1
|
Kuźniar-Pałka A. The Role of Oxidative Stress in Autism Spectrum Disorder Pathophysiology, Diagnosis and Treatment. Biomedicines 2025; 13:388. [PMID: 40002801 PMCID: PMC11852718 DOI: 10.3390/biomedicines13020388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Autism spectrum disorder (ASD) is a significant health problem with no known single cause. There is a vast number of evidence to suggest that oxidative stress plays an important role in this disorder. The author of this article reviewed the current literature in order to summarise the knowledge on the subject. In this paper, the role of oxidative stress is investigated in the context of its influence on pathogenesis, the use of oxidative stress biomarkers as diagnostic tools and the use of antioxidants in ASD treatment. Given the heterogeneity of ASD aetiology and inadequate treatment approaches, the search for common metabolic traits is essential to find more efficient diagnostic tools and treatment methods. There are increasing data to suggest that oxidative stress is involved in the pathogenesis of ASD, both directly and through its interplay with inflammation and mitochondrial dysfunction. Oxidative stress biomarkers appear to have good potential to be used as diagnostic tools to aid early diagnosis of ASD. The results are most promising for glutathione and its derivatives and also for isoprostanses. Probably, complex dedicated multi-parametric metabolic panels may be used in the future. Antioxidants show good potential in ASD-supportive treatment. In all described fields, the data support the importance of oxidative stress but also a need for further research, especially in the context of sample size and, preferably, with a multicentre approach.
Collapse
Affiliation(s)
- Aleksandra Kuźniar-Pałka
- Clinic of Pediatric and Adolescent Neurology, Institute of Mother and Child, 01-211 Warsaw, Poland
| |
Collapse
|
2
|
Mihailovich M, Tolinački M, Soković Bajić S, Lestarevic S, Pejovic-Milovancevic M, Golić N. The Microbiome-Genetics Axis in Autism Spectrum Disorders: A Probiotic Perspective. Int J Mol Sci 2024; 25:12407. [PMID: 39596472 PMCID: PMC11594817 DOI: 10.3390/ijms252212407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Autism spectrum disorder (commonly known as autism) is a complex and prevalent neurodevelopmental condition characterized by challenges in social behavior, restricted interests, and repetitive behaviors. It is projected that the annual cost of autism spectrum disorder in the US will reach USD 461 billion by 2025. However, despite being a major public health problem, effective treatment for the underlying symptoms remains elusive. As numerous literature data indicate the role of gut microbiota in autism prognosis, particularly in terms of alleviating gastrointestinal (GI) symptoms, high hopes have been placed on probiotics for autism treatment. Approximately twenty clinical studies have been conducted using single or mixed probiotic cultures. However, unequivocal results on the effect of probiotics on people with autism have not been obtained. The small sample sizes, differences in age of participants, choice of probiotics, dose and duration of treatment, outcome measures, and analytical methods used are largely inconsistent, making it challenging to draw distinctive conclusions. Here, we discuss the experimental evidence for specific gut bacteria and their metabolites and how they affect autism in light of the phenotypic and etiological complexity and heterogeneity. We propose a personalized medicine approach for using probiotics to increase the quality of life of individuals with autism by selecting specific probiotics to improve particular features of the condition.
Collapse
Affiliation(s)
- Marija Mihailovich
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
- Human Technopole, 20157 Milan, Italy
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| | - Svetlana Soković Bajić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| | - Sanja Lestarevic
- Institute of Mental Health, 11000 Belgrade, Serbia; (S.L.); (M.P.-M.)
