1
|
Di Pasquale G, Caione N, Di Berardino A, Di Donato G. Pulmonary manifestations of juvenile vs. adult systemic sclerosis: insights into pathophysiological and clinical features. Pediatr Pulmonol 2025; 60:e27347. [PMID: 39545645 DOI: 10.1002/ppul.27347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/16/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024]
Abstract
Juvenile systemic sclerosis (jSSc), the pediatric counterpart of systemic sclerosis (SSc), is a rare autoimmune disorder characterized by vasculopathy and fibrotic disorders. It ranks among the rheumatologic diseases with the highest rates of morbidity and mortality, predominantly impacting females. Although a universally accepted classification for jSSc remains elusive, a provisional classification proposed in 2007 integrates major and minor criteria, reflecting the involvement of diverse organs and tissues. Pulmonary manifestations are relatively common in jSSc, occurring in 36% to 55% of cases. Particularly lung complications include children s interstitial lung disease (chILD), pulmonary arterial hypertension (PAH) and nodules. The aim of this paper is to describe the main pulmonary manifestations of patients with jSSc in relation to SSc, highlighting fundamental pathophysiological, and clinical features based on the latest literature data.
Collapse
Affiliation(s)
| | - Nicholas Caione
- Pediatric Department, University of L'Aquila, L'Aquila, Italy
| | | | | |
Collapse
|
2
|
Collet A, Sanges S, Ghulam A, Genin M, Soudan B, Sobanski V, Hachulla E, Dubucquoi S, Djobo B, Espiard S, Douillard C, Launay D. Steroid hormones in systemic sclerosis: associations with disease characteristics and modifications during scleroderma renal crisis. Rheumatology (Oxford) 2025; 64:283-295. [PMID: 38141209 DOI: 10.1093/rheumatology/kead699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/16/2023] [Accepted: 12/06/2023] [Indexed: 12/25/2023] Open
Abstract
OBJECTIVE The renin-angiotensin-aldosterone system (RAAS) and glucocorticoids (GCs) are involved in vascular remodeling and fibrosis but have not been extensively studied in systemic sclerosis (SSc). Our aim was to investigate the RAAS and GC hormones in SSc patients. METHODS Serum levels of renin (dosage and activity), aldosterone and its precursors (DOC, B, 18-OH-DOC, 18-OH-B), and GCs (cortisol, cortisone, 11-deoxycortisol, 18-OH-F) were assessed in 122 SSc patients and 52 healthy controls. After applying stringent inclusion criteria aimed at ensuring accurate hormone assessments (exclusion of interfering drugs, strict sampling conditions), we analysed RAAS hormones in 61 patients, and GCs in 96 patients. Hormone levels were compared between patients and controls; and associations with disease characteristics were assessed in patients. RESULTS Regarding RAAS hormones, SSc patients displayed significantly lower aldosterone levels (although within normal range), similar renin levels, and higher B levels than controls. Abnormal RAAS hormone levels were associated with a more severe SSc phenotype (lung and skin fibrosis, heart and pulmonary vascular involvements, inflammation). Regarding GC hormones, SSc patients had higher levels of cortisol, 11-desoxycortisol (precursor) and 18-OH-F (metabolite) but lower levels of cortisone (inactive counterpart) than controls. RAAS hormone levels were assessed in five SSc patients before and during scleroderma renal crisis (SRC): concentrations varied considerably between patients, but consistently included normal/increased aldosterone levels and elevated renin levels. CONCLUSION RAAS and GC hormones are abnormally produced in SSc patients, especially in patients with severe SSc and during SRC. This could suggest a participation of these hormonal systems in SSc pathogenesis.
