1
|
Kasaeian A, Roemer FW, Ghotbi E, Ibad HA, He J, Wan M, Zbijewski WB, Guermazi A, Demehri S. Subchondral bone in knee osteoarthritis: bystander or treatment target? Skeletal Radiol 2023; 52:2069-2083. [PMID: 37646795 DOI: 10.1007/s00256-023-04422-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
The subchondral bone is an important structural component of the knee joint relevant for osteoarthritis (OA) incidence and progression once disease is established. Experimental studies have demonstrated that subchondral bone changes are not simply the result of altered biomechanics, i.e., pathologic loading. In fact, subchondral bone alterations have an impact on joint homeostasis leading to articular cartilage loss already early in the disease process. This narrative review aims to summarize the available and emerging imaging techniques used to evaluate knee OA-related subchondral bone changes and their potential role in clinical trials of disease-modifying OA drugs (DMOADs). Radiographic fractal signature analysis has been used to quantify OA-associated changes in subchondral texture and integrity. Cross-sectional modalities such as cone-beam computed tomography (CT), contrast-enhanced cone beam CT, and micro-CT can also provide high-resolution imaging of the subchondral trabecular morphometry. Magnetic resonance imaging (MRI) has been the most commonly used advanced imaging modality to evaluate OA-related subchondral bone changes such as bone marrow lesions and altered trabecular bone texture. Dual-energy X-ray absorptiometry can provide insight into OA-related changes in periarticular subchondral bone mineral density. Positron emission tomography, using physiological biomarkers of subchondral bone regeneration, has provided additional insight into OA pathogenesis. Finally, artificial intelligence algorithms have been developed to automate some of the above subchondral bone measurements. This paper will particularly focus on semiquantitative methods for assessing bone marrow lesions and their utility in identifying subjects at risk of symptomatic and structural OA progression, and evaluating treatment responses in DMOAD clinical trials.
Collapse
Affiliation(s)
- Arta Kasaeian
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frank W Roemer
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA
- Department of Radiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Elena Ghotbi
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hamza Ahmed Ibad
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jianwei He
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mei Wan
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wojciech B Zbijewski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ali Guermazi
- Department of Radiology, Boston University School of Medicine, Boston, MA, USA
| | - Shadpour Demehri
- Musculoskeletal Radiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Ma C, Aitken D, Wu F, Squibb K, Cicuttini F, Jones G. Association between radiographic hand osteoarthritis and bone microarchitecture in a population-based sample. Arthritis Res Ther 2022; 24:223. [PMID: 36115996 PMCID: PMC9482179 DOI: 10.1186/s13075-022-02907-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022] Open
Abstract
Background Subchondral bone plays an important role in the pathogenesis of radiographic osteoarthritis (OA). However, the bony changes that occur in hand OA (HOA) are much less understood. This study aimed to describe the association between radiographic HOA and high-resolution peripheral quantitative computed tomography (HRpQCT) measures of the hand and radius in a population-based sample. Methods A total of 201 participants (mean age 72, 46% female) from the Tasmanian Older Adult Cohort (TASOAC) study underwent HRpQCT assessment of the 2nd distal and proximal interphalangeal (DIP, PIP), 1st carpometacarpal (CMC) joint, and distal radius. Radiographic HOA was assessed at the 2nd DIP, PIP joints, and the 1st CMC joint using the OARSI atlas. Results Proximal osteophyte and joint space narrowing (JSN) scores were consistently more strongly associated with HRpQCT measures compared to the distal site with positive associations for indices of bone size (total and trabecular bone area and cortical perimeter but inconsistent for cortical area) and negative associations for volumetric bone mineral density (vBMD). There was a decrease in trabecular number and bone volume fraction with increasing osteophyte and JSN score as well as an increase in trabecular separation and inhomogeneity. Osteophyte and JSN scores in the hand were not associated with HRpQCT measures at the distal radius. Conclusions This hypothesis generating data suggests that bone size and trabecular disorganization increase with both osteophyte formation and JSN (proximal more than distal), while local vBMD decreases. This process appears to be primarily at the site of pathology rather than nearby unaffected bone. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02907-6.