| | - Milica Pejovic-Milovancevic
- Institute of Mental Health, 11000 Belgrade, Serbia; (S.L.); (M.P.-M.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| |
Collapse
|
3
|
Saroukhani S, Samms-Vaughan M, Bressler J, Lee M, Byrd-Williams C, Hessabi M, Grove ML, Shakespeare-Pellington S, Loveland KA, Rahbar MH. Additive or Interactive Associations of Food Allergies with Glutathione S-Transferase Genes in Relation to ASD and ASD Severity in Jamaican Children. J Autism Dev Disord 2024; 54:704-724. [PMID: 36436147 DOI: 10.1007/s10803-022-05813-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2022] [Indexed: 11/29/2022]
Abstract
To investigate additive and interactive associations of food allergies with three glutathione S-transferase (GST) genes in relation to ASD and ASD severity in Jamaican children. Using data from 344 1:1 age- and sex-matched ASD cases and typically developing controls, we assessed additive and interactive associations of food allergies with polymorphisms in GST genes (GSTM1, GSTP1 and GSTT1) in relation to ASD by applying conditional logistic regression models, and in relation to ASD severity in ASD cases as measured by the Autism Diagnostic Observation Schedule-2nd Edition (ADOS-2) total and domains specific comparison scores (CSs) by fitting general linear models. Although food allergies and GST genes were not associated with ASD, ASD cases allergic to non-dairy food had higher mean ADOS-2 Restricted and Repetitive Behaviors (RRB) CS (8.8 vs. 8.0, P = 0.04). In addition, allergy to dairy was associated with higher mean RRB CS only among ASD cases with GSTT1 DD genotype (9.9 vs. 7.8, P < 0.01, interaction P = 0.01), and GSTP1 Val/Val genotype under a recessive genetic model (9.8 vs. 7.8, P = 0.02, interaction P = 0.06). Our findings are consistent with the role for GST genes in ASD and food allergies, though require replication in other populations.
Collapse
Affiliation(s)
- Sepideh Saroukhani
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Maureen Samms-Vaughan
- Department of Child & Adolescent Health, The University of the West Indies (UWI), Mona Campus, Kingston 7, Kingston, Jamaica
| | - Jan Bressler
- Department of Epidemiology, Human Genetics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - MinJae Lee
- Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Courtney Byrd-Williams
- Department of Health Promotion and Behavioral Sciences, Michael & Susan Dell Center for Healthy Living, School of Public Health Regional Campus at Austin, The University of Texas Health Science Center at Houston, Austin, TX, 78701, USA
| | - Manouchehr Hessabi
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Megan L Grove
- Department of Epidemiology, Human Genetics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Sydonnie Shakespeare-Pellington
- Department of Child & Adolescent Health, The University of the West Indies (UWI), Mona Campus, Kingston 7, Kingston, Jamaica
| | - Katherine A Loveland
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, TX, 77030, Houston, USA
| | - Mohammad H Rahbar
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- Department of Epidemiology, Human Genetics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Saroukhani S, Samms-Vaughan M, Bressler J, Lee M, Byrd-Williams C, Hessabi M, Grove ML, Shakespeare-Pellington S, Loveland KA, Rahbar MH. Interactive associations of eczema with glutathione S-transferase genes in relation to autism spectrum disorder and its severity in Jamaican children. RESEARCH IN AUTISM SPECTRUM DISORDERS 2023; 105:102183. [PMID: 40051779 PMCID: PMC11884259 DOI: 10.1016/j.rasd.2023.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Background Comorbidity of eczema with autism spectrum disorder (ASD) is increasing. We investigated the associations of eczema and its possible interaction with polymorphisms in glutathione S-transferase (GST) genes in relation to ASD and ASD severity. Method Using data from 344 1:1 age- and sex-matched ASD cases and typically developing controls, we assessed additive and interactive associations of eczema with GST genes in relation to ASD by applying conditional logistic regression models, and in relation to ASD severity in ASD cases as measured by the Autism Diagnostic Observation Schedule-2nd Edition (ADOS-2) total and domain-specific comparison scores (CSs) by fitting general linear models. Results After adjusting for child's age and history of breastfeeding, eczema had no additive association with ASD [Matched Odds ratio (MOR) and 95% Confidence Intervals (CI): 1.04 (0.76, 1.41), P = 0.82] or ASD severity (all P > 0.20). Using a recessive genetic model, eczema was significantly associated with ASD only among children with the Val/Val genotype for the GSTP1 Ile105Val polymorphism [MOR (95% CI) = 2.04 (1.02, 4.08), P = 0.04, P for interaction = 0.03]. In addition, among ASD cases with the GSTM1 DD genotype, those with eczema had a marginally significant higher mean ADOS-2 Social Affect CS than those without eczema (7.3 vs. 6.8, P = 0.08, P for interaction = 0.09). Conclusion Our findings suggest children with certain genotypes for GST genes may be more susceptible for comorbidity of eczema and ASD, which is consistent with the role of GST genes in both conditions.