Collapse
Affiliation(s)
- Aurore Collet
- Univ. Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
- Institut d'Immunologie, Pôle de Biologie Pathologie Génétique, CHU Lille, Lille, France
| | - Sebastien Sanges
- Univ. Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Amjad Ghulam
- Service Hormonologie, Métabolisme, Nutrition, Oncologie, Pôle de Biologie Pathologie Génétique, CHU Lille, Lille, France
| | - Michaël Genin
- Univ. Lille, CHU Lille, ULR 2694 - METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille, France
| | - Benoît Soudan
- Service Hormonologie, Métabolisme, Nutrition, Oncologie, Pôle de Biologie Pathologie Génétique, CHU Lille, Lille, France
| | - Vincent Sobanski
- Univ. Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Eric Hachulla
- Univ. Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Sylvain Dubucquoi
- Univ. Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- Institut d'Immunologie, Pôle de Biologie Pathologie Génétique, CHU Lille, Lille, France
| | - Bodale Djobo
- Service Hormonologie, Métabolisme, Nutrition, Oncologie, Pôle de Biologie Pathologie Génétique, CHU Lille, Lille, France
| | - Stéphanie Espiard
- Department of Endocrinology, Diabetology, Metabolism and Nutrition, CHU Lille, Lille, France
| | - Claire Douillard
- Department of Endocrinology, Diabetology, Metabolism and Nutrition, CHU Lille, Lille, France
| | - David Launay
- Univ. Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- Département de Médecine Interne et Immunologie Clinique, CHU Lille, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| |
Collapse
|
3
|
Akbarzadeh R, Müller A, Humrich JY, Riemekasten G. When natural antibodies become pathogenic: autoantibodies targeted against G protein-coupled receptors in the pathogenesis of systemic sclerosis. Front Immunol 2023; 14:1213804. [PMID: 37359516 PMCID: PMC10285309 DOI: 10.3389/fimmu.2023.1213804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Systemic sclerosis (SSc) is a chronic, multisystem connective tissue, and autoimmune disease with the highest case-specific mortality and complications among rheumatic diseases. It is characterized by complex and variable features such as autoimmunity and inflammation, vasculopathy, and fibrosis, which pose challenges in understanding the pathogenesis of the disease. Among the large variety of autoantibodies (Abs) present in the sera of patients suffering from SSc, functionally active Abs against G protein-coupled receptors (GPCRs), the most abundant integral membrane proteins, have drawn much attention over the last decades. These Abs play an essential role in regulating the immune system, and their functions are dysregulated in diverse pathological conditions. Emerging evidence indicates that functional Abs targeting GPCRs, such as angiotensin II type 1 receptor (AT1R) and the endothelin-1 type A receptor (ETAR), are altered in SSc. These Abs are part of a network with several GPCR Abs, such as those directed to the chemokine receptors or coagulative thrombin receptors. In this review, we summarize the effects of Abs against GPCRs in SSc pathologies. Extending the knowledge on pathophysiological roles of Abs against GPCRs could provide insights into a better understanding of GPCR contribution to SSc pathogenesis and therefore help in developing potential therapeutic strategies that intervene with pathological functions of these receptors.
Collapse
|
4
|
Mousavi MJ, Alizadeh A, Ghotloo S. Interference of B lymphocyte tolerance by prolactin in rheumatic autoimmune diseases. Heliyon 2023; 9:e16977. [PMID: 37332964 PMCID: PMC10276217 DOI: 10.1016/j.heliyon.2023.e16977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/05/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and systemic sclerosis (SSc) are the most common rheumatic autoimmune diseases/disorders (RADs) that affect autologous connective tissues as a result of the breakdown of the self-tolerance mechanisms of the immune system. Prolactin, a glycoprotein hormone, has been known for its crucial role in the pathogenesis of these rheumatic autoimmune diseases. In addition to regulating lymphocyte proliferation and antibody synthesis, prolactin is also responsible for regulating cytokine production. Moreover, it contributes to the breakdown of central and peripheral tolerance mechanisms of B lymphocytes. Given the crucial role of prolactin in the pathogenesis of the mentioned RADs, prolactin may contribute to their pathogenesis by the breakdown of tolerance. In the present study, the key role of prolactin to the breakdown of B lymphocyte tolerance and its possible implication for the pathogenesis of these diseases is discussed. Current literature supports prolactin's role in the breakdown of B lymphocyte central and peripheral tolerance mechanisms, such apoptosis, receptor editing, and also anergy. Therefore, prolactin may contribute to the pathogenesis of RADs by the breakdown of B lymphocyte tolerance. However, more investigations, particularly in RA and SSc animal models, are required to precisely address the pathologic role of prolactin.
