST). Organized collagen fibrils, observed associated with the cell hydroxyapatite (HAp) crystals, were found throughout the spheroid and in between the collagen fibrils. In addition to osteocyte-like cells, the spheroids consisted of osteoblasts at various differentiation stages surrounded by a rim of cells resembling lining cells. This resemblance to native bone indicates a model system with potential for studying osteocyte-like cell differentiation, cross-talk between bone cells, and the mineralization process in a bonelike structure in vitro without artificial scaffolds. In addition, natural extracellular matrix may allow for the study of tissue-specific biochemical, biophysical, and mechanical properties. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Arooj Munir
- Department of BiomaterialsInstitute of Clinical Dentistry, University of OsloOsloNorway
| | - Janne Elin Reseland
- Department of BiomaterialsInstitute of Clinical Dentistry, University of OsloOsloNorway
| | - Hanna Tiainen
- Department of BiomaterialsInstitute of Clinical Dentistry, University of OsloOsloNorway
| | - Håvard Jostein Haugen
- Department of BiomaterialsInstitute of Clinical Dentistry, University of OsloOsloNorway
| | - Pawel Sikorski
- Department of PhysicsNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | | | | | - Unni Syversen
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Lene Bergendal Solberg
- Department of PathologyOslo University HospitalOsloNorway
- Division of Orthopedic SurgeryOslo University HospitalOsloNorway
| |
Collapse
|
2
|
Knowles HJ, Chanalaris A, Koutsikouni A, Cribbs AP, Grover LM, Hulley PA. Mature primary human osteocytes in mini organotypic cultures secrete FGF23 and PTH1-34-regulated sclerostin. Front Endocrinol (Lausanne) 2023; 14:1167734. [PMID: 37223031 PMCID: PMC10200954 DOI: 10.3389/fendo.2023.1167734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/03/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction For decades, functional primary human osteocyte cultures have been crucially needed for understanding their role in bone anabolic processes and in endocrine phosphate regulation via the bone-kidney axis. Mature osteocyte proteins (sclerostin, DMP1, Phex and FGF23) play a key role in various systemic diseases and are targeted by successful bone anabolic drugs (anti-sclerostin antibody and teriparatide (PTH1-34)). However, cell lines available to study osteocytes produce very little sclerostin and low levels of mature osteocyte markers. We have developed a primary human 3D organotypic culture system that replicates the formation of mature osteocytes in bone. Methods Primary human osteoblasts were seeded in a fibrinogen / thrombin gel around 3D-printed hanging posts. Following contraction of the gel around the posts, cells were cultured in osteogenic media and conditioned media was collected for analysis of secreted markers of osteocyte formation. Results The organoids were viable for at least 6 months, allowing co-culture with different cell types and testing of bone anabolic drugs. Bulk RNAseq data displayed the developing marker trajectory of ossification and human primary osteocyte formation in vitro over an initial 8- week period. Vitamin D3 supplementation increased mineralization and sclerostin secretion, while hypoxia and PTH1-34 modulated sclerostin. Our culture system also secreted FGF23, enabling the future development of a bone-kidney-parathyroid-vascular multi-organoid or organ-on-a-chip system to study disease processes and drug effects using purely human cells. Discussion This 3D organotypic culture system provides a stable, long-lived, and regulated population of mature human primary osteocytes for a variety of research applications.