Collapse
Affiliation(s)
- Sepideh Saroukhani
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA and Biostatistics/Epidemiology/Research Design (BERD) core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Maureen Samms-Vaughan
- Department of Child & Adolescent Health, The University of the West Indies (UWI), Mona Campus, Mona, Kingston 7, Jamaica
| | - Jan Bressler
- Department of Epidemiology, Human Genetics, and Environmental Sciences, and Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - MinJae Lee
- Department of Population & Data Sciences, and Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Courtney Byrd-Williams
- Department of Health Promotion and Behavioral Sciences, and Michael & Susan Dell Center for Healthy Living, School of Public Health Regional Campus at Austin, The University of Texas Health Science Center at Houston, Austin, Texas 78701, USA
| | - Manouchehr Hessabi
- Biostatistics/Epidemiology/Research Design (BERD) core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Megan L. Grove
- Department of Epidemiology, Human Genetics, and Environmental Sciences, and Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | - Katherine A. Loveland
- Louis A. Faillace, MD Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Mohammad H. Rahbar
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA and Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA and Biostatistics/Epidemiology/Research Design (BERD) core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
5
|
Tanner S, Thomson S, Drummond K, O'Hely M, Symeonides C, Mansell T, Saffery R, Sly PD, Collier F, Burgner D, Sugeng EJ, Dwyer T, Vuillermin P, Ponsonby AL, On Behalf Of The Barwon Infant Study Investigator Group. A Pathway-Based Genetic Score for Oxidative Stress: An Indicator of Host Vulnerability to Phthalate-Associated Adverse Neurodevelopment. Antioxidants (Basel) 2022; 11:659. [PMID: 35453345 PMCID: PMC9030597 DOI: 10.3390/antiox11040659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 01/12/2023] Open
Abstract
The developing brain is highly sensitive to environmental disturbances, and adverse exposures can act through oxidative stress. Given that oxidative stress susceptibility is determined partly by genetics, multiple studies have employed genetic scores to explore the role of oxidative stress in human disease. However, traditional approaches to genetic score construction face a range of challenges, including a lack of interpretability, bias towards the disease outcome, and often overfitting to the study they were derived on. Here, we develop an alternative strategy by first generating a genetic pathway function score for oxidative stress (gPFSox) based on the transcriptional activity levels of the oxidative stress response pathway in brain and other tissue types. Then, in the Barwon Infant Study (BIS), a population-based birth cohort (n = 1074), we show that a high gPFSox, indicating reduced ability to counter oxidative stress, is linked to higher autism spectrum disorder risk and higher parent-reported autistic traits at age 4 years, with AOR values (per 2 additional pro-oxidant alleles) of 2.10 (95% CI (1.12, 4.11); p = 0.024) and 1.42 (95% CI (1.02, 2.01); p = 0.041), respectively. Past work in BIS has reported higher prenatal phthalate exposure at 36 weeks of gestation associated with offspring autism spectrum disorder. In this study, we examine combined effects and show a consistent pattern of increased neurodevelopmental problems for individuals with both a high gPFSox and high prenatal phthalate exposure across a range of outcomes, including high gPFSox and high DEHP levels against autism spectrum disorder (attributable proportion due to interaction 0.89; 95% CI (0.62, 1.16); p < 0.0001). The results highlight the utility of this novel functional genetic score and add to the growing evidence implicating gestational phthalate exposure in adverse neurodevelopment.
