1
|
Lyu X, Gupta L, Tholouli E, Chinoy H. Chimeric antigen receptor T cell therapy: a new emerging landscape in autoimmune rheumatic diseases. Rheumatology (Oxford) 2024; 63:1206-1216. [PMID: 37982747 PMCID: PMC11065442 DOI: 10.1093/rheumatology/kead616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy, an innovative immune cell therapy, has revolutionized the treatment landscape of haematological malignancies. The past 2 years has witnessed the successful application of CD19-targeting CAR constructs in refractory cases of autoimmune rheumatic diseases, including systemic lupus erythematosus, systemic sclerosis and anti-synthetase syndrome. In comparison with existing B cell depletion therapies, targeting CD19 has demonstrated a more rapid and profound therapeutic effect, enabling drug-free remission with manageable adverse events. These promising results necessitate validation through long-term, large-sample randomized controlled studies. Corroborating the role of CAR-T therapy in refractory rheumatological disorders and affirming safety, efficacy and durability of responses are the aims of future clinical studies. Optimizing the engineering strategies and better patient selection are also critical to further refining the successful clinical implementation of CAR-T therapy.
Collapse
MESH Headings
- Humans
- Rheumatic Diseases/therapy
- Rheumatic Diseases/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/therapeutic use
- Autoimmune Diseases/therapy
- Autoimmune Diseases/immunology
- Immunotherapy, Adoptive/methods
- Antigens, CD19/immunology
- Antigens, CD19/therapeutic use
- Lupus Erythematosus, Systemic/therapy
- Lupus Erythematosus, Systemic/immunology
- Receptors, Antigen, T-Cell/therapeutic use
- Receptors, Antigen, T-Cell/immunology
- Scleroderma, Systemic/therapy
- Scleroderma, Systemic/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Xia Lyu
- Department of Rheumatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Epidemiology and Public Health Group, School of Health Sciences, The University of Manchester, Manchester, UK
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Latika Gupta
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Rheumatology, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, UK
| | - Eleni Tholouli
- Department of Haematology, Manchester Royal Infirmary, Manchester, UK
| | - Hector Chinoy
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Rheumatology, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK
| |
Collapse
|
2
|
Yuan S, Guo D, Liang X, Zhang L, Zhang Q, Xie D. Relaxin in fibrotic ligament diseases: Its regulatory role and mechanism. Front Cell Dev Biol 2023; 11:1131481. [PMID: 37123405 PMCID: PMC10134402 DOI: 10.3389/fcell.2023.1131481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/24/2023] [Indexed: 05/02/2023] Open
Abstract
Fibrotic ligament diseases (FLDs) are diseases caused by the pathological accumulation of periarticular fibrotic tissue, leading to functional disability around joint and poor life quality. Relaxin (RLX) has been reported to be involved in the development of fibrotic lung and liver diseases. Previous studies have shown that RLX can block pro-fibrotic process by reducing the excess extracellular matrix (ECM) formation and accelerating collagen degradation in vitro and in vivo. Recent studies have shown that RLX can attenuate connective tissue fibrosis by suppressing TGF-β/Smads signaling pathways to inhibit the activation of myofibroblasts. However, the specific roles and mechanisms of RLX in FLDs remain unclear. Therefore, in this review, we confirmed the protective effect of RLX in FLDs and summarized its mechanism including cells, key cytokines and signaling pathways involved. In this article, we outline the potential therapeutic role of RLX and look forward to the application of RLX in the clinical translation of FLDs.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Dong Guo
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xinzhi Liang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Luhui Zhang
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Qun Zhang
- Good Clinical Practice Development, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Denghui Xie, ; Qun Zhang,
| | - Denghui Xie
- Department of Joint Surgery and Sports Medicine, Center for Orthopedic Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangdong Province, Guangzhou, Guangdong, China
- *Correspondence: Denghui Xie, ; Qun Zhang,
| |
Collapse
|
3
|
Animal Models of Systemic Sclerosis: Using Nailfold Capillaroscopy as a Potential Tool to Evaluate Microcirculation and Microangiopathy: A Narrative Review. Life (Basel) 2022; 12:life12050703. [PMID: 35629370 PMCID: PMC9147447 DOI: 10.3390/life12050703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease with three pathogenic hallmarks, i.e., inflammation, vasculopathy, and fibrosis. A wide plethora of animal models have been developed to address the complex pathophysiology and for the development of possible anti-fibrotic treatments. However, no current model comprises all three pathological mechanisms of the disease. To highlight the lack of a complete model, a review of some of the most widely used animal models for SSc was performed. In addition, to date, no model has accomplished the recreation of primary or secondary Raynaud’s phenomenon, a key feature in SSc. In humans, nailfold capillaroscopy (NFC) has been used to evaluate secondary Raynaud’s phenomenon and microvasculature changes in SSc. Being a non-invasive technique, it is widely used both in clinical studies and as a tool for clinical evaluation. Because of this, its potential use in animal models has been neglected. We evaluated NFC in guinea pigs to investigate the possibility of applying this technique to study microcirculation in the nailfold of animal models and in the future, development of an animal model for Raynaud’s phenomenon. The applications are not only to elucidate the pathophysiological mechanisms of vasculopathy but can also be used in the development of novel treatment options.