Collapse
Affiliation(s)
- Helen J. Knowles
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Anastasios Chanalaris
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Argyro Koutsikouni
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Adam P. Cribbs
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Translational Myeloma Research, Botnar Institute for Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Liam M. Grover
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Philippa A. Hulley
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Sabol HM, Amorim T, Ashby C, Halladay D, Anderson J, Cregor M, Sweet M, Nookaew I, Kurihara N, Roodman GD, Bellido T, Delgado-Calle J. Notch3 signaling between myeloma cells and osteocytes in the tumor niche promotes tumor growth and bone destruction. Neoplasia 2022; 28:100785. [PMID: 35390742 PMCID: PMC8990177 DOI: 10.1016/j.neo.2022.100785] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022]
Abstract
In multiple myeloma (MM), communication via Notch signaling in the tumor niche stimulates tumor progression and bone destruction. We previously showed that osteocytes activate Notch, increase Notch3 expression, and stimulate proliferation in MM cells. We show here that Notch3 inhibition in MM cells reduced MM proliferation, decreased Rankl expression, and abrogated the ability of MM cells to promote osteoclastogenesis. Further, Notch3 inhibition in MM cells partially prevented the Notch activation and increased proliferation induced by osteocytes, demonstrating that Notch3 mediates MM-osteocyte communication. Consistently, pro-proliferative and pro-osteoclastogenic pathways were upregulated in CD138+ cells from newly diagnosed MM patients with high vs. low NOTCH3 expression. These results show that NOTCH3 signaling in MM cells stimulates proliferation and increases their osteoclastogenic potential. In contrast, Notch2 inhibition did not alter MM cell proliferation or communication with osteocytes. Lastly, mice injected with Notch3 knock-down MM cells had a 50% decrease in tumor burden and a 50% reduction in osteolytic lesions than mice bearing control MM cells. Together, these findings identify Notch3 as a mediator of cell communication among MM cells and between MM cells and osteocytes in the MM tumor niche and warrant future studies to exploit Notch3 as a therapeutic target to treat MM.
Collapse
Affiliation(s)
- Hayley M Sabol
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Tânia Amorim
- Medicine, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Cody Ashby
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, United States
| | - David Halladay
- Medicine, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Judith Anderson
- Medicine, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Meloney Cregor
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Megan Sweet
- Medicine, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Noriyoshi Kurihara
- Medicine, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - G David Roodman
- Medicine, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Teresita Bellido
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Central Arkansas Veterans Healthcare System, Little Rock, AR, United States; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Jesus Delgado-Calle
- Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, United States.
| |
Collapse
|
4
|
Abstract
Osteocytes, former osteoblasts encapsulated by mineralized bone matrix, are far from being passive and metabolically inactive bone cells. Instead, osteocytes are multifunctional and dynamic cells capable of integrating hormonal and mechanical signals and transmitting them to effector cells in bone and in distant tissues. Osteocytes are a major source of molecules that regulate bone homeostasis by integrating both mechanical cues and hormonal signals that coordinate the differentiation and function of osteoclasts and osteoblasts. Osteocyte function is altered in both rare and common bone diseases, suggesting that osteocyte dysfunction is directly involved in the pathophysiology of several disorders affecting the skeleton. Advances in osteocyte biology initiated the development of novel therapeutics interfering with osteocyte-secreted molecules. Moreover, osteocytes are targets and key distributors of biological signals mediating the beneficial effects of several bone therapeutics used in the clinic. Here we review the most recent discoveries in osteocyte biology demonstrating that osteocytes regulate bone homeostasis and bone marrow fat via paracrine signaling, influence body composition and energy metabolism via endocrine signaling, and contribute to the damaging effects of diabetes mellitus and hematologic and metastatic cancers in the skeleton.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Teresita Bellido
- 1Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas,2Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas,3Central Arkansas Veterans Healthcare System, Little Rock, Arkansas
| |
Collapse
|
5
|
Influence of gellan gum-hydroxyapatite spongy-like hydrogels on human osteoblasts under long-term osteogenic differentiation conditions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112413. [PMID: 34579922 DOI: 10.1016/j.msec.2021.112413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
The scientific community has been doing significant efforts towards engineering new 3D bone models in recent years. Osteocytes are mechanosensitive cells that play significant roles in the maintenance of bone homeostasis. Currently, as far as we know, there are no 3D models that faithfully recapitulate a bone microenvironment capable of promoting the differentiation of osteoblasts towards osteocytes. Besides, in the existing models, the use of human cells does not prevail over the animal cell lines. For so, we propose a 3D model that may have important implications for ongoing efforts towards a better understanding of bone physiology and disease. The main aim of the current work was the promotion of an effective differentiation of osteoblasts into osteocytes by mean of using a 3D model composed of primary human osteoblasts (hOBs) cultured on Gellan Gum-Hydroxyapatite (GG-HAp) matrix under a long-term osteogenic culture. The results revealed that GG-HAp matrix stimulated a fast cell migration/entrapment, attachment, spreading, and mineralization. Moreover, the transition process from osteoblasts to osteocytes was confirmed by the expression of the osteogenic-related (ALP, Runx2, COL I, OC, OPN and OSX) and osteocyte-related (hPDPN) marker throughout the culture time. Overall, the developed 3D model holds a great promise for the treatment of various bone diseases, namely on diagnostic applications and for bone regeneration purposes.