Collapse
Affiliation(s)
- Samuel Tanner
- Developing Brain Division, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Sarah Thomson
- Developing Brain Division, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Katherine Drummond
- Developing Brain Division, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
- The Minderoo Foundation, Perth, WA 6000, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter D Sly
- Children's Health Research Centre, University of Queensland, South Brisbane, QLD 4101, Australia
- WHO Collaborating Centre for Children's Health and Environment, South Brisbane, QLD 4104, Australia
| | - Fiona Collier
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Barwon Health, Geelong, VIC 3216, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia
| | - Eva J Sugeng
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Terence Dwyer
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Peter Vuillermin
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Barwon Health, Geelong, VIC 3216, Australia
| | - Anne-Louise Ponsonby
- Developing Brain Division, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC 3052, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, VIC 3052, Australia
| | | |
Collapse
|
6
|
Serum Ischemia-Modified Albumin Levels, Myeloperoxidase Activity and Peripheral Blood Mononuclear cells in Autism Spectrum Disorder (ASD). J Autism Dev Disord 2020; 51:2511-2517. [DOI: 10.1007/s10803-020-04740-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Ponsonby AL, Symeonides C, Saffery R, Mueller JF, O'Hely M, Sly PD, Wardrop N, Pezic A, Mansell T, Collier F, Burgner D, Thompson K, Vijayasarathy S, Sugeng EJ, Dwyer T, Ranganathan S, Anderson PJ, Anderson V, Vuillermin P. Prenatal phthalate exposure, oxidative stress-related genetic vulnerability and early life neurodevelopment: A birth cohort study. Neurotoxicology 2020; 80:20-28. [PMID: 32479765 DOI: 10.1016/j.neuro.2020.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/09/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023]
Abstract
Prenatal phthalate chemicals may have adverse effects on brain development by various mechanisms including oxidant damage. However, birth cohort findings have been conflicting. This study aimed to (i) investigate the interplay between maternal prenatal phthalate levels, infant genetic vulnerability to oxidative stress, and child neurodevelopment and (ii) examine combined putative oxidant exposures. In a population-based birth cohort of 1064 women with prenatal recruitment in Victoria, Australia, maternal urine was collected at 36 weeks of pregnancy and phthalate metabolite concentrations measured. An unweighted genetic score for oxidative stress was made using a candidate gene approach. Cognition was assessed using the BAYLEY-III at two years (n = 678). Parents completed questionnaires for doctor diagnosed autism spectrum disorder (ASD) (1.4 %), ASD traits (4.9 %) and child inattention/hyperactivity (n = 791). Analyses included multiple linear and logistic regression. Higher prenatal phthalate levels and a higher oxidative stress genetic score were each associated with subsequent ASD. Several oxidative stress-related SNPs modified the association between prenatal phthalates and ASD and other outcomes. Consistent patterns were evident across gene score-phthalate combinations for cognition, ASD, ASD traits and inattention/hyperactivity. Other putative oxidant factors such as prenatal smoking further increased risk. Prenatal phthalate levels and infant oxidative stress-related genetic vulnerability are associated with adverse neurodevelopment. Combined exposures are important. Current recommendations and regulation on maternal phthalate exposure during pregnancy require re-evaluation.
Collapse
Affiliation(s)
- Anne-Louise Ponsonby
- The Florey Institute for Neuroscience and Mental Health, Australia; Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, University of Melbourne, Victoria, Australia.
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, University of Melbourne, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, University of Melbourne, Victoria, Australia
| | - Jochen F Mueller
- The Queensland Alliance for Environmental Health Science, University of Queensland, Queensland, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, University of Melbourne, Victoria, Australia; School of Medicine, Deakin University, Victoria, Australia
| | - Peter D Sly
- Children's Health Research Centre, University of Queensland, Queensland, Australia; WHO Collaborating Centre for Children's Health and Environment, Queensland, Australia
| | - Nicole Wardrop
- Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, University of Melbourne, Victoria, Australia
| | - Angela Pezic
- Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, University of Melbourne, Victoria, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, University of Melbourne, Victoria, Australia
| | - Fiona Collier
- Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, University of Melbourne, Victoria, Australia; School of Medicine, Deakin University, Victoria, Australia; Barwon Health, Victoria, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, University of Melbourne, Victoria, Australia; Department of Paediatrics, Monash University, Clayton, Victoria, Australia
| | - Kristie Thompson
- The Queensland Alliance for Environmental Health Science, University of Queensland, Queensland, Australia
| | - Soumini Vijayasarathy
- The Queensland Alliance for Environmental Health Science, University of Queensland, Queensland, Australia
| | - Eva J Sugeng
- Department of Environment and Health, Vrije Universiteit, Amsterdam, the Netherlands
| | - Terence Dwyer
- Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, University of Melbourne, Victoria, Australia; The George Institute for Global Health, University of Oxford, Oxford, United Kingdom
| | - Sarath Ranganathan
- Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, University of Melbourne, Victoria, Australia
| | - Peter J Anderson
- Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, University of Melbourne, Victoria, Australia; Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Victoria, Australia