Collapse
|
4
|
Thoreau B, Chaigne B, Renaud A, Mouthon L. Pathophysiology of systemic sclerosis. Presse Med 2021; 50:104087. [PMID: 34718115 DOI: 10.1016/j.lpm.2021.104087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 10/20/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease characterized by vascular remodeling, fibroblast activation and extra-cellular matrix production in excess and autoimmunity. Environmental factors including mainly silica and solvents have been assumed to contribute to the development of SSc, together with genetic factors including gene variants implicated in innate immunity such as IRF5 and STAT4, and epigenetic factors including histone post-translational modifications, DNA hypomethylation, and microRNAs or long- non coding RNAs system were reported to participate in immune activation and fibrosis processes in patients with SSc. A number of animal models of SSc have been set up over the years, including genetic and induced SSc models. These models, together with data obtained from human SSc patients, contributed to better understand the mechanisms contributing to vasculopathy and fibrosis. Alongside the pathophysiological process of SSc, several cellular and molecular actors are involved, such as dysregulations in the innate and adaptive immune cells, of the fibroblast, the implication of pro-inflammatory and pro-fibrosing signaling pathways such as the Wnt, TGF-β pathways or other cytokines, with a strong imprint of oxidative stress. The whole lead to the overactivity of the fibroblast with genetic dysregulation, apoptosis defect, hyperproduction of elements of extracellular matrix, and finally the phenomena of vasculopathy and fibrosis. These advances contribute to open new therapeutic areas through the design of biologics and small molecules.
Collapse
Affiliation(s)
- Benjamin Thoreau
- Institut Cochin, Inserm U1016, CNRS UMR 8104,Université de Paris, Paris, France; Service de Médecine Interne, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Benjamin Chaigne
- Institut Cochin, Inserm U1016, CNRS UMR 8104,Université de Paris, Paris, France; Service de Médecine Interne, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Arthur Renaud
- Institut Cochin, Inserm U1016, CNRS UMR 8104,Université de Paris, Paris, France
| | - Luc Mouthon
- Institut Cochin, Inserm U1016, CNRS UMR 8104,Université de Paris, Paris, France; Service de Médecine Interne, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| |
Collapse
|
5
|
B cells in systemic sclerosis: from pathophysiology to treatment. Clin Rheumatol 2021; 40:2621-2631. [PMID: 33745085 DOI: 10.1007/s10067-021-05665-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 01/13/2023]
Abstract
Systemic sclerosis is a debilitating autoimmune disease with unknown pathogenesis. The clinical phenotype of fibrosis is preceded by vascular and immunologic aberrations. Adaptive immunity has been extensively studied in patients with the disease and B cells appear to be dysregulated. This is evident in peripheral blood B cell subsets, with activated effector B cells and impaired B regulatory function. In addition, B cells infiltrate target organs and tissues of patients with the disease, such as the skin and the lung, indicating a probable role in the pathogenesis. Impaired B cell homeostasis explains the rationale behind B cell therapeutic targeting. Indeed, several studies in recent years have shown that depletion of B cells appears to be a promising treatment alongside current established therapeutic choices, such as mycophenolate. In this review, B cell aberrations in animal models and human patients with systemic sclerosis will be presented. Moreover, we will also summarize current existing data regarding therapeutic targeting of the B cells in systemic sclerosis.
Collapse
|
6
|
Talotta R. The rationale for targeting the JAK/STAT pathway in scleroderma-associated interstitial lung disease. Immunotherapy 2020; 13:241-256. [PMID: 33410346 DOI: 10.2217/imt-2020-0270] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The etiopathogenesis of systemic sclerosis (SSc)-associated interstitial lung disease (ILD) is still debated and no therapeutic options have proved fully effective to date. The intracellular Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway is highly conserved among either immune or nonimmune cells and involved in inflammation and fibrosis. Evidence from preclinical studies shows that the JAK/STAT signaling cascade has a crucial role in the differentiation of autoreactive cells as well as in the extracellular matrix remodeling that occurs in SSc. Therefore, it is likely that the use of oral small molecule JAK-inhibitors, especially if prescribed early, may prevent or slow the progression of SSc-associated ILD, but few clinical studies currently support this hypothesis.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical & Experimental Medicine, Rheumatology Unit, University of Messina, University Hospital 'Gaetano Martino', via Consolare Valeria 1, 98100, Messina, Italy
| |
Collapse
|
7
|
Abedi M, Alavi-Moghadam S, Payab M, Goodarzi P, Mohamadi-jahani F, Sayahpour FA, Larijani B, Arjmand B. Mesenchymal stem cell as a novel approach to systemic sclerosis; current status and future perspectives. CELL REGENERATION (LONDON, ENGLAND) 2020; 9:20. [PMID: 33258056 PMCID: PMC7704834 DOI: 10.1186/s13619-020-00058-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Systemic sclerosis is a rare chronic autoimmune disease with extensive microvascular injury, damage of endothelial cells, activation of immune responses, and progression of tissue fibrosis in the skin and various internal organs. According to epidemiological data, women's populations are more susceptible to systemic sclerosis than men. Until now, various therapeutic options are employed to manage the symptoms of the disease. Since stem cell-based treatments have developed as a novel approach to rescue from several autoimmune diseases, it seems that stem cells, especially mesenchymal stem cells as a powerful regenerative tool can also be advantageous for systemic sclerosis treatment via their remarkable properties including immunomodulatory and anti-fibrotic effects. Accordingly, we discuss the contemporary status and future perspectives of mesenchymal stem cell transplantation for systemic sclerosis.
