1
|
Fu S, Lu Y, Sun W, Chen W, Lin C, Qin A. Swimming induces bone loss via regulating mechanical sensing pathways in bone marrow. MECHANOBIOLOGY IN MEDICINE 2025; 3:100125. [PMID: 40395774 PMCID: PMC12067880 DOI: 10.1016/j.mbm.2025.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 05/22/2025]
Abstract
Bone is an organ capable of perceiving external mechanical stress in real time and responding dynamically via mechanosensing proteins such as Piezo1 and YAP/TAZ. Upon sensing the mechano-signals, cells within the bone matrix collaborate to coordinate bone formation and resorption, while bone marrow cells are also stimulated and mobilized. High-load exercise stimulates osteoblast differentiation and bone formation. However, the mechanism through which the low-load exercises affect bone homeostasis is still unclear. In this work, we established a long-term swimming training model to unload the mechanical stress in mice. Throughout the training model, we observed a significant loss in trabecular bone mass, as evidenced by microCT scanning and histological staining. Single-cell sequencing of the tibial bone marrow tissue revealed a significant increase in the percentage of bone marrow neutrophils, along with alterations in Integrins and the ERK1/2 signaling pathway. Notably, the changes in both Integrins and the ERK1/2 signaling pathway in macrophages were more pronounced than in other cell types, which suggests a mechanical adaptive response in these cells. Moreover, the involvement of Integrins is also critical for the crosstalk between monocyte precusors and macrophages during swimming. Together, this study provides a resource of the alterations of bone marrow cell gene expression profile after swimming and highlights the importance of Integrins and the ERK1/2 signaling pathway in the bone marrow microenvironment after swimming.
Collapse
Affiliation(s)
- Shaotian Fu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Yahong Lu
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, 289 Kuocang Road, Zhejiang, 323000, China
| | - Wenkun Sun
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Wugui Chen
- Department of Orthopaedics, Mindong Hospital Affiliated Fujian Medical University, Fujian, China
| | - Chengshou Lin
- Department of Orthopaedics, Mindong Hospital Affiliated Fujian Medical University, Fujian, China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
2
|
Freitas L, Bezerra A, Boppre G, Amorim T, Fernandes RJ, Fonseca H. Does Swimming Exercise Impair Bone Health? A Systematic Review and Meta-Analysis Comparing the Evidence in Humans and Rodent Models. Sports Med 2024; 54:2373-2394. [PMID: 38900358 DOI: 10.1007/s40279-024-02052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND The effect of swimming on bone health remains unclear, namely due to discrepant findings between studies in humans and animal models. OBJECTIVE The aim of this systematic review and meta-analysis is to identify the available evidence on the effects of swimming on bone mass, geometry and microarchitecture at the lumbar spine, femur and tibia in both humans and rodent animal models. METHODS The study followed PRISMA guidelines and was registered at PROSPERO (CRD4202236347 and CRD42022363714 for human and animal studies). Two different systematic literature searches were conducted in PubMed, Scopus and Web of Science, retrieving 36 and 16 reports for humans and animal models, respectively. RESULTS In humans, areal bone mineral density (aBMD) was similar between swimmers and non-athletic controls at the lumbar spine, hip and femoral neck. Swimmers' tibia diaphysis showed a higher cross-sectional area but lower cortical thickness. Inconsistent findings at the femoral neck cortical thickness were found. Due to the small number of studies, trabecular microarchitecture in human swimmers was not assessed. In rodent models, aBMD was found to be lower at the tibia, but similar at the femur. Inconsistent findings in femur diaphysis cross-sectional area were observed. No differences in femur and tibia trabecular microarchitecture were found. CONCLUSION Swimming seems to affect bone health differently according to anatomical region. Studies in both humans and rodent models suggest that tibia cortical bone is negatively affected by swimming. There was no evidence of a negative effect of swimming on other bone regions, both in humans and animal models.
Collapse
Affiliation(s)
- Laura Freitas
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal.
| | - Andrea Bezerra
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Giorjines Boppre
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Nucleus of Research in Human Movement Science, Universidad Adventista de Chile, Chillán, Chile
| | - Tânia Amorim
- Fame Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Ricardo J Fernandes
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal
- Porto Biomechanics Laboratory (LABIOMEP), University of Porto, Porto, Portugal
| | - Hélder Fonseca
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Rua Dr. Plácido Costa 91, 4200-450, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
3
|
Freitas L, Bezerra A, Resende-Coelho A, Gomez-Lazaro M, Maciel L, Amorim T, Fernandes RJ, Fonseca H. Impact of Long-Term Swimming Exercise on Rat Femur Bone Quality. Biomedicines 2023; 12:35. [PMID: 38255142 PMCID: PMC10813774 DOI: 10.3390/biomedicines12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Considering the conflicting evidence regarding the potential long-term detrimental effect of swimming during growth on femur quality and fracture risk, our aim was to investigate the effect of eight months of swimming on femur quality. Twenty male eight-week-old Wistar rats were assigned into a swimming (SW; n = 10; 2 h/day, 5 days/week) or active control group (CG; n = 10, housed with running wheel) for eight months. Plasma osteocalcin and C-terminal telopeptide of type I collagen concentrations (ELISA) were assessed at baseline, four, and eight months of protocol. Femur structure (micro-computed tomography), biomechanical properties (three-point bending), and cellular density (histology) were determined after the protocol. SW displayed a lower uncoupling index, suggesting higher bone resorption, lower empty lacunae density, cortical and trabecular femur mass, femur length and cortical thickness, and higher cortical porosity than CG (p < 0.05). Although both biomarkers' concentrations decreased in both groups throughout the experiment (p < 0.001), there were no significant differences between groups (p > 0.05). No differences were also found regarding biomechanical properties, bone marrow adiposity, and osteocyte and osteoclast densities (p > 0.05). Long-term swimming was associated with unbalanced bone turnover and compromised femur growth, lower femur mass, and deteriorated cortical bone microarchitecture. However, femur trabecular microarchitecture and biomechanical properties were not affected by swimming.
Collapse
Affiliation(s)
- Laura Freitas
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.B.); (A.R.-C.); (L.M.); (H.F.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Andrea Bezerra
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.B.); (A.R.-C.); (L.M.); (H.F.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Ana Resende-Coelho
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.B.); (A.R.-C.); (L.M.); (H.F.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Maria Gomez-Lazaro
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal;
| | - Leonardo Maciel
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.B.); (A.R.-C.); (L.M.); (H.F.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Postgraduate Nursing Program, Federal University of Sergipe, São Cristovão 49100-000, Brazil
- Department of Physiotherapy, Federal University of Sergipe, Lagarto 49400-000, Brazil
| | - Tânia Amorim
- Fame Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 421-00 Trikala, Greece;
| | - Ricardo J. Fernandes
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal;
- Porto Biomechanics Laboratory (LABIOMEP), Faculty of Sport, University of Porto, 4050-313 Porto, Portugal
| | - Hélder Fonseca
- Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal; (A.B.); (A.R.-C.); (L.M.); (H.F.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| |
Collapse
|