1
|
Pérez-Gómez JM, Montero-Hidalgo AJ, Luque RM. GHRH and reproductive systems: Mechanisms, functions, and clinical implications. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09931-8. [PMID: 39612161 DOI: 10.1007/s11154-024-09931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Growth hormone-releasing hormone (GHRH) has classically been considered a regulatory neuropeptide of the hypothalamic-pituitary system, which mediates its anabolic effects through hepatic GH/IGF-I axis. However, during the last decades it has been demonstrated that this key regulatory hormone may be produced in numerous peripheral tissues outside the central nervous system, participating in fundamental physiological functions through a complex balance between its purely endocrine action, and the recently local (autocrine/paracrine) discovered role. Among peripheral sites, its presence in the male and female reproductive systems stands out. In this review, we will first explore the role of the GHRH/GHRH-R hormone axis as a central player in the gonadal function; then, we will discuss available information regarding the presence of GHRH/GHRH-R and the potential physiological roles in reproductive systems of various species; and finally, we will address how reproductive system-related disorders-such as infertility problems, endometriosis, or tumor pathologies (including prostate, or ovarian cancer)-could benefit from hormonal interventions related to the manipulation of the GHRH axis.
Collapse
Affiliation(s)
- Jesús M Pérez-Gómez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), IMIBIC Building. Av. Menéndez Pidal S/N. 14004, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), IMIBIC Building. Av. Menéndez Pidal S/N. 14004, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), IMIBIC Building. Av. Menéndez Pidal S/N. 14004, Cordoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
2
|
Orge C, Rossetti A, Melo A. Response to "Acromegaly: Overview and associated temporomandibular joint disorders". Oral Dis 2024; 30:5490-5491. [PMID: 38735856 DOI: 10.1111/odi.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Affiliation(s)
- Carolina Orge
- Program in Medicine and Health, School of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Adroaldo Rossetti
- Program in Medicine and Health, School of Medicine, Federal University of Bahia, Salvador, Brazil
| | - Ailton Melo
- Program in Medicine and Health, School of Medicine, Federal University of Bahia, Salvador, Brazil
| |
Collapse
|
3
|
Lana JF, da Fonseca LF, Azzini G, Santos G, Braga M, Cardoso Junior AM, Murrell WD, Gobbi A, Purita J, Percope de Andrade MA. Bone Marrow Aspirate Matrix: A Convenient Ally in Regenerative Medicine. Int J Mol Sci 2021; 22:ijms22052762. [PMID: 33803231 PMCID: PMC7963152 DOI: 10.3390/ijms22052762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
The rise in musculoskeletal disorders has prompted medical experts to devise novel effective alternatives to treat complicated orthopedic conditions. The ever-expanding field of regenerative medicine has allowed researchers to appreciate the therapeutic value of bone marrow-derived biological products, such as the bone marrow aspirate (BMA) clot, a potent orthobiologic which has often been dismissed and regarded as a technical complication. Numerous in vitro and in vivo studies have contributed to the expansion of medical knowledge, revealing optimistic results concerning the application of autologous bone marrow towards various impactful disorders. The bone marrow accommodates a diverse family of cell populations and a rich secretome; therefore, autologous BMA-derived products such as the “BMA Matrix”, may represent a safe and viable approach, able to reduce the costs and some drawbacks linked to the expansion of bone marrow. BMA provides —it eliminates many hurdles associated with its preparation, especially in regards to regulatory compliance. The BMA Matrix represents a suitable alternative, indicated for the enhancement of tissue repair mechanisms by modulating inflammation and acting as a natural biological scaffold as well as a reservoir of cytokines and growth factors that support cell activity. Although promising, more clinical studies are warranted in order to further clarify the efficacy of this strategy.
Collapse
Affiliation(s)
- José Fábio Lana
- IOC—Instituto do Osso e da Cartilagem, 1386 Presidente Kennedy Avenue, Indaiatuba 13334-170, Brazil; (J.F.L.); (G.A.)
| | | | - Gabriel Azzini
- IOC—Instituto do Osso e da Cartilagem, 1386 Presidente Kennedy Avenue, Indaiatuba 13334-170, Brazil; (J.F.L.); (G.A.)
| | - Gabriel Santos
- IOC—Instituto do Osso e da Cartilagem, 1386 Presidente Kennedy Avenue, Indaiatuba 13334-170, Brazil; (J.F.L.); (G.A.)