Collapse
Affiliation(s)
- Mohammad Javad Mousavi
- Student Research and Technology Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- Department of Hematology, School of Para-Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ardalan Alizadeh
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Somayeh Ghotloo
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Distler JHW, Riemekasten G, Denton CP. The Exciting Future for Scleroderma. Rheum Dis Clin North Am 2023; 49:445-462. [PMID: 37028846 DOI: 10.1016/j.rdc.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Emerging evidence shows that a complex interplay between cells and mediators and extracellular matrix factors may underlie the development and persistence of fibrosis in systemic sclerosis. Similar processes may determine vasculopathy. This article reviews recent progress in understanding how fibrosis becomes profibrotic and how the immune system, vascular, and mesenchymal compartment affect disease development. Early phase trials are informing about pathogenic mechanisms in vivo and reverse translation for observational and randomized trials is allowing hypotheses to be developed and tested. In addition to repurposing already available drugs, these studies are paving the way for the next generation of targeted therapeutics.
Collapse
Affiliation(s)
- Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nuremberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Christopher P Denton
- Division of Medicine, Department of Inflammation, Centre for Rheumatology, University College London, London, UK.
| |
Collapse
|
6
|
Abstract
Systemic sclerosis, also known as scleroderma, is a rare and complex autoimmune connective-tissue disease. Once considered an untreatable and unpredictable condition, research advancements have improved our understanding of its disease pathogenesis and clinical phenotypes and expanded our treatment armamentarium. Early and accurate diagnosis is essential, while ongoing efforts to risk stratify patients have a central role in predicting both organ involvement and disease progression. A holistic approach is required when choosing the optimal therapeutic strategy, balancing the side-effect profile with efficacy and tailoring the treatment according to the goals of care of the patient. This Seminar reviews the multiple clinical dimensions of systemic sclerosis, beginning at a precursor very early stage of disease, with a focus on timely early detection of organ involvement. This Seminar also summarises management considerations according to the pathological hallmarks of systemic sclerosis (eg, inflammation, fibrosis, and vasculopathy) and highlights unmet needs and opportunities for future research and discovery.
Collapse
Affiliation(s)
- Elizabeth R Volkmann
- Department of Medicine, Division of Rheumatology, University of California, Los Angeles, CA, USA; David Geffen School of Medicine, Los Angeles, CA, USA.
| | | | - Vanessa Smith
- Department of Internal Medicine and Department of Rheumatology, Ghent University (Hospital), Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Centre, Ghent, Belgium
| |
Collapse
|
7
|
Höppner J, Tabeling C, Casteleyn V, Kedor C, Windisch W, Burmester GR, Huscher D, Siegert E. Comprehensive autoantibody profiles in systemic sclerosis: Clinical cluster analysis. Front Immunol 2023; 13:1045523. [PMID: 36685532 PMCID: PMC9846214 DOI: 10.3389/fimmu.2022.1045523] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Background Systemic sclerosis (SSc) belongs to the group of connective tissue diseases and is associated with the occurrence of disease-specific autoantibodies. Although it is still controversial whether these antibodies contribute to pathogenesis, there are new insights into the development of these specific antibodies and their possible pathophysiological properties. Interestingly, they are associated with specific clinical manifestations, but for some rarer antibodies this association is not fully clarified. The aim of this study is a comprehensive analysis of the serum autoantibody status in patients with SSc followed by correlation analyses of autoantibodies with the clinical course of the disease. Methods Serum from SSc patients was analyzed using a line blot (EUROLINE, EUROIMMUN AG) for SSc-related autoantibodies. Autoantibodies to centromere, Topo-1, antimitochondrial antibodies (AMA) M2 subunit, angiotensin II type 1 receptors (AT1R) and endothelin-1 type-A-receptors (ETAR) were also determined by ELISA. We formed immunological clusters and used principal components analysis (PCA) to assign specific clinical characteristics to these clusters. Results A total of 372 SSc patients were included. 95.3% of the patients were antinuclear antibody positive and in 333 patients at least one SSc specific antibody could be detected. Four immunological clusters could be found by PCA. Centromere, Topo-1 and RP3 all formed own clusters, which are associated with distinct clinical phenotypes. We found that patients with an inverted phenotype, such as limited cutaneous SSc patients within the Topo-1 cluster show an increased risk for interstital lung disease compared to ACA positive patients. Anti-AT1R and anti-ETAR autoantibodies were measured in 176 SSc patients; no association with SSc disease manifestation was found. SSc patients with AMA-M2 antibodies showed an increased risk of cardiovascular events. Conclusion In our in large cluster analysis, which included an extended autoantibody profile, we were able to show that serologic status of SSc patients provides important clues to disease manifestation, co-morbidities and complications. Line blot was a reliable technique to detect autoantibodies in SSc and detected rarer autoantibodies in 42% of our patients.