Collapse
|
3
|
Wong RMY, Chow SKH, Tang N, Chung YL, Griffith J, Liu WH, Ng RWK, Tso CY, Cheung WH. Vibration therapy as an intervention for enhancing trochanteric hip fracture healing in elderly patients: a randomized double-blinded, placebo-controlled clinical trial. Trials 2021; 22:878. [PMID: 34863272 PMCID: PMC8643183 DOI: 10.1186/s13063-021-05844-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are more than 300,000 hip fractures yearly in the USA with mortality rates of 20% within 1 year. The treatment of osteoporotic fractures is a major challenge as bone quality is poor, and healing is expected to delay due to the impaired healing properties with respect to bone formation, angiogenesis, and mineralization. Enhancement of osteoporotic fracture healing and function is therefore critical as a major goal in modern fracture management. Previous pre-clinical studies have shown that low-magnitude high-frequency vibration (LMHFV) accelerates osteoporotic fracture healing. The objective of this study is to investigate the effect of LMHFV on accelerating trochanteric hip fracture healing and functional recovery. METHODS This is a randomized, double-blinded, placebo-controlled clinical trial to evaluate the effect of LMHFV in accelerating trochanteric hip fracture healing. All fractures undergo cephalomedullary nail fixation. The primary outcome of this study is time to fracture healing by X-ray. Computed tomography (CT) and dual-energy X-ray absorptiometry (DXA) will also be performed. Blood circulation at the fracture site will be assessed by dynamic perfusion magnetic resonance (MR). Clinical results include functional recovery by muscle strength, timed up and go test (TUG), quality of life questionnaire (SF-36), balancing, falls, and mortality. DISCUSSION Previous animal studies have demonstrated LMHFV to improve both normal and osteoporotic fracture healing by accelerating callus formation and mineralization. The mechanical stimulation stimulates angiogenesis by significantly enhancing vascular volume and blood flow velocity. This is the first study to translate LMHFV to enhancing hip fracture healing clinically. Positive results would provide a huge impact in the recovery of hip fracture patients and save healthcare costs. TRIAL REGISTRATION Clinicaltrials.gov NCT04063891. Registered on August 21, 2019.
Collapse
Affiliation(s)
- Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Kwoon Ho Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ning Tang
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, Hospital Authority, Hong Kong, China
| | - Yik Lok Chung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - James Griffith
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Hong Liu
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, Hospital Authority, Hong Kong, China
| | - Raymond Wai Kit Ng
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, Hospital Authority, Hong Kong, China
| | - Chi Yin Tso
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, Hospital Authority, Hong Kong, China
| | - Wing Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Luo Y. On challenges in clinical assessment of hip fracture risk using image-based biomechanical modelling: a critical review. J Bone Miner Metab 2021; 39:523-533. [PMID: 33423096 DOI: 10.1007/s00774-020-01198-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Hip fracture is a common health risk among elderly people, due to the prevalence of osteoporosis and accidental fall in the population. Accurate assessment of fracture risk is a crucial step for clinicians to consider patient-by-patient optimal treatments for effective prevention of fractures. Image-based biomechanical modeling has shown promising progress in assessment of fracture risk, and there is still a great possibility for improvement. The purpose of this paper is to identify key issues that need be addressed to improve image-based biomechanical modeling. MATERIALS AND METHODS We critically examined issues in consideration and determination of the four biomechanical variables, i.e., risk of fall, fall-induced impact force, bone geometry and bone material quality, which are essential for prediction of hip fracture risk. We closely inspected: limitations introduced by assumptions that are adopted in existing models; deficiencies in methods for construction of biomechanical models, especially for determination of bone material properties from bone images; problems caused by separate use of the variables in clinical study of hip fracture risk; availability of clinical information that are required for validation of biomechanical models. RESULTS AND CONCLUSIONS A number of critical issues and gaps were identified. Strategies for effectively addressing the issues were discussed.
Collapse
Affiliation(s)
- Yunhua Luo
- Department of Mechanical Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2, Canada.
- Department of Biomedical Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
5
|
The Use of Imaging Techniques in Chronic Kidney Disease-Mineral and Bone Disorders (CKD-MBD)-A Systematic Review. Diagnostics (Basel) 2021; 11:diagnostics11050772. [PMID: 33925796 PMCID: PMC8146279 DOI: 10.3390/diagnostics11050772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Although frequently silent, mineral and bone disease (MBD) is one of the most precocious complication of chronic kidney disease (CKD) and is omnipresent in patients with CKD stage 5. Its pathophysiology is complex, but basically, disturbances in vitamin D, phosphate, and calcium metabolism lead to a diverse range of clinical manifestations with secondary hyperparathyroidism usually being the most frequent. With the decline in renal function, CKD-MBD may induce microstructural changes in bone, vascular system and soft tissues, which results in macrostructural lesions, such as low bone mineral density (BMD) resulting in skeletal fractures, vascular and soft tissue calcifications. Moreover, low BMD, fractures, and vascular calcifications are linked with increased risk of cardiovascular mortality and all-cause mortality. Therefore, a better characterization of CKD-MBD patterns, beyond biochemical markers, is helpful to adapt therapies and monitor strategies as used in the general population. An in-depth characterization of bone health is required, which includes an evaluation of cortical and trabecular bone structure and density and the degree of bone remodeling through bone biomarkers. Standard radiological imaging is generally used for the diagnosis of fracture or pseudo-fractures, vascular calcifications and other features of CKD-MBD. However, bone fractures can also be diagnosed using computed tomography (CT) scan, magnetic resonance (MR) imaging and vertebral fracture assessment (VFA). Fracture risk can be predicted by bone densitometry using dual-energy X-ray absorptiometry (DXA), quantitative computed tomography (QTC) and peripheral quantitative computed tomography (pQTC), quantitative ultrasound (QUS) and most recently magnetic resonance micro-imaging. Quantitative methods to assess bone consistency and strength complete the study and adjust the clinical management when integrated with clinical factors. The aim of this review is to provide a brief and comprehensive update of imaging techniques available for the diagnosis, prevention, treatment and monitoring of CKD-MBD.