Collapse
Affiliation(s)
- Mina Abedi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Mohamadi-jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Nihtyanova SI, Denton CP. Pathogenesis of systemic sclerosis associated interstitial lung disease. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:6-16. [PMID: 35382227 PMCID: PMC8922569 DOI: 10.1177/2397198320903867] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
Systemic sclerosis is an autoimmune disease leading to vasculopathy and fibrosis
of skin and internal organs. Despite likely shared pathogenic mechanisms, the
patterns of skin and lung fibrosis differ. Pathogenesis of interstitial lung
disease, a major cause of death in systemic sclerosis, reflects the intrinsic
disease pathobiology and is associated with distinct clinical phenotypes and
laboratory characteristics. The commonest histological pattern of systemic
sclerosis–interstitial lung disease is non-specific interstitial pneumonia.
Systemic sclerosis–interstitial lung disease pathogenesis involves multiple
components, including susceptibility and triggering factors, which could be
genetic or environmental. The process is amplified likely through ongoing
inflammation and the link between inflammatory activity and fibrosis with IL6
emerging as a key mediator. The disease is driven by epithelial injury,
reflected by markers in the serum, such as surfactant proteins and KL-6. In
addition, mediators that are produced by epithelial cells and that regulate
inflammatory cell trafficking may be important, especially CCL2. Other factors,
such as CXCL4 and CCL18, point towards immune-mediated damage or injury
response. Monocytes and alternatively activated macrophages appear to be
important. Transforming growth factor beta appears central to pathogenesis and
regulates epithelial repair and fibroblast activation. Understanding
pathogenesis may help to unravel the stages of systemic sclerosis–interstitial
lung disease, risks of progression and determinants of outcome. With this
article, we set out to review the multiple factors, including genetic,
environmental, cellular and molecular, that may be involved in the pathogenesis
of systemic sclerosis–interstitial lung disease and the mechanisms leading to
sustained fibrosis. We propose a model for the pathogenesis of systemic
sclerosis–interstitial lung disease, based on the available literature.
Collapse
Affiliation(s)
- Svetlana I Nihtyanova
- Centre for Rheumatology and Connective Tissue Diseases, University College London, London, UK
| | - Christopher P Denton
- Centre for Rheumatology and Connective Tissue Diseases, University College London, London, UK
| |
Collapse
|
9
|
Vásquez-Garzón VR, Ramírez-Cosmes A, Reyes-Jiménez E, Carrasco-Torres G, Hernández-García S, Aguilar-Ruiz SR, Torres-Aguilar H, Alpuche J, Pérez-Campos Mayoral L, Pina-Canseco S, Arellanes-Robledo J, Villa-Treviño S, Baltiérrez-Hoyos R. Liver damage in bleomycin-induced pulmonary fibrosis in mice. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1503-1513. [PMID: 31312848 DOI: 10.1007/s00210-019-01690-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
Abstract
Pulmonary fibrosis is an emerging disease with a poor prognosis and high mortality rate that is even surpassing some types of cancer. This disease has been linked to the concomitant appearance of liver cirrhosis. Bleomycin-induced pulmonary fibrosis is a widely used mouse model that mimics the histopathological and biochemical features of human systemic sclerosis, an autoimmune disease that is associated with inflammation and expressed in several corporal systems as fibrosis or other alterations. To determine the effects on proliferation, redox and inflammation protein expression markers were analyzed by immunohistochemistry. Analyses showed a significant increase in protein oxidation levels by lipoperoxidation bio-products and in proliferation and inflammation processes. These phenomena were associated with the induction of the redox status in mice subjected to 100 U/kg bleomycin. These findings clearly show that the bleomycin model induces histopathological alterations in the liver and partially reproduces the complexity of systemic sclerosis. Our results using the bleomycin-induced pulmonary fibrosis model provide a protocol to investigate the mechanism underlying the molecular alteration found in the liver linked to systemic sclerosis.