- Correspondence:
| | - Marcelo Braga
- Hospital São Judas Tadeu, 150 Cel. João Notini St, Divinópolis 35500-017, Brazil;
| | - Alvaro Motta Cardoso Junior
- Núcleo Avançado de Estudos em Ortopedia e Neurocirurgia, 2144 Ibirapuera Avenue, São Paulo 04028-001, Brazil;
| | - William D. Murrell
- Abu Dhabi Knee and Sports Medicine, Healthpoint Hospital, Zayed Sports City, Between Gate 1 and 6, Abu Dhabi 00000 (P. O. Box No. 112308), United Arab Emirates;
- 411th Hospital Center, Bldg 938, Birmingham Ave, Naval Air Station, Jacksonville, FL 32212, USA
| | - Alberto Gobbi
- O.A.S.I. Bioresearch Foundation Gobbi Onlus, 20133 Milano, Italy;
| | - Joseph Purita
- Institute of Regenerative Medicine, Boca Raton, FL 33432, USA;
| | | |
Collapse
|
4
|
A new role of growth hormone and insulin growth factor receptor type 1 in neonatal inflammatory nociception. Pain Rep 2017; 2:e608. [PMID: 29392223 PMCID: PMC5741363 DOI: 10.1097/pr9.0000000000000608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/05/2017] [Indexed: 11/28/2022] Open
Abstract
Neonatal inflammation produces nociception by a local decrease of growth hormone and an increment of the insulin growth factor 1-1R. Systemic growth hormone prevents the development of nociception. Growth hormone (GH) and insulin growth factor 1 (IGF1) are implicated in nociceptive processing; it has been reported that the latter participates in neonatal inflammatory nociception. In the target article, the authors propose that local inflammation evoked by carrageenan administration in mice produces a decrease in the local GH levels and an increment of IGF1 receptors type 1 expression, this produces behavioral nociception and peripheral sensitization that can be prevented by GH systemic administration pretreatment.
Collapse
|
5
|
Diagnosis and Treatment of Hypothalamic-Pituitary-Adrenal (HPA) Axis Dysfunction in Patients with Chronic Fatigue Syndrome (CFS) and Fibromyalgia (FM). ACTA ACUST UNITED AC 2011. [DOI: 10.1300/j092v14n03_06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Hurley BF, Hanson ED, Sheaff AK. Strength training as a countermeasure to aging muscle and chronic disease. Sports Med 2011; 41:289-306. [PMID: 21425888 DOI: 10.2165/11585920-000000000-00000] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Strength training (ST) has long been considered a promising intervention for reversing the loss of muscle function and the deterioration of muscle structure associated with advanced age but, until recently, the evidence was insufficient to support its role in the prevention or treatment of disease. In recent decades, there has been a long list of quality reviews examining the effects of ST on functional abilities and a few on risk factors for specific diseases, but none have provided a comprehensive assessment of ST as an intervention for a broad range of diseases. This review provides an overview of research addressing the effectiveness of ST as an intervention for the prevention or treatment of the adverse consequences of (i) aging muscle; (ii) the metabolic syndrome (MetS) and its components, i.e. insulin resistance, abdominal obesity, hyperlipidaemia and hypertension; (iii) fibromyalgia; (iv) rheumatoid arthritis; and (v) Alzheimer's disease. Collectively, these studies indicate that ST may serve as an effective countermeasure to some of the adverse consequences of the MetS, fibromyalgia and rheumatoid arthritis. Evidence in support of the hypothesis that ST reduces insulin resistance or improves insulin action comes both from indirect biomarkers, such as glycosylated haemoglobin (HbA(1c)), and insulin responses to oral glucose tolerance tests, as well as from more direct procedures such as hyperglycaemic and hyperinsulinaemic-euglycaemic clamp techniques. The evidence for the use of ST as a countermeasure of abdominal obesity is less convincing. Although some reports show statistically significant reductions in visceral fat, it is unclear if the magnitude of these changes are physiologically meaningful and if they are independent of dietary influences. The efficacy of ST as an intervention for reducing dyslipidaemia is at best inconsistent, particularly when compared with other pharmacological and non-pharmacological interventions, such as aerobic exercise training. However, there is more consistent evidence for the effectiveness of ST in reducing triglyceride levels. This finding could have clinical significance, given that elevated triglyceride is one of the five criterion measures for the diagnosis of the MetS. Small to moderate reductions in resting and exercise blood pressure have been reported with some indication that this effect may be genotype dependent. ST improves or reverses some of the adverse effects of fibromyalgia and rheumatoid arthritis, particularly pain, inflammation, muscle weakness and fatigue. Investigations are needed to determine how these effects compare with those elicited from aerobic exercise training and/or standard treatments. There is no evidence that ST can reverse any of the major biological or behavioural outcomes of Alzheimer's disease, but there is evidence that the prevalence of this disease is inversely associated with muscle mass and strength. Some indicators of cognitive function may also improve with ST. Thus, ST is an effective countermeasure for some of the adverse effects experienced by patients of many chronic diseases, as discussed in this review.