Collapse
|
6
|
Mamabolo B, Alblas A, Brits D. Modern imaging modalities in forensic anthropology and the potential of low-dose X-rays. FORENSIC IMAGING 2020. [DOI: 10.1016/j.fri.2020.200406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Tegola LL, Mattera M, Cornacchia S, Cheng X, Guglielmi G. Diagnostic imaging of two related chronic diseases: Sarcopenia and Osteoporosis. J Frailty Sarcopenia Falls 2018; 3:138-147. [PMID: 32300703 PMCID: PMC7155344 DOI: 10.22540/jfsf-03-138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia and osteoporosis are two major health problems worldwide, responsible for a serious clinical and financial burden due to the increasing life expectancy. Both when presented as a single entity and, in particular, in the form of “osteosarcopenia”, they lead to an important increased risk of falls, fractures, hospitalization and mortality. In dealing with these two pathological conditions, it is important to understand that between bone and muscle there is not only a functional correlation but also a close relationship in the development and in maintenance, which is well expressed by the concept of “bone-muscle unit”. This close relationship agrees with the existence of a linear association between sarcopenia and osteoporosis, in particular in elderly population. It is mandatory, in the clinical assessment of both diseases, to do an early diagnosis or to delay as far as possible the appearance of an established form in order to prevent the onset of complications. The aim of this review is to present the different imaging modalities available for a non-invasive investigation of bone and muscle mass and quality in osteoporosis and sarcopenia, with their application and limitations.
Collapse
Affiliation(s)
- Luciana La Tegola
- Università degli Studi di Foggia, Department of Radiology, Viale Luigi Pinto, 1. Foggia, Italy
| | - Maria Mattera
- Università degli Studi di Foggia, Department of Radiology, Viale Luigi Pinto, 1. Foggia, Italy
| | | | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Beijing, China
| | - Giuseppe Guglielmi
- Università degli Studi di Foggia, Department of Radiology, Viale Luigi Pinto, 1. Foggia, Italy.,Ospedale Casa Sollievo della Sofferenza, Department of Radiology, Viale Cappuccini, 1. San Giovanni Rotondo, Italy
| |
Collapse
|
8
|
Tilley S, Jacobson M, Cao Q, Brehler M, Sisniega A, Zbijewski W, Stayman JW. Penalized-Likelihood Reconstruction With High-Fidelity Measurement Models for High-Resolution Cone-Beam Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:988-999. [PMID: 29621002 PMCID: PMC5889122 DOI: 10.1109/tmi.2017.2779406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We present a novel reconstruction algorithm based on a general cone-beam CT forward model, which is capable of incorporating the blur and noise correlations that are exhibited in flat-panel CBCT measurement data. Specifically, the proposed model may include scintillator blur, focal-spot blur, and noise correlations due to light spread in the scintillator. The proposed algorithm (GPL-BC) uses a Gaussian Penalized-Likelihood objective function, which incorporates models of blur and correlated noise. In a simulation study, GPL-BC was able to achieve lower bias as compared with deblurring followed by FDK as well as a model-based reconstruction method without integration of measurement blur. In the same study, GPL-BC was able to achieve better line-pair reconstructions (in terms of segmented-image accuracy) as compared with deblurring followed by FDK, a model-based method without blur, and a model-based method with blur but not noise correlations. A prototype extremities quantitative cone-beam CT test-bench was used to image a physical sample of human trabecular bone. These data were used to compare reconstructions using the proposed method and model-based methods without blur and/or correlation to a registered CT image of the same bone sample. The GPL-BC reconstructions resulted in more accurate trabecular bone segmentation. Multiple trabecular bone metrics, including trabecular thickness (Tb.Th.) were computed for each reconstruction approach as well as the CT volume. The GPL-BC reconstruction provided the most accurate Tb.Th. measurement, 0.255 mm, as compared with the CT derived value of 0.193 mm, followed by the GPL-B reconstruction, the GPL-I reconstruction, and then the FDK reconstruction (0.271 mm, 0.309 mm, and 0.335 mm, respectively).