Collapse
Affiliation(s)
- V R Vásquez-Garzón
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Oax, Mexico
| | - A Ramírez-Cosmes
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Oax, Mexico
| | - E Reyes-Jiménez
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Oax, Mexico
| | - G Carrasco-Torres
- CINVESTAV, Programa de Nanociencias y Nanotecnología, Ciudad de México, Mexico
| | | | - S R Aguilar-Ruiz
- Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Oax, Mexico
| | - H Torres-Aguilar
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Oax, Mexico
| | - J Alpuche
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Oax, Mexico
| | | | - S Pina-Canseco
- Centro de Investigación Facultad de Medicina, UNAM-UABJO, Oaxaca, Oax, Mexico
| | | | - S Villa-Treviño
- CINVESTAV, Departamento de Biología Celular, Ciudad de México, Mexico
| | - R Baltiérrez-Hoyos
- CONACYT-Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Oax, Mexico.
| |
Collapse
|
10
|
Ayers NB, Sun CM, Chen SY. Transforming growth factor-β signaling in systemic sclerosis. J Biomed Res 2017; 32:3-12. [PMID: 29353817 PMCID: PMC5956255 DOI: 10.7555/jbr.31.20170034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex, multiorgan autoimmune disease of unknown etiology. Manifestation of the disease results from an interaction of three key pathologic features including irregularities of the antigen-specific immune system and the non-specific immune system, resulting in autoantibody production, vascular endothelial activation of small blood vessels, and tissue fibrosis as a result of fibroblast dysfunction. Given the heterogeneity of clinical presentation of the disease, a lack of universal models has impeded adequate testing of potential therapies for SSc. Regardless, recent research has elucidated the roles of various ubiquitous molecular mechanisms that contribute to the clinical manifestation of the disease. Transforming growth factor β (TGF-β) has been identified as a regulator of pathological fibrogenesis in SSc. Various processes, including cell growth, apoptosis, cell differentiation, and extracellular matrix synthesis are regulated by TGF-β, a type of cytokine secreted by macrophages and many other cell types. Understanding the essential role TGF-β pathways play in the pathology of systemic sclerosis could provide a potential outlet for treatment and a better understanding of this severe disease.
Collapse
Affiliation(s)
- Nolan B Ayers
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Chen-Ming Sun
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW We discuss recent advances in evaluating and optimizing animal models of systemic sclerosis (SSc). Such models could be of value for illuminating etiopathogenesis using hypothesis-testing experimental approaches, for developing effective disease-modifying therapies, and for uncovering clinically relevant biomarkers. RECENT FINDINGS We describe recent advances in previously reported and novel animal models of SSc. The limitations of each animal model and their ability to recapitulate the pathophysiology of recognized molecular subsets of SSc are discussed. We highlight attrition of dermal white adipose tissue as a consistent pathological feature of dermal fibrosis in mouse models, and its relevance to SSc-associated cutaneous fibrosis. SUMMARY Several animal models potentially useful for studying SSc pathogenesis have been described. Recent studies highlight particular strengths and weaknesses of selected models in recapitulating distinct features of the human disease. When used in the appropriate experimental setting, and in combination, these models singly and together provide a powerful set of in-vivo tools to define underlying mechanisms of disease and to develop and evaluate effective antifibrotic therapies.
Collapse
|
12
|
Asano Y. Recent advances in animal models of systemic sclerosis. J Dermatol 2017; 43:19-28. [PMID: 26782003 DOI: 10.1111/1346-8138.13185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 12/19/2022]
Abstract
Systemic sclerosis (SSc) is a multisystem connective tissue disease characterized by the three cardinal pathological features, comprising aberrant immune activation, vasculopathy and tissue fibrosis, with unknown etiology. Although many inducible and genetic animal models mimicking the selected aspects of SSc have been well documented, the lack of models encompassing the full clinical manifestations hindered the development and preclinical testing of therapies against this disease. Under this situation, three new genetic animal models have recently been established, such as Fra2 transgenic mice, urokinase-type plasminogen activator receptor deficient mice and Klf5(+/-) ;Fli1(+/-) mice, all of which recapitulate the pathological cascade of SSc. The former two murine models demonstrate endothelial cell apoptosis and capillary loss followed by tissue fibrosis, whereas the immune systems show no remarkable abnormality. Klf5(+/-) ;Fli1(+/-) mice develop immune activation, vasculopathy and tissue fibrosis in this sequence, eventually resulting in the development of dermal fibrosis, interstitial lung disease and pulmonary vascular involvement resembling those of SSc. Because Krueppel-like factor (KLF)5 and Friend leukemia integration 1 transcription factor (Fli1) are the transcription factors epigenetically suppressed in SSc dermal fibroblasts, the reproduction of SSc manifestations in Klf5(+/-) ;Fli1(+/-) mice supports the canonical idea that environmental influences play a central role in the development of SSc in genetically predisposed individuals. These new animal models offer important clues for the better understanding of the underlying molecular mechanisms of SSc pathology and the identification of potential molecular targets for the treatment of this incurable disease.