Collapse
|
6
|
Apheresis Platelet Rich-Plasma for Regenerative Medicine: An In Vitro Study on Osteogenic Potential. Int J Mol Sci 2021; 22:ijms22168764. [PMID: 34445472 PMCID: PMC8395746 DOI: 10.3390/ijms22168764] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Platelet-Rich Plasma (PRP) induces bone regeneration; however, there is low evidence supporting its efficacy in bone healing. The lack of a standardized protocol of administration represents the main obstacle to its use in the clinical routine for bone defects’ treatment. The purpose of this study was to characterize PRP and elucidate its osteogenic potential. Methods: Platelet count, fibrinogen levels, and growth factors concentration were measured in PRP obtained by four apheresis procedures. HOB-01-C1, a pre-osteocytic cell line, was used to examine the effects of different PRP dilutions (from 1% to 50%) on cell viability, growth, and differentiation. Gene expression of RUNX2, PHEX, COL1A1, and OCN was also assayed. Results: PRP showed a mean 4.6-fold increase of platelets amount compared to whole blood. Among the 36 proteins evaluated, we found the highest concentrations for PDGF isoforms, EGF, TGF-β and VEGF-D. PDGF-AA positively correlated with platelet counts. In three of the four tested units, 25% PRP induced a growth rate comparable to the positive control (10% FBS); whereas, for all the tested units, 10% PRP treatment sustained differentiation. Conclusions: This study showed that PRP from apheresis stimulates proliferation and differentiation of pre-osteocyte cells through the release of growth factors from platelets.
Collapse
|
7
|
Kratochvilova A, Ramesova A, Vesela B, Svandova E, Lesot H, Gruber R, Matalova E. Impact of FasL Stimulation on Sclerostin Expression and Osteogenic Profile in IDG-SW3 Osteocytes. BIOLOGY 2021; 10:biology10080757. [PMID: 34439989 PMCID: PMC8389703 DOI: 10.3390/biology10080757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/27/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary FasL used to be considered as a classical ligand triggering cell death (apoptosis) via its receptor, Fas and thefollowing caspase cascade. As such, it is known to be involved in regulation within the bone. Recently, however, the knowledge has expanded about the non-apoptotic and caspase-independent engagement of the Fas/FasL pathway. The present investigation identified that stimulation of osteocytic IDG-SW3 cells by FasL leads to a dramatic decrease in expression of the major osteocytic marker, sclerostin. Additionally, other key components of the osteogenic pathways were impacted, notably in a caspase-independent manner. Such findings are of importance for basic biology as well as biomedical applications since osteocytes are the major population within adult bones and Fas signalling is one of therapeutical targets, e.g., in the anti-osteoporotic treatment. Abstract The Fas ligand (FasL) is known from programmed cell death, the immune system, and recently also from bone homeostasis. As such, Fas signalling is a potential target of anti-osteoporotic treatment based on the induction of osteoclastic cell death. Less attention has been paid to osteocytes, although they represent the majority of cells within the mature bone and are the key regulators. To determine the impact of FasL stimulation on osteocytes, differentiated IDG-SW3 cells were challenged by FasL, and their osteogenic expression profiles were evaluated by a pre-designed PCR array. Notably, the most downregulated gene was the one for sclerostin, which is the major marker of osteocytes and a negative regulator of bone formation. FasL stimulation also led to significant changes (over 10-fold) in the expression of other osteogenic markers: Gdf10, Gli1, Ihh, Mmp10, and Phex. To determine whether these alterations involved caspase-dependent or caspase-independent mechanisms, the IDG-SW3 cells were stimulated by FasL with and without a caspase inhibitor: Q-VD-OPh. The alterations were also detected in the samples treated by FasL along with Q-VD-OPh, pointing to the caspase-independent impact of FasL stimulation. These results contribute to an understanding of the recently emerging pleiotropic effects of Fas/FasL signalling and specify its functions in bone cells.