Collapse
|
9
|
Guglielmi G, Balzano RF, Cheng X. What is changed in the diagnosis of osteoporosis: the role of radiologists. Quant Imaging Med Surg 2018. [PMID: 29541617 DOI: 10.21037/qims.2018.02.04] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Giuseppe Guglielmi
- Department of Radiology, Università degli Studi di Foggia, Viale Luigi Pinto, Foggia, Puglia, Italy.,Department of Radiology, Ospedale Casa Sollievo della Sofferenza, Viale cappuccini, San Giovanni Rotondo, Italy
| | - Rosario Francesco Balzano
- Department of Radiology, Università degli Studi di Foggia, Scuole di Specializzazione di Area Medica, Viale Luigi Pinto, Foggia, Puglia, Italy
| | - Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| |
Collapse
|
10
|
Mattera M, Reginelli A, Bartollino S, Russo C, Barile A, Albano D, Mauri G, Messina C, Cappabianca S, Guglielmi G. Imaging of metabolic bone disease. ACTA BIO-MEDICA : ATENEI PARMENSIS 2018; 89:197-207. [PMID: 29350648 PMCID: PMC6179066 DOI: 10.23750/abm.v89i1-s.7023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 12/25/2022]
Abstract
Osteoporosis is the most important metabolic bone disease, with a wide distribution among the elderly. It is characterized by low bone mass and micro architectural deterioration of bone tissue, leading to enhanced bone fragility and a consequent increase in fracture risk. Identify bone weakening with an appropriate and accurate use of diagnostic imaging is of critical importance in the diagnosis and follow-up of osteoporotic patients. The aim of this review is to evaluate the detection rates of the different imaging modalities in the evaluation of bone strength, in the assessment of fracture risk and in the management of fragility fractures. (www.actabiomedica.it)
Collapse
|
11
|
Mastrogiacomo S, Dou W, Koshkina O, Boerman OC, Jansen JA, Heerschap A, Srinivas M, Walboomers XF. Perfluorocarbon/Gold Loading for Noninvasive in Vivo Assessment of Bone Fillers Using 19F Magnetic Resonance Imaging and Computed Tomography. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22149-22159. [PMID: 28635249 PMCID: PMC5510087 DOI: 10.1021/acsami.7b04075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/20/2017] [Indexed: 05/04/2023]
Abstract
Calcium phosphate cement (CPC) is used in bone repair because of its biocompatibility. However, high similarity between CPC and the natural osseous phase results in poor image contrast in most of the available in vivo imaging techniques such as computed tomography (CT) and magnetic resonance imaging (MRI). For accurate identification and localization during and after implantation in vivo, a composition with enhanced image contrast is needed. In this study, we labeled CPC with perfluoro-15-crown-5-ether-loaded (PFCE) poly(latic-co-glycolic acid) nanoparticles (hydrodynamic radius 100 nm) and gold nanoparticles (diameter 40 nm), as 19F MRI and CT contrast agents, respectively. The resulting CPC/PFCE/gold composite is implanted in a rat model for in vivo longitudinal imaging. Our findings show that the incorporation of the two types of different nanoparticles did result in adequate handling properties of the cement. Qualitative and quantitative long-term assessment of CPC/PFCE/gold degradation was achieved in vivo and correlated to the new bone formation. Finally, no adverse biological effects on the bone tissue are observed via histology. In conclusion, an easy and efficient strategy for following CPC implantation and degradation in vivo is developed. As all materials used are biocompatible, this CPC/PFCE/gold composite is clinically applicable.
Collapse
Affiliation(s)
- Simone Mastrogiacomo
- Department
of Biomaterials, Radboud University Medical
Center, P.O. Box 9101, 6500 HB Nijmegen (309), The Netherlands
| | - Weiqiang Dou
- Department
of Radiology and Nuclear Medicine, Radboud
University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Olga Koshkina
- Department
of Tumor Immunology, Radboud Institute for
Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - Otto C. Boerman
- Department
of Radiology and Nuclear Medicine, Radboud
University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - John A. Jansen
- Department
of Biomaterials, Radboud University Medical
Center, P.O. Box 9101, 6500 HB Nijmegen (309), The Netherlands
| | - Arend Heerschap
- Department
of Radiology and Nuclear Medicine, Radboud
University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Mangala Srinivas
- Department
of Tumor Immunology, Radboud Institute for
Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
| | - X. Frank Walboomers
- Department
of Biomaterials, Radboud University Medical
Center, P.O. Box 9101, 6500 HB Nijmegen (309), The Netherlands
| |
Collapse
|
12
|
Sisniega A, Stayman JW, Yorkston J, Siewerdsen JH, Zbijewski W. Motion compensation in extremity cone-beam CT using a penalized image sharpness criterion. Phys Med Biol 2017; 62:3712-3734. [PMID: 28327471 PMCID: PMC5478238 DOI: 10.1088/1361-6560/aa6869] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cone-beam CT (CBCT) for musculoskeletal imaging would benefit from a method to reduce the effects of involuntary patient motion. In particular, the continuing improvement in spatial resolution of CBCT may enable tasks such as quantitative assessment of bone microarchitecture (0.1 mm-0.2 mm detail size), where even subtle, sub-mm motion blur might be detrimental. We propose a purely image based motion compensation method that requires no fiducials, tracking hardware or prior images. A statistical optimization algorithm (CMA-ES) is used to estimate a motion trajectory that optimizes an objective function consisting of an image sharpness criterion augmented by a regularization term that encourages smooth motion trajectories. The objective function is evaluated using a volume of interest (VOI, e.g. a single bone and surrounding area) where the motion can be assumed to be rigid. More complex motions can be addressed by using multiple VOIs. Gradient variance was found to be a suitable sharpness metric for this application. The performance of the compensation algorithm was evaluated in simulated and experimental CBCT data, and in a clinical dataset. Motion-induced artifacts and blurring were significantly reduced across a broad range of motion amplitudes, from 0.5 mm to 10 mm. Structure similarity index (SSIM) against a static volume was used in the simulation studies to quantify the performance of the motion compensation. In studies with translational motion, the SSIM improved from 0.86 before compensation to 0.97 after compensation for 0.5 mm motion, from 0.8 to 0.94 for 2 mm motion and from 0.52 to 0.87 for 10 mm motion (~70% increase). Similar reduction of artifacts was observed in a benchtop experiment with controlled translational motion of an anthropomorphic hand phantom, where SSIM (against a reconstruction of a static phantom) improved from 0.3 to 0.8 for 10 mm motion. Application to a clinical dataset of a lower extremity showed dramatic reduction of streaks and improvement in delineation of tissue boundaries and trabecular structures throughout the whole volume. The proposed method will support new applications of extremity CBCT in areas where patient motion may not be sufficiently managed by immobilization, such as imaging under load and quantitative assessment of subchondral bone architecture.