Collapse
Affiliation(s)
- Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Tsujino K, Reed NI, Atakilit A, Ren X, Sheppard D. Transforming growth factor-β plays divergent roles in modulating vascular remodeling, inflammation, and pulmonary fibrosis in a murine model of scleroderma. Am J Physiol Lung Cell Mol Physiol 2016; 312:L22-L31. [PMID: 27864286 DOI: 10.1152/ajplung.00428.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/13/2016] [Indexed: 12/25/2022] Open
Abstract
The efficacy and feasibility of targeting transforming growth factor-β (TGFβ) in pulmonary fibrosis and lung vascular remodeling in systemic sclerosis (SSc) have not been well elucidated. In this study we analyzed how blocking TGFβ signaling affects pulmonary abnormalities in Fos-related antigen 2 (Fra-2) transgenic (Tg) mice, a murine model that manifests three important lung pathological features of SSc: fibrosis, inflammation, and vascular remodeling. To interrupt TGFβ signaling in the Fra-2 Tg mice, we used a pan-TGFβ-blocking antibody, 1D11, and Tg mice in which TGFβ receptor type 2 (Tgfbr2) is deleted from smooth muscle cells and myofibroblasts (α-SMA-CreER;Tgfbr2flox/flox). Global inhibition of TGFβ by 1D11 did not ameliorate lung fibrosis histologically or biochemically, whereas it resulted in a significant increase in the number of immune cells infiltrating the lungs. In contrast, 1D11 treatment ameliorated the severity of pulmonary vascular remodeling in Fra-2 Tg mice. Similarly, genetic deletion of Tgfbr2 from smooth muscle cells resulted in improvement of pulmonary vascular remodeling in the Fra-2 Tg mice, as well as a decrease in the number of Ki67-positive vascular smooth muscle cells, suggesting that TGFβ signaling contributes to development of pulmonary vascular remodeling by promoting the proliferation of vascular smooth muscle cells. Deletion of Tgfbr2 from α-smooth muscle actin-expressing cells had no effect on fibrosis or inflammation in this model. These results suggest that efforts to target TGFβ in SSc will likely require more precision than simply global inhibition of TGFβ function.
Collapse
Affiliation(s)
- Kazuyuki Tsujino
- Department of Medicine, University of California, San Francisco, California
| | - Nilgun Isik Reed
- Department of Medicine, University of California, San Francisco, California
| | - Amha Atakilit
- Department of Medicine, University of California, San Francisco, California
| | - Xin Ren
- Department of Medicine, University of California, San Francisco, California
| | - Dean Sheppard
- Department of Medicine, University of California, San Francisco, California
| |
Collapse
|
14
|
Luchetti MM, Moroncini G, Jose Escamez M, Svegliati Baroni S, Spadoni T, Grieco A, Paolini C, Funaro A, Avvedimento EV, Larcher F, Del Rio M, Gabrielli A. Induction of Scleroderma Fibrosis in Skin-Humanized Mice by Administration of Anti−Platelet-Derived Growth Factor Receptor Agonistic Autoantibodies. Arthritis Rheumatol 2016; 68:2263-73. [DOI: 10.1002/art.39728] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 04/19/2016] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Maria Jose Escamez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras and Instituto de Investigaciones Sanitarias dela Fundacion Jimenez Diaz; Madrid Spain
| | | | | | | | | | | | | | - Fernando Larcher
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras and Instituto de Investigaciones Sanitarias dela Fundacion Jimenez Diaz; Madrid Spain
| | - Marcela Del Rio
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas/Centro de Investigación Biomédica en Red de Enfermedades Raras and Instituto de Investigaciones Sanitarias dela Fundacion Jimenez Diaz; Madrid Spain
| | | |
Collapse
|
15
|
Abstract
Systemic sclerosis (SSc) is a connective tissue disease of unknown etiology that is characterized by fibrosis of the skin and several internal organs, vasculopathy, inflammation and autoimmunity. Animal models have improved our understanding of the pathogenesis of SSc. Many inducible and genetic animal models of SSc have been developed and characterized in the last years. All of these models have different strengths and limitations and mimic different aspects of the pathogenesis of SSc. The purpose of this review is to summarize the characteristics of the various animal models of SSc and to provide an outline of how to use these models to study certain aspects in the pathogenesis of SSc and to test the effects of potential therapeutic approaches.