Collapse
Affiliation(s)
- Jakob Höppner
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Pulmonology, Cologne Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University, Cologne, Germany
| | - Christoph Tabeling
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vincent Casteleyn
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Kedor
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfram Windisch
- Department of Pulmonology, Cologne Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University, Cologne, Germany
| | - Gerd Rüdiger Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dörte Huscher
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elise Siegert
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Sanges S, Guerrier T, Duhamel A, Guilbert L, Hauspie C, Largy A, Balden M, Podevin C, Lefèvre G, Jendoubi M, Speca S, Hachulla É, Sobanski V, Dubucquoi S, Launay D. Soluble markers of B cell activation suggest a role of B cells in the pathogenesis of systemic sclerosis-associated pulmonary arterial hypertension. Front Immunol 2022; 13:954007. [PMID: 35967377 PMCID: PMC9374103 DOI: 10.3389/fimmu.2022.954007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Soluble markers of B cell activation are interesting diagnostic and prognostic tools in autoimmune diseases. Data in systemic sclerosis (SSc) are scarce and few studies focused on their association with disease characteristics. Methods 1. Serum levels of 14 B cell biomarkers (β2-microglobulin, rheumatoid factor (RF), immunoglobulins (Ig) G, IgA, IgM, BAFF, APRIL, soluble (s)TACI, sBCMA sCD21, sCD23, sCD25, sCD27, CXCL13) were measured in SSc patients and healthy controls (HC). 2. Associations between these biomarkers and SSc characteristics were assessed. 3. The pathophysiological relevance of identified associations was explored by studying protein production in B cell culture supernatant. Results In a discovery panel of 80 SSc patients encompassing the broad spectrum of disease manifestations, we observed a higher frequency of RF positivity, and increased levels of β2-microglobulin, IgG and CXCL13 compared with HC. We found significant associations between several biomarkers and SSc characteristics related to disease phenotype, activity and severity. Especially, serum IgG levels were associated with pulmonary hypertension (PH); β2-microglobulin with Nt-pro-BNP and DLCO; and BAFF with peak tricuspid regurgitation velocity (TRV). In a validation cohort of limited cutaneous SSc patients without extensive ILD, we observed lower serum IgG levels, and higher β2-microglobulin, sBCMA, sCD23 and sCD27 levels in patients with pulmonary arterial hypertension (PAH). BAFF levels strongly correlated with Nt-pro-BNP levels, FVC/DLCO ratio and peak TRV in SSc-PAH patients. Cultured SSc B cells showed increased production of various angiogenic factors (angiogenin, angiopoietin-1, VEGFR-1, PDGF-AA, MMP-8, TIMP-1, L-selectin) and decreased production of angiopoietin-2 compared to HC. Conclusion Soluble markers of B cell activation could be relevant tools to assess organ involvements, activity and severity in SSc. Their associations with PAH could plead for a role of B cell activation in the pathogenesis of pulmonary microangiopathy. B cells may contribute to SSc vasculopathy through production of angiogenic mediators.
Collapse
Affiliation(s)
- Sébastien Sanges
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Thomas Guerrier
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Alain Duhamel
- Univ. Lille, CHU Lille, ULR2694 – METRICS: Évaluation des technologies de santé et des pratiques médicales, Lille, France
| | - Lucile Guilbert
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Carine Hauspie
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Alexis Largy
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
| | - Maïté Balden
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Céline Podevin
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
| | - Guillaume Lefèvre
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Manel Jendoubi
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
| | - Silvia Speca
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
| | - Éric Hachulla
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Vincent Sobanski
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| | - Sylvain Dubucquoi
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - David Launay
- Univ. Lille, U1286 – INFINITE – Institute for Translational Research in Inflammation, Lille, France
- INSERM, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France
- Centre National de Référence Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), Lille, France
- Health Care Provider of the European Reference Network on Rare Connective Tissue and Musculoskeletal Diseases Network (ReCONNET), Lille, France
| |
Collapse
|
9
|
Chalayer E, Gramont B, Zekre F, Goguyer-Deschaumes R, Waeckel L, Grange L, Paul S, Chung AW, Killian M. Fc receptors gone wrong: A comprehensive review of their roles in autoimmune and inflammatory diseases. Autoimmun Rev 2021; 21:103016. [PMID: 34915182 DOI: 10.1016/j.autrev.2021.103016] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022]
Abstract
Systemic autoimmune and inflammatory diseases have a complex and only partially known pathophysiology with various abnormalities involving all the components of the immune system. Among these components, antibodies, and especially autoantibodies are key elements contributing to autoimmunity. The interaction of antibody fragment crystallisable (Fc) and several distinct receptors, namely Fc receptors (FcRs), have gained much attention during the recent years, with possible major therapeutic perspectives for the future. The aim of this review is to comprehensively describe the known roles for FcRs (activating and inhibitory FcγRs, neonatal FcR [FcRn], FcαRI, FcεRs, Ro52/tripartite motif containing 21 [Ro52/TRIM21], FcδR, and the novel Fc receptor-like [FcRL] family) in systemic autoimmune and inflammatory disorders, namely rheumatoid arthritis, Sjögren's syndrome, systemic lupus erythematosus, systemic sclerosis, idiopathic inflammatory myopathies, mixed connective tissue disease, Crohn's disease, ulcerative colitis, immunoglobulin (Ig) A vasculitis, Behçet's disease, Kawasaki disease, IgG4-related disease, immune thrombocytopenia, autoimmune hemolytic anemia, antiphospholipid syndrome and heparin-induced thrombocytopenia.