Collapse
Affiliation(s)
- Ben F Hurley
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland 20742, USA.
| | | | | |
Collapse
|
7
|
Doessing S, Holm L, Heinemeier KM, Feldt-Rasmussen U, Schjerling P, Qvortrup K, Larsen JO, Nielsen RH, Flyvbjerg A, Kjaer M. GH and IGF1 levels are positively associated with musculotendinous collagen expression: experiments in acromegalic and GH deficiency patients. Eur J Endocrinol 2010; 163:853-62. [PMID: 20858702 DOI: 10.1530/eje-10-0818] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Disproportionate growth of musculoskeletal tissue is a major cause of morbidity in both acromegalic (ACRO) and GH-deficient (GHD) patients. GH/IGF1 is likely to play an important role in the regulation of tendon and muscle collagen. We hypothesized that the local production of collagen is associated with the level of GH/IGF1. DESIGN AND METHODS As primary outcomes, collagen mRNA expression and collagen protein fractional synthesis rate (FSR) were determined locally in skeletal muscle and tendon in nine ACRO and nine GHD patients. Moreover, muscle myofibrillar protein synthesis and tendon collagen morphology were determined. RESULTS AND CONCLUSIONS Muscle collagen I and III mRNA expression was higher in ACRO patients versus GHD patients (P<0.05), whereas collagen protein FSR did not differ significantly between ACRO and GHD patients in muscle (P=0.21) and tendon (P=0.15). IGF1Ea and IGF1Ec mRNA expression in muscle was higher in ACRO patients versus GHD patients (P<0.01). Muscle IGF1Ea mRNA expression correlated positively with collagen I mRNA expression (P<0.01). Tendon collagen fibrillar area tended to be higher in GHD patients relative to ACRO patients (P=0.07). Thus, we observed a higher expression for collagen and IGF1 mRNA in local musculotendinous tissue in ACRO patients relative to GHD patients. Moreover, there was a tendency towards a higher collagen protein FSR and a smaller collagen fibril diameter in ACRO patients relative to GHD patients. The results indicate a collagen-stimulating role of local IGF1 in human connective tissue and add to the understanding of musculoskeletal pathology in patients with either high or low GH/IGF1 axis activity.
Collapse
Affiliation(s)
- Simon Doessing
- Department of Orthopaedic Surgery M, Faculty of Health Sciences, Institute of Sports Medicine, Bispebjerg Hospital and Centre for Healthy Aging, University of Copenhagen, Bispebjerg Bakke 23, Copenhagen DK-2400, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jones KD, Deodhar P, Lorentzen A, Bennett RM, Deodhar AA. Growth Hormone Perturbations in Fibromyalgia: A Review. Semin Arthritis Rheum 2007; 36:357-79. [PMID: 17224178 DOI: 10.1016/j.semarthrit.2006.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 08/08/2006] [Accepted: 09/12/2006] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Fibromyalgia (FM) is a syndrome characterized by chronic widespread pain, fatigue, disrupted sleep, depression, and physical deconditioning. In this article, we review the literature on the normal activity of the hypothalamic-pituitary-growth hormone-insulin-like growth factor-1 (HP-GH-IGF-1) axis and its perturbations in FM subjects. METHODS Studies included in this review were accessed through an English language search of Cochrane Collaboration Reviews. Keyword MeSH terms included "fibromyalgia," "growth hormone" (GH), or "insulin-like growth factor-1" (IGF-1). RESULTS Twenty-six studies enrolling 2006 subjects were reviewed. Overall, low levels of IGF-1 were found in a subgroup of subjects. Growth hormone stimulation tests often revealed a suboptimal response, which did not always correlate with IGF-1 levels. No consistent defects in pituitary function were found. Of the 3 randomized placebo controlled studies, only 9 months of daily injectable recombinant GH reduced FM symptoms and normalized IGF-1. CONCLUSIONS These studies suggest that pituitary function is normal in FM and that reported changes in the HP-GH-IGF-1 axis are most likely hypothalamic in origin. The therapeutic efficacy of supplemental GH therapy in FM requires further study before any solid recommendations can be made.
Collapse
Affiliation(s)
- Kim D Jones
- Division of Arthritis & Rheumatic Diseases, School of Medicine, Oregon Health & Science University School of Nursing, 3455 SW U.S. Veterans Hospital Road, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
9
|
Vitetta L, Anton B. Lifestyle and nutrition, caloric restriction, mitochondrial health and hormones: scientific interventions for anti-aging. Clin Interv Aging 2007; 2:537-43. [PMID: 18225453 PMCID: PMC2686342 DOI: 10.2147/cia.s866] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aging is a universal process to all life forms. The most current and widely accepted definition for aging in humans is that there is a progressive loss of function and energy production that is accompanied by decreasing fertility and increasing mortality with advancing age. The most obvious and commonly recognised consequence of aging and energy decline is a decrease in skeletal muscle function which affects every aspect of human life from the ability to play games, walk and run to chew, swallow and digest food. There is hence a recognised overall decline of an individuals' fitness for the environment that they occupy. In Westenised countries this decline is gradual and the signs become mostly noticeable after the 5th decade of life and henceforth, where the individual slowly progresses to death over the next three to four decades. Given that the aging process is slow and gradual, it presents with opportunities and options that may ameliorate and improve the overall functional capacity of the organism. Small changes in function may be more amenable and likely to further slow down and possibly reverse some of the deleterious effects of aging, rather, than when the incremental changes are large. This overall effect may then translate into a significant compression of the deleterious aspects of human aging with a resultant increase in human life expectancy.
Collapse
Affiliation(s)
- Luis Vitetta
- Unit of Health Integration, School of Medicine, University of Queensland, Australia.
| | | |
Collapse
|