Collapse
|
16
|
Fujibayashi S, Sasajima J, Goto T, Tanaka H, Kawabata H, Fujii T, Nakamura K, Chiba A, Yanagawa N, Moriichi K, Fujiya M, Kohgo Y. A high-throughput sequence analysis of Japanese patients revealed 11 candidate genes associated with type 1 autoimmune pancreatitis susceptibility. Biochem Biophys Rep 2016; 6:76-81. [PMID: 28955865 PMCID: PMC5600314 DOI: 10.1016/j.bbrep.2016.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/02/2016] [Accepted: 03/14/2016] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of autoimmune pancreatitis is unknown. In the present study we used high-throughput sequencing with next generation sequencing to identify the candidate genes associated with AIP. A total of 27 type 1 AIP patients and 30 healthy blood donors were recruited, and DNA samples were isolated from their mononuclear cells. A high-throughput sequencer with an original custom panel of 1031 genes was used to detect the genetic variants in each sample. Polymorphisms of CACNA1S (c.4642C>T), rs41554316, rs2231119, rs1042131, rs2838171, P2RX3 (c.195delG), rs75639061, SMAD7 (c.624delC) and TOP1 (c.2007delG), were identified as candidate genetic variants in patients with type 1 AIP. P2RX3 and TOP1 were significantly associated with AIP, even after adjusting bay means of Bonferroni's correction. In addition, we also identified eight candidate genetic variants that were associated with the relapse of type 1 AIP, namely: rs1143146, rs1050716, HLA-C (c.759_763delCCCCCinsTCCCG), rs1050451, rs4154112, rs1049069, CACNA1C (c.5996delC) and CXCR3 (c.630_631delGC). Finally polymorphisms of rs1050716 and rs111493987 were identified as candidate genetic variants associated with extra-pancreatic lesions in patients with type 1 AIP. These candidates might be used as markers of AIP susceptibility and could contribute to the pathogenesis of type 1 AIP.
Collapse
Affiliation(s)
- Shugo Fujibayashi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Hokkaido, Japan
| | - Junpei Sasajima
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Hokkaido, Japan
| | - Takuma Goto
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Hokkaido, Japan
| | - Hiroki Tanaka
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Hokkaido, Japan
| | - Hidemasa Kawabata
- Department of Gastroenterology, Japanese Red Cross Asahikawa Hospital, 1-1-1-1 Akebono, Asahikawa 070-8530, Hokkaido, Japan
| | - Tsuneshi Fujii
- Department of Gastroenterology, Japanese Red Cross Asahikawa Hospital, 1-1-1-1 Akebono, Asahikawa 070-8530, Hokkaido, Japan
| | - Kazumasa Nakamura
- Department of Gastroenterology, Asahikawa City Hospital, 1-1-65 Kinseicho, Asahikawa 070-8610, Hokkaido, Japan
| | - Atsushi Chiba
- Department of Gastroenterology, Asahikawa City Hospital, 1-1-65 Kinseicho, Asahikawa 070-8610, Hokkaido, Japan
| | - Nobuyuki Yanagawa
- Department of Gastroenterology, Hokkaido Prefectural Welfare Federation of Agricultural Cooperative Asahikawa Kousei General Hospital, 111 1Jodori 24choume, Asahikawa 078-8211, Hokkaido, Japan
| | - Kentaro Moriichi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Hokkaido, Japan
| | - Mikihiro Fujiya
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Hokkaido, Japan
| | - Yutaka Kohgo
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa 078-8510, Hokkaido, Japan
| |
Collapse
|
17
|
Sakkas LI, Bogdanos DP. Systemic sclerosis: New evidence re-enforces the role of B cells. Autoimmun Rev 2016; 15:155-161. [PMID: 26497107 DOI: 10.1016/j.autrev.2015.10.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 10/17/2015] [Indexed: 02/07/2023]
Abstract
Systemic sclerosis (SSc) is characterized by widespread fibrosis, microangiopathy (vasospasms and stenosis), and formation of autoantibodies. T cell activation has been shown to contribute to fibrosis and microvasculopathy in SSc. However, recent evidence suggests that B cells are also likely to contribute in the pathogenesis of the disease. B cells are hyperactivated in SSc, as indicated by the overexpression of the stimulatory CD19 receptor and impairment of the inhibitory CD22 receptor. They lead to the production of many autoantibodies, some of which induce collagen production and vasoconstriction. They promote fibroblast collagen production through cell contact. Furthermore, B cells can function as antigen-presenting cells to T cells and induce dendritic cell maturation that promotes profibrotic Th2 response. Lately, interleukin (IL)-10-producing B regulatory cells, which induce generation of T regulatory cells and can ameliorate autoimmune diseases, were found to be reduced in SSc, favoring autoaggression of B cells in this disease. Finally, B cell depletion with rituximab improves or stabilizes skin fibrosis and lung function. These finding suggest that new therapeutic strategies targeting B cell function(s) can be developed for SSc.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Department of Rheumatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41 110, Greece; Center for Molecular Medicine, Old Dominion University, Norfolk, VA, USA.