Collapse
Affiliation(s)
- A. Sisniega
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD USA 21205
| | - J. W. Stayman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD USA 21205
| | | | - J. H. Siewerdsen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD USA 21205
- Russell H. Morgan Department of Radiology, Johns Hopkins University, Baltimore MD USA 21205
| | - W. Zbijewski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD USA 21205
| |
Collapse
|
13
|
Ferrucci L, Baroni M, Ranchelli A, Lauretani F, Maggio M, Mecocci P, Ruggiero C. Interaction between bone and muscle in older persons with mobility limitations. Curr Pharm Des 2015; 20:3178-97. [PMID: 24050165 DOI: 10.2174/13816128113196660690] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/13/2013] [Indexed: 12/18/2022]
Abstract
Aging is associated with a progressive loss of bone-muscle mass and strength. When the decline in mass and strength reaches critical thresholds associated with adverse health outcomes, they are operationally considered geriatric conditions and named, respectively, osteoporosis and sarcopenia. Osteoporosis and sarcopenia share many of the same risk factors and both directly or indirectly cause higher risk of mobility limitations, falls, fractures and disability in activities of daily living. This is not surprising since bones adapt their morphology and strength to the long-term loads exerted by muscle during anti-gravitational and physical activities. Non-mechanical systemic and local factors also modulate the mechanostat effect of muscle on bone by affecting the bidirectional osteocyte-muscle crosstalk, but the specific pathways that regulate these homeostatic mechanisms are not fully understood. More research is required to reach a consensus on cut points in bone and muscle parameters that identify individuals at high risk for adverse health outcomes, including falls, fractures and disability. A better understanding of the muscle-bone physiological interaction may help to develop preventive strategies that reduce the burden of musculoskeletal diseases, the consequent disability in older persons and to limit the financial burden associated with such conditions. In this review, we summarize age-related bone-muscle changes focusing on the biomechanical and homeostatic mechanisms that explain bone-muscle interaction and we speculate about possible pathological events that occur when these mechanisms become impaired. We also report some recent definitions of osteoporosis and sarcopenia that have emerged in the literature and their implications in clinical practice. Finally, we outline the current evidence for the efficacy of available anti-osteoporotic and proposed antisarcopenic interventions in older persons.
Collapse
Affiliation(s)
| | | | | | | | | | | | - C Ruggiero
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, S. Andrea delle Fratte, 06100, Perugia, Italy.