| | - Vicki Anderson
- Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, University of Melbourne, Victoria, Australia
| | - Peter Vuillermin
- Murdoch Children's Research Institute, Royal Children's Hospital Melbourne, University of Melbourne, Victoria, Australia; School of Medicine, Deakin University, Victoria, Australia; Barwon Health, Victoria, Australia
| | | |
Collapse
|
8
|
Mandic-Maravic V, Mitkovic-Voncina M, Pljesa-Ercegovac M, Savic-Radojevic A, Djordjevic M, Pekmezovic T, Grujicic R, Ercegovac M, Simic T, Lecic-Tosevski D, Pejovic-Milovancevic M. Autism Spectrum Disorders and Perinatal Complications-Is Oxidative Stress the Connection? Front Psychiatry 2019; 10:675. [PMID: 31681027 PMCID: PMC6798050 DOI: 10.3389/fpsyt.2019.00675] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/21/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Autism spectrum disorders (ASD) are complex psychiatric disorders, with gene environment interaction being in the basis of their etiology. The association of perinatal complications and ASD is well established. Recent findings suggested that oxidative stress and polymorphism in genes encoding antioxidant enzymes might be involved in the development of ASD. Glutathione transferases (GSTs) have an important role in the antioxidant defense system. We aimed to establish whether the predictive effects of prenatal and perinatal complications (as possible oxidative stress inducers) on ASD risk are dependent on GST polymorphisms. Methods: The study included 113 ASD cases and 114 age- and sex group-matched healthy controls. All participants were genotyped for GSTA1, GSTM1, GSTT1, and GSTP1 polymorphisms. The questionnaire regarding prenatal and perinatal risk factors and complications was administered for all the subjects in the study. Results: The evaluated perinatal complications as a group significantly increased the risk of ASD [odds ratio (OR) = 9.415; p = 0.000], as well as individual perinatal complications, such as prematurity (OR = 11.42; p = 0.001), neonatal jaundice (OR = 8.774; p = 0.000), respiratory distress syndrome (OR = 4.835; p = 0.047), and the use of any medication during pregnancy (OR = 2.413; p = 0.03). In logistic regression model, adding GST genotypes did not modify the significant effects found for prematurity and neonatal jaundice as risk factors in ASD. However, there was a significant interaction of GST genotype with medication use during pregnancy and the use of tocolytics during pregnancy, which was predictive of ASD risk only in carriers of GSTM1-null, as opposed to carriers of GSTM1-active genotype. Conclusion: Specific perinatal complications may be significant risk factors for ASD. GSTM1 genotype may serve as a moderator of the effect of some prenatal factors on the risk of ASD such as using medication during pregnancy. It may be speculated that different oxidative stress-related genetic and environmental factors could lead to development of ASD. Apart from etiological mechanisms, possible therapeutic implications in ASD are also discussed.
Collapse
Affiliation(s)
- Vanja Mandic-Maravic
- Institute of Mental Health, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Mitkovic-Voncina
- Institute of Mental Health, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Pljesa-Ercegovac
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute of Medical and Clinical Biochemistry, Belgrade, Serbia
| | - Ana Savic-Radojevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute of Medical and Clinical Biochemistry, Belgrade, Serbia
| | - Miroslav Djordjevic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- University Children’s Hospital, Belgrade, Serbia
| | - Tatjana Pekmezovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute of Epidemiology, Belgrade, Serbia
| | | | - Marko Ercegovac
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tatjana Simic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute of Medical and Clinical Biochemistry, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Dusica Lecic-Tosevski
- Institute of Mental Health, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | | |
Collapse
|
9
|
Kim Y, Vadodaria KC, Lenkei Z, Kato T, Gage FH, Marchetto MC, Santos R. Mitochondria, Metabolism, and Redox Mechanisms in Psychiatric Disorders. Antioxid Redox Signal 2019; 31:275-317. [PMID: 30585734 PMCID: PMC6602118 DOI: 10.1089/ars.2018.7606] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/17/2022]
Abstract
Significance: Our current knowledge of the pathophysiology and molecular mechanisms causing psychiatric disorders is modest, but genetic susceptibility and environmental factors are central to the etiology of these conditions. Autism, schizophrenia, bipolar disorder and major depressive disorder show genetic gene risk overlap and share symptoms and metabolic comorbidities. The identification of such common features may provide insights into the development of these disorders. Recent Advances: Multiple pieces of evidence suggest that brain energy metabolism, mitochondrial functions and redox balance are impaired to various degrees in psychiatric disorders. Since mitochondrial metabolism and redox signaling can integrate genetic and environmental environmental factors affecting the brain, it is possible that they are implicated in the etiology and progression of psychiatric disorders. Critical Issue: Evidence for direct links between cellular mitochondrial dysfunction and disease features are missing. Future Directions: A better understanding of the mitochondrial biology and its intracellular connections to the nuclear genome, the endoplasmic reticulum and signaling pathways, as well as its role in intercellular communication in the organism, is still needed. This review focuses on the findings that implicate mitochondrial dysfunction, the resultant metabolic changes and oxidative stress as important etiological factors in the context of psychiatric disorders. We also propose a model where specific pathophysiologies of psychiatric disorders depend on circuit-specific impairments of mitochondrial dysfunction and redox signaling at specific developmental stages.