| | - Dimitrios P Bogdanos
- Department of Rheumatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa 41 110, Greece; Division of Transplantation Immunology and Mucosal Biology, Kings College School of Medicine, London SE5 9RS, UK
| |
Collapse
|
18
|
Tsujino K, Sheppard D. Critical Appraisal of the Utility and Limitations of Animal Models of Scleroderma. Curr Rheumatol Rep 2015; 18:4. [DOI: 10.1007/s11926-015-0553-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Saigusa R, Asano Y, Yamashita T, Taniguchi T, Takahashi T, Ichimura Y, Toyama T, Yoshizaki A, Miyagaki T, Sugaya M, Sato S. Fli1 deficiency contributes to the downregulation of endothelial protein C receptor in systemic sclerosis: a possible role in prothrombotic conditions. Br J Dermatol 2015; 174:338-47. [DOI: 10.1111/bjd.14183] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2015] [Indexed: 12/20/2022]
Affiliation(s)
- R. Saigusa
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - Y. Asano
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - T. Yamashita
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - T. Taniguchi
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - T. Takahashi
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - Y. Ichimura
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - T. Toyama
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - A. Yoshizaki
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - T. Miyagaki
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - M. Sugaya
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| | - S. Sato
- Department of Dermatology; University of Tokyo Graduate School of Medicine; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8655 Japan
| |
Collapse
|
20
|
Asano Y. [A Uuifying hypothesis for the pathogenesis of systemic sclerosis based on the deficiency of transcription factor Fli1 - the development of a new animal model of systemic sclerosis -]. ACTA ACUST UNITED AC 2015; 37:475-87. [PMID: 25748132 DOI: 10.2177/jsci.37.475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Systemic sclerosis (SSc) is a multisystem connective tissue disease featured by immune abnormalities, vasculopathy and resultant fibrosis of the skin and various internal organs. Although the pathogenesis of SSc remains incompletely elucidated, it is currently accepted that this disease is caused by the complex interplay between hereditary and environmental factors. The deficiency of transcription factor Fli1, which is epigenetically suppressed in SSc dermal fibroblasts, potentially causes SSc-like phenotypical alteration in various cell types such as fibroblasts, endothelial cells, and macrophages, suggesting that Fli1 is a predisposing factor of SSc. KLF5 is another transcription factor which is suppressed in SSc dermal fibroblasts through an epigenetic mechanism. Importantly, double heterozygous mice for Fli1 and KLF5 develop three cardinal features of SSc, including immune abnormalities, vasculopathy and fibrosis. Therefore, these two transcription factors are likely to be critical predisposing factors regulating the development of SSc. Given that potential disease modifying drugs, bosentan and imatinib, reverse the expression and transcriptional activity of Fli1, the studies on the pathological process of double heterozygous mice and the impact of these transcription factors on various cell types may provide a new clue to further understand the pathogenesis of SSc leading to the development of new therapies.
Collapse
Affiliation(s)
- Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine
| |
Collapse
|
21
|
Taniguchi T, Asano Y, Akamata K, Noda S, Takahashi T, Ichimura Y, Toyama T, Trojanowska M, Sato S. Fibrosis, vascular activation, and immune abnormalities resembling systemic sclerosis in bleomycin-treated Fli-1-haploinsufficient mice. Arthritis Rheumatol 2015; 67:517-26. [PMID: 25385187 DOI: 10.1002/art.38948] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 11/04/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Fli-1, a potential predisposing factor for systemic sclerosis (SSc), is constitutively down-regulated in the lesional skin of patients with SSc by an epigenetic mechanism. To investigate the impact of Fli-1 deficiency on the induction of an SSc phenotype in various cell types, we generated bleomycin-induced skin fibrosis in Fli-1(+/-) mice and investigated the molecular mechanisms underlying its phenotypic alterations. METHODS Messenger RNA (mRNA) levels and protein expression of target molecules were examined by quantitative reverse transcription-polymerase chain reaction and immunostaining. Transforming growth factor β (TGFβ) bioassay was used to evaluate the activation of latent TGFβ. The binding of Fli-1 to the target gene promoters was assessed with chromatin immunoprecipitation. RESULTS Bleomycin induced more severe dermal fibrosis in Fli-1(+/-) mice than in wild-type mice. Fli-1 haploinsufficiency activated dermal fibroblasts via the up-regulation of αvβ3 and αvβ5 integrins and activation of latent TGFβ. Dermal fibrosis in Fli-1(+/-) mice was also attributable to endothelial-to-mesenchymal transition, which is directly induced by Fli-1 deficiency and amplified by bleomycin. Th2/Th17-skewed inflammation and increased infiltration of mast cells and macrophages were seen, partly due to the altered expression of cell adhesion molecules in endothelial cells as well as the induction of the skin chemokines. Fli-1(+/-) mouse macrophages preferentially differentiated into an M2 phenotype upon stimulation with interleukin-4 (IL-4) or IL-13. CONCLUSION Our findings provide strong evidence for the fundamental role of Fli-1 deficiency in inducing SSc-like phenotypic alterations in dermal fibroblasts, endothelial cells, and macrophages in a manner consistent with human disease.