| |
Collapse
|
14
|
Ventura M, Boerman OC, de Korte C, Rijpkema M, Heerschap A, Oosterwijk E, Jansen JA, Walboomers XF. Preclinical Imaging in Bone Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:578-95. [DOI: 10.1089/ten.teb.2013.0635] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Manuela Ventura
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Otto C. Boerman
- Department of Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Chris de Korte
- Department of Radiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mark Rijpkema
- Department of Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - John A. Jansen
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - X. Frank Walboomers
- Department of Biomaterials, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Evans BAJ, James TW, James K, Cox A, Farr L, Paisey SJ, Dempster DW, Stone MD, Griffiths PA, Hugtenburg RP, Brady SM, Wells T. Preclinical assessment of a new magnetic resonance-based technique for determining bone quality by characterization of trabecular microarchitecture. Calcif Tissue Int 2014; 95:506-20. [PMID: 25380571 DOI: 10.1007/s00223-014-9922-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
Abstract
The utility of HR-CT to study longitudinal changes in bone microarchitecture is limited by subject radiation exposure. Although MR is not subject to this limitation, it is limited both by patient movement that occurs during prolonged scanning at distal sites, and by the signal-to-noise ratio that is achievable for high-resolution images in a reasonable scan time at proximal sites. Recently, a novel MR-based technique, fine structure analysis (FSA) (Chase et al. Localised one-dimensional magnetic resonance spatial frequency spectroscopy. PCT/US2012/068284 2012, James and Chase Magnetic field gradient structure characteristic assessment using one-dimensional (1D) spatial frequency distribution analysis. 7932720 B2, 2011) has been developed which provides both high-resolution and fast scan times, but which generates at a designated set of spatial positions (voxels) a one-dimensional signal of spatial frequencies. Appendix 1 provides a brief introduction to FSA. This article describes an initial exploration of FSA for the rapid, non-invasive characterization of trabecular microarchitecture in a preclinical setting. For L4 vertebrae of sham and ovariectomized (OVX) rats, we compared FSA-generated metrics with those from CT datasets and from CT-derived histomorphometry parameters, trabecular number (Tb.N), bone volume density (BV/TV), trabecular thickness (Tb.Th) and trabecular separation (Tb.Sp). OVX caused a reduction of the higher frequency structures that correspond to a denser trabecular lattice, while increasing the preponderance of lower frequency structures, which correspond to a more open lattice. As one example measure, the centroid of the FSA spectrum (which we refer to as fSAcB) showed strong correlation in the same region with CT-derived histomorphometry values: Tb.Sp: r -0.63, p < 0.001; Tb.N: r 0.71, p < 0.001; BV/TV: r 0.64, p < 0.001, Tb.Th: r 0.44, p < 0.05. Furthermore, we found a 17.5% reduction in fSAcB in OVX rats (p < 0.0001). In a longitudinal study, FSA showed that the age-related increase in higher frequency structures was abolished in OVX rats, being replaced with a 78-194% increase in lower frequency structures (2.4-2.8 objects/mm range), indicating a more sparse trabecular lattice (p < 0.05). The MR-based fine structure analysis enables high-resolution, radiation-free, rapid quantification of bone structures in one dimension (the specific point and direction being chosen by the clinician) of the spine.
Collapse
Affiliation(s)
- B A J Evans
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tan VPS, Macdonald HM, Kim S, Nettlefold L, Gabel L, Ashe MC, McKay HA. Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res 2014; 29:2161-81. [PMID: 24737388 DOI: 10.1002/jbmr.2254] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 11/08/2022]
Abstract
A preponderance of evidence from systematic reviews supports the effectiveness of weight-bearing exercises on bone mass accrual, especially during the growing years. However, only one systematic review (limited to randomized controlled trials) examined the role of physical activity (PA) on bone strength. Thus, our systematic review extended the scope of the previous review by including all PA intervention and observational studies, including organized sports participation studies, with child or adolescent bone strength as the main outcome. We also sought to discern the skeletal elements (eg, mass, structure, density) that accompanied significant bone strength changes. Our electronic-database, forward, and reference searches yielded 14 intervention and 23 observational studies that met our inclusion criteria. We used the Effective Public Health Practice Project (EPHPP) tool to assess the quality of studies. Due to heterogeneity across studies, we adopted a narrative synthesis for our analysis and found that bone strength adaptations to PA were related to maturity level, sex, and study quality. Three (of five) weight-bearing PA intervention studies with a strong rating reported significantly greater gains in bone strength for the intervention group (3% to 4%) compared with only three significant (of nine) moderate intervention studies. Changes in bone structure (eg, bone cross-sectional area, cortical thickness, alone or in combination) rather than bone mass most often accompanied significant bone strength outcomes. Prepuberty and peripuberty may be the most opportune time for boys and girls to enhance bone strength through PA, although this finding is tempered by the few available studies in more mature groups. Despite the central role that muscle plays in bones' response to loading, few studies discerned the specific contribution of muscle function (or surrogates) to bone strength. Although not the focus of the current review, this seems an important consideration for future studies.