Collapse
Affiliation(s)
- Adela Kratochvilova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 60200 Brno, Czech Republic; (A.K.); (A.R.); (B.V.); (E.S.); (H.L.)
| | - Alice Ramesova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 60200 Brno, Czech Republic; (A.K.); (A.R.); (B.V.); (E.S.); (H.L.)
| | - Barbora Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 60200 Brno, Czech Republic; (A.K.); (A.R.); (B.V.); (E.S.); (H.L.)
| | - Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 60200 Brno, Czech Republic; (A.K.); (A.R.); (B.V.); (E.S.); (H.L.)
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 60200 Brno, Czech Republic; (A.K.); (A.R.); (B.V.); (E.S.); (H.L.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University Vienna, Sensengasse 2a, 1090 Vienna, Austria;
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, 60200 Brno, Czech Republic; (A.K.); (A.R.); (B.V.); (E.S.); (H.L.)
- Institute of Physiology, Faculty of Veterinary Medicine, Veterinary University Brno, 61200 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
8
|
Uda Y, Spatz JM, Hussein A, Garcia JH, Lai F, Dedic C, Fulzele K, Dougherty S, Eberle M, Adamson C, Misener L, Gerstenfeld L, Divieti Pajevic P. Global transcriptomic analysis of a murine osteocytic cell line subjected to spaceflight. FASEB J 2021; 35:e21578. [PMID: 33835498 DOI: 10.1096/fj.202100059r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 01/18/2023]
Abstract
Bone loss is a major health concern for astronauts during long-term spaceflight and for patients during prolonged bed rest or paralysis. Growing evidence suggests that osteocytes, the most abundant cells in the mineralized bone matrix, play a key role in sensing mechanical forces applied to the skeleton and integrating the orchestrated response into subcellular biochemical signals to modulate bone homeostasis. However, the precise molecular mechanisms underlying both mechanosensation and mechanotransduction in late-osteoblast-to-osteocyte cells under microgravity (µG) have yet to be elucidated. To unravel the mechanisms by which late osteoblasts and osteocytes sense and respond to mechanical unloading, we exposed the osteocytic cell line, Ocy454, to 2, 4, or 6 days of µG on the SpaceX Dragon-6 resupply mission to the International Space Station. Our results showed that µG impairs the differentiation of osteocytes, consistent with prior osteoblast spaceflight experiments, which resulted in the downregulation of key osteocytic genes. Importantly, we demonstrate the modulation of critical glycolysis pathways in osteocytes subjected to microgravity and discovered a set of mechanical sensitive genes that are consistently regulated in multiple cell types exposed to microgravity suggesting a common, yet to be fully elucidated, genome-wide response to microgravity. Ground-based simulated microgravity experiments utilizing the NASA rotating-wall-vessel were unable to adequately replicate the changes in microgravity exposure highlighting the importance of spaceflight missions to understand the unique environmental stress that microgravity presents to diverse cell types. In summary, our findings demonstrate that osteocytes respond to µG with an increase in glucose metabolism and oxygen consumption.
Collapse
Affiliation(s)
- Yuhei Uda
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Jordan M Spatz
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Amira Hussein
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Joseph H Garcia
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Forest Lai
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Chris Dedic
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Keertik Fulzele
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | | | | | | | | | - Louis Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, USA
| | - Paola Divieti Pajevic
- Department of Translational Dental Medicine, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA.,Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|