Collapse
|
22
|
Stawski L, Haines P, Fine A, Rudnicka L, Trojanowska M. MMP-12 deficiency attenuates angiotensin II-induced vascular injury, M2 macrophage accumulation, and skin and heart fibrosis. PLoS One 2014; 9:e109763. [PMID: 25302498 PMCID: PMC4193823 DOI: 10.1371/journal.pone.0109763] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/09/2014] [Indexed: 12/20/2022] Open
Abstract
MMP-12, a macrophage-secreted elastase, is elevated in fibrotic diseases, including systemic sclerosis (SSc) and correlates with vasculopathy and fibrosis. The goal of this study was to investigate the role of MMP-12 in cardiac and cutaneous fibrosis induced by angiotensin II infusion. Ang II-induced heart and skin fibrosis was accompanied by a marked increase of vascular injury markers, including vWF, Thrombospondin-1 (TSP-1) and MMP-12, as well as increased number of PDGFRβ+ cells. Furthermore Ang II infusion led to an accumulation of macrophages (Mac3+) in the skin and in the perivascular and interstitial fibrotic regions of the heart. However, alternatively activated (Arg 1+) macrophages were mainly present in the Ang II infused mice and were localized to the perivascular heart regions and to the skin, but were not detected in the interstitial heart regions. Elevated expression of MMP-12 was primarily found in macrophages and endothelial cells (CD31+) cells, but MMP-12 was not expressed in the collagen producing cells. MMP-12 deficient mice (MMP12KO) showed markedly reduced expression of vWF, TSP1, and PDGFRβ around vessels and attenuation of dermal fibrosis, as well as the perivascular fibrosis in the heart. However, MMP-12 deficiency did not affect interstitial heart fibrosis, suggesting a heterogeneous nature of the fibrotic response in the heart. Furthermore, MMP-12 deficiency almost completely prevented accumulation of Arg 1+ cells, whereas the number of Mac3+ cells was partially reduced. Moreover production of profibrotic mediators such as PDGFBB, TGFβ1 and pSMAD2 in the skin and perivascular regions of the heart was also inhibited. Together, the results of this study show a close correlation between vascular injury markers, Arg 1+ macrophage accumulation and fibrosis and suggest an important role of MMP-12 in regulating these processes.
Collapse
Affiliation(s)
- Lukasz Stawski
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Paul Haines
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Alan Fine
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lidia Rudnicka
- Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- Department of Neuropeptides, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Maria Trojanowska
- Arthritis Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Dumoitier N, Lofek S, Mouthon L. Pathophysiology of systemic sclerosis: state of the art in 2014. Presse Med 2014; 43:e267-78. [PMID: 25179277 DOI: 10.1016/j.lpm.2014.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 02/06/2023] Open
Abstract
Major work has been done in order to improve the understanding of systemic sclerosis (SSc) pathogenesis. A number of new experimental models have been set up, that should help to understand the disease pathogenesis and test new therapeutic targets. Reactive oxygen species represent a hallmark of the pathogenesis of SSc, both at the fibroblast and at the endothelial cell levels. Although a large number of genetic studies have been conducted, it is still difficult to identify a genetic background specific to SSc, and the major progress in this setting is probably the identification of an interferon signature. Besides endothelial cells and fibroblasts, major development has been made in the understanding of the role of B cells and autoantibodies in the pathogenesis of SSc. Plasmacytoid dendritic cells seem to play a major role in the pathogenesis of SSc through the secretion of CXCL4, although these data will need to be confirmed in the near future.
Collapse
Affiliation(s)
- Nicolas Dumoitier
- Institut Cochin, Inserm U1016, CNRS UMR 8104, 8, rue Méchain, 75014 Paris, France; Université Paris Diderot, 75013 Paris, France
| | - Sébastien Lofek
- Institut Cochin, Inserm U1016, CNRS UMR 8104, 8, rue Méchain, 75014 Paris, France
| | - Luc Mouthon
- Institut Cochin, Inserm U1016, CNRS UMR 8104, 8, rue Méchain, 75014 Paris, France; Assistance publique-Hôpitaux de Paris (AP-HP), hôpital Cochin, centre de référence pour les vascularites nécrosantes et la sclérodermie systémique, service de médecine interne, Université Paris Descartes, 75014 Paris, France.
| |
Collapse
|
24
|
Herzog EL, Mathur A, Tager AM, Feghali-Bostwick C, Schneider F, Varga J. Review: interstitial lung disease associated with systemic sclerosis and idiopathic pulmonary fibrosis: how similar and distinct? Arthritis Rheumatol 2014; 66:1967-78. [PMID: 24838199 PMCID: PMC4340472 DOI: 10.1002/art.38702] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/08/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Erica L. Herzog
- Erica L. Herzog, MD, Aditi Mathur, MD: Yale School of Medicine, New Haven, Connecticut
| | - Aditi Mathur
- Erica L. Herzog, MD, Aditi Mathur, MD: Yale School of Medicine, New Haven, Connecticut
| | - Andrew M. Tager
- Andrew M. Tager, MD: Harvard Medical School and Massachusetts General Hospital, Boston
| | | | - Frank Schneider
- Frank Schneider, MD: University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John Varga
- John Varga, MD: Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|