Collapse
Affiliation(s)
- Yeni Kim
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, South Korea
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Krishna C. Vadodaria
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Zsolt Lenkei
- Laboratory of Dynamic of Neuronal Structure in Health and Disease, Institute of Psychiatry and Neuroscience of Paris (UMR_S1266 INSERM, University Paris Descartes), Paris, France
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Japan
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Maria C. Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Renata Santos
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
- Laboratory of Dynamic of Neuronal Structure in Health and Disease, Institute of Psychiatry and Neuroscience of Paris (UMR_S1266 INSERM, University Paris Descartes), Paris, France
| |
Collapse
|
10
|
Improving autism perinatal risk factors: A systematic review. Med Hypotheses 2019; 127:26-33. [DOI: 10.1016/j.mehy.2019.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/01/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022]
|
11
|
Interaction of glutathione S-transferase polymorphisms and tobacco smoking during pregnancy in susceptibility to autism spectrum disorders. Sci Rep 2019; 9:3206. [PMID: 30824761 PMCID: PMC6397281 DOI: 10.1038/s41598-019-39885-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of complex psychiatric disorders, with a proposed gene-environment interaction in their etiology. One mechanism that could explain both the genetic and environmental component is oxidative stress. The aim of our study was to investigate the potential role of common polymorphisms in genes for glutathione transferase A1, M1, T1 and P1 in susceptibility to ASD. We also aimed to explore the possible oxidative stress - specific gene-environment interaction, regarding GST polymorphisms, maternal smoking tobacco during pregnancy (TSDP) and the risk of ASD. This case-control study included 113 children with ASD and 114 age and sex-matched controls. The diagnosis was made based on ICD-10 criteria and verified by Autism Diagnostic Interview – Revised (ADI-R). We investigated GSTA1, GSTM1, GSTP1 and GSTT1 genotypes and explored their individual and combined effects in individuals with ASD. Individual effect of GST genotypes was shown for GSTM1 active genotype decreasing the risk of ASD (OR = 0.554, 95%CI: 0.313–0.983, p = 0.044), and for GSTA1 CC genotype, increasing susceptibility to ASD (OR = 4.132, 95%CI: 1.219–14.012, p = 0.023); the significance was lost when genotype-genotype interactions were added into the logistic regression model. The combination of GSTM1 active and GSTT1 active genotype decreased the risk of ASD (OR = 0.126, 95%CI: 0.029–0.547, p = 0.006), as well as combination of GSTT1 active and GSTP1 llelle (OR = 0.170, 95%CI: 0.029–0.992, p = 0.049). Increased risk of ASD was observed if combination of GSTM1 active and GSTP1 llelle was present (OR = 11.088, 95%CI: 1.745–70.456, p = 0.011). The effect of TSDP was not significant for the risk of ASD, neither individually, nor in interaction with specific GST genotypes. Specific combination of GST genotypes might be associated with susceptibility to ASD, while it appears that maternal smoking during pregnancy does not increase the risk of ASD.
Collapse
|