Collapse
Affiliation(s)
- Vina P S Tan
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada; Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada; School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | | | | | | | | | | |
Collapse
|
17
|
Ventura M, Boerman OC, Franssen GM, Bronkhorst E, Jansen JA, Walboomers XF. Monitoring the biological effect of BMP-2 release on bone healing by PET/CT. J Control Release 2014; 183:138-44. [DOI: 10.1016/j.jconrel.2014.03.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 12/11/2022]
|
18
|
Farahmand P, Marin F, Hawkins F, Möricke R, Ringe JD, Glüer CC, Papaioannou N, Minisola S, Martínez G, Nolla JM, Niedhart C, Guañabens N, Nuti R, Martín-Mola E, Thomasius F, Peña J, Graeff C, Kapetanos G, Petto H, Gentzel A, Reisinger A, Zysset PK. Early changes in biochemical markers of bone formation during teriparatide therapy correlate with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis. Osteoporos Int 2013; 24:2971-81. [PMID: 23740422 PMCID: PMC3838582 DOI: 10.1007/s00198-013-2379-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/23/2013] [Indexed: 01/19/2023]
Abstract
UNLABELLED Changes of the bone formation marker PINP correlated positively with improvements in vertebral strength in men with glucocorticoid-induced osteoporosis (GIO) who received 18-month treatment with teriparatide, but not with risedronate. These results support the use of PINP as a surrogate marker of bone strength in GIO patients treated with teriparatide. INTRODUCTION To investigate the correlations between biochemical markers of bone turnover and vertebral strength estimated by finite element analysis (FEA) in men with GIO. METHODS A total of 92 men with GIO were included in an 18-month, randomized, open-label trial of teriparatide (20 μg/day, n = 45) and risedronate (35 mg/week, n = 47). High-resolution quantitative computed tomography images of the 12th thoracic vertebra obtained at baseline, 6 and 18 months were converted into digital nonlinear FE models and subjected to anterior bending, axial compression and torsion. Stiffness and strength were computed for each model and loading mode. Serum biochemical markers of bone formation (amino-terminal-propeptide of type I collagen [PINP]) and bone resorption (type I collagen cross-linked C-telopeptide degradation fragments [CTx]) were measured at baseline, 3 months, 6 months and 18 months. A mixed-model of repeated measures analysed changes from baseline and between-group differences. Spearman correlations assessed the relationship between changes from baseline of bone markers with FEA variables. RESULTS PINP and CTx levels increased in the teriparatide group and decreased in the risedronate group. FEA-derived parameters increased in both groups, but were significantly higher at 18 months in the teriparatide group. Significant positive correlations were found between changes from baseline of PINP at 3, 6 and 18 months with changes in FE strength in the teriparatide-treated group, but not in the risedronate group. CONCLUSIONS Positive correlations between changes in a biochemical marker of bone formation and improvement of biomechanical properties support the use of PINP as a surrogate marker of bone strength in teriparatide-treated GIO patients.
Collapse
Affiliation(s)
- P Farahmand
- West German Osteoporosis Centre, Klinikum Leverkusen, University of Cologne, Am Gesundheitspark 11, 51375, Leverkusen, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Abstract
Conventional radiography can detect most fractures, evaluate their healing, and visualize characteristic skeletal abnormalities for some metabolic bone diseases. Dual-energy X-ray absorptiometry (DXA) is used to measure areal bone mineral density (BMD) in order to diagnose osteoporosis, estimate fracture risk, and monitor changes in BMD over time. Vertebral fracture assessment by DXA can diagnose vertebral fractures with less ionizing radiation, greater patient convenience, and lower cost than conventional radiography. Quantitative computed tomography (QCT) measures volumetric BMD separately in cortical and trabecular bone compartments. High resolution peripheral QCT and high resolution magnetic resonance imaging are noninvasive research tools that assess the microarchitecture of bone. The use of these technologies and others has been associated with special challenges in men compared with women, provided insights into differences in the pathogenesis of osteoporosis in men and women, and enhanced understanding of the mechanisms of action of osteoporosis treatments.
Collapse
Affiliation(s)
- E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, 300 Oak Street NE, Albuquerque, NM 87106, USA.
| |
Collapse
|
21
|
Narra N, Nikander R, Viik J, Hyttinen J, Sievänen H. Femoral neck cross-sectional geometry and exercise loading. Clin Physiol Funct Imaging 2013; 33:258-66. [PMID: 23692614 DOI: 10.1111/cpf.12022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/20/2012] [Indexed: 12/23/2022]
Abstract
The aim of this study was to examine the association between different types of exercise loading and femoral neck cross-sectional geometry. Our data comprised proximal femur magnetic resonance (MR) images obtained from 91 female athletes and their 20 age-matched controls. The athletes were categorized according to typical training activity - high impact (high and triple jumping), odd impact (racket and soccer playing), high magnitude (power lifting), repetitive low impact (endurance running) and repetitive non-impact (swimming). Segmented MR images at two locations, narrowest cross-section of the femoral neck (narrowFN) and the cross-section at insertion of articular capsule (distalFN), were investigated to detect between group differences in shape, curvature and buckling ratio derived using image and signal analysis tools. The narrowFN results indicated that the high-impact group had weaker antero-superior (33% larger buckling ratio than controls) but stronger inferior weight-bearing region (32% smaller than controls), while the odd-impact group had stronger superior, posterior and anterior region (21% smaller buckling ratio than controls). The distalFN results indicated that the high-impact group had stronger inferior region (37% smaller buckling ratio), but the odd-impact group had stronger superior region (22% smaller buckling ratio) than the controls. Overall, the results point towards odd-impact exercise loading, with inherently varying directions of impact, associated with more robust cross-sectional geometry along the femoral neck. In conclusion, our one-dimensional polar treatment for geometrical traits and intuitive presentation of differences in trends between exercise groups and controls provides a basis for analysis with high angular accuracy.
Collapse
Affiliation(s)
- Nathaniel Narra
- Department of Biomedical Engineering, Tampere University of Technology, Tampere, Finland.
| | | | | | | | | |
Collapse
|
22
|
Brilakis E, Kaselouris E, Xypnitos F, Provatidis CG, Efstathopoulos N. Effects of foot posture on fifth metatarsal fracture healing: a finite element study. J Foot Ankle Surg 2012; 51:720-8. [PMID: 22981485 DOI: 10.1053/j.jfas.2012.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Indexed: 02/03/2023]
Abstract
The goal of this study was to evaluate the effects of maintaining different foot postures during healing of proximal fifth metatarsal fractures for each of 3 common fracture types. A 3-dimensional (3D) finite element model of a human foot was developed and 3 loading situations were evaluated, including the following: (1) normal weightbearing, (2) standing with the affected foot in dorsiflexion at the ankle, and (3) standing with the affected foot in eversion. Three different stages of the fracture-healing process were studied, including: stage 1, wherein the material interposed between the fractured edges was the initial connective tissue; stage 2, wherein connective tissue had been replaced by soft callus; and stage 3, wherein soft callus was replaced by mature bone. Thus, 30 3D finite element models were analyzed that took into account fracture type, foot posture, and healing stage. Different foot postures did not statistically significantly affect the peak-developed strains on the fracture site. When the fractured foot was everted or dorsiflexed, it developed a slightly higher strain within the fracture than when it was in the normal weightbearing position. In Jones fractures, eversion of the foot caused further torsional strain and we believe that this position should be avoided during foot immobilization during the treatment of fifth metatarsal base fractures. Tuberosity avulsion fractures and Jones fractures seem to be biomechanically stable fractures, as compared with shaft fractures. Our understanding of the literature and experience indicate that current clinical observations and standard therapeutic options are in accordance with the results that we observed in this investigation, with the exception of Jones fractures.
Collapse
Affiliation(s)
- Emmanuel Brilakis
- Second Department of Trauma and Orthopaedics, National and Kapodistrian University of Athens, Konstantopoulion General Hospital of Nea Ionia, Athens, Greece.
| | | | | | | | | |
Collapse
|
23
|
Derikx LC, van Aken JB, Janssen D, Snyers A, van der Linden YM, Verdonschot N, Tanck E. The assessment of the risk of fracture in femora with metastatic lesions. ACTA ACUST UNITED AC 2012; 94:1135-42. [DOI: 10.1302/0301-620x.94b8.28449] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previously, we showed that case-specific non-linear finite element (FE) models are better at predicting the load to failure of metastatic femora than experienced clinicians. In this study we improved our FE modelling and increased the number of femora and characteristics of the lesions. We retested the robustness of the FE predictions and assessed why clinicians have difficulty in estimating the load to failure of metastatic femora. A total of 20 femora with and without artificial metastases were mechanically loaded until failure. These experiments were simulated using case-specific FE models. Six clinicians ranked the femora on load to failure and reported their ranking strategies. The experimental load to failure for intact and metastatic femora was well predicted by the FE models (R2 = 0.90 and R2 = 0.93, respectively). Ranking metastatic femora on load to failure was well performed by the FE models (τ = 0.87), but not by the clinicians (0.11 < τ < 0.42). Both the FE models and the clinicians allowed for the characteristics of the lesions, but only the FE models incorporated the initial bone strength, which is essential for accurately predicting the risk of fracture. Accurate prediction of the risk of fracture should be made possible for clinicians by further developing FE models.
Collapse
Affiliation(s)
- L. C. Derikx
- Orthopaedic Research Laboratory, Radboud
University Nijmegen Medical Centre, P.O. Box
9101, 6500 HB Nijmegen, The
Netherlands
| | - J. B. van Aken
- Orthopaedic Research Laboratory, Radboud
University Nijmegen Medical Centre, P.O. Box
9101, 6500 HB Nijmegen, The
Netherlands
| | - D. Janssen
- Orthopaedic Research Laboratory, Radboud
University Nijmegen Medical Centre, P.O. Box
9101, 6500 HB Nijmegen, The
Netherlands
| | - A. Snyers
- Department of Radiation Oncology, Radboud
University Nijmegen Medical Centre, P.O.
Box 9101, 6500 HB Nijmegen, The
Netherlands
| | - Y. M. van der Linden
- Radiotherapeutic Institute Friesland, Borniastraat
36, 8934 AD Leeuwarden, The Netherlands
| | - N. Verdonschot
- Orthopaedic Research Laboratory, Radboud
University Nijmegen Medical Centre, P.O. Box
9101, 6500 HB Nijmegen, The
Netherlands
| | - E. Tanck
- Orthopaedic Research Laboratory, Radboud
University Nijmegen Medical Centre, P.O. Box
9101, 6500 HB Nijmegen, The
Netherlands
| |
Collapse
|
24
|
Affiliation(s)
- Pedro Vilela
- Neuroradiology Department, Garcia de Orta Hospital, Almada, Portugal.
| | | |
Collapse
|