Collapse
Affiliation(s)
- Emilie Chalayer
- Department of Hematology and Cell Therapy, Institut de Cancérologie Lucien Neuwirth, Saint-Etienne, France; INSERM U1059-Sainbiose, dysfonction vasculaire et hémostase, Université de Lyon, Saint-Etienne, France
| | - Baptiste Gramont
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Internal Medicine, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Franck Zekre
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Pediatrics, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Roman Goguyer-Deschaumes
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
| | - Louis Waeckel
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Immunology, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Lucile Grange
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Internal Medicine, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Immunology, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Amy W Chung
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Martin Killian
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Internal Medicine, Saint-Etienne University Hospital, Saint-Etienne, France.
| |
Collapse
|
10
|
Cutolo M, Gotelli E, Montagna P, Tardito S, Paolino S, Pizzorni C, Sulli A, Smith V, Soldano S. Nintedanib downregulates the transition of cultured systemic sclerosis fibrocytes into myofibroblasts and their pro-fibrotic activity. Arthritis Res Ther 2021; 23:205. [PMID: 34344444 PMCID: PMC8330043 DOI: 10.1186/s13075-021-02555-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/11/2021] [Indexed: 01/04/2023] Open
Abstract
Background Circulating fibrocytes are an important source of fibroblasts and myofibroblasts, which are involved in fibrotic processes, including systemic sclerosis (SSc). The study aimed to investigate the effect of nintedanib (a tyrosine kinase inhibitor) in inhibiting the in vitro transition of circulating SSc fibrocytes into myofibroblasts and their pro-fibrotic activity. Methods Circulating fibrocytes were obtained from 18 SSc patients and 5 healthy subjects (HSs). Cultured SSc fibrocytes were maintained in growth medium (untreated cells) or treated with nintedanib 0.1 and 1 μM for 3 and 24 h. Fibroblast-specific protein-1 (S100A4) and α-smooth muscle actin (αSMA), as markers of fibroblast/myofibroblast phenotype, together with type I collagen (COL1) and fibronectin (FN), were investigated by qRT-PCR and Western blotting. Non-parametric tests were used for statistical analysis. Results Significantly elevated gene and protein expressions of αSMA, S100A4, COL1, and FN were observed in SSc fibrocytes compared to HS fibrocytes (gene: αSMA p < 0.001; others p < 0.0001; protein: all p < 0.05). Interestingly, an increased gene and protein expression of αSMA and S100A4 was found in fibrocytes from SSc patients positive for anti-Scl70 and with interstitial lung disease (ILD) (Scl70+ILD+) compared to Scl70−ILD− patients (S100A4: gene: p < 0.01; protein: p < 0.05), whereas no differences were observed for COL1 and FN. Nintedanib reduced gene and protein expression of αSMA, S100A4, COL1, and FN in SSc fibrocytes compared to untreated ones with different statistical significance. Noteworthy, nintedanib significantly downregulated gene and protein expression of αSMA, S100A4, COL1, and FN in Scl70+ILD+ fibrocytes (all p < 0.05), whereas only that of S100A4 and FN was significantly downregulated (p < 0.05) in Scl70−ILD− fibrocytes compared to the related untreated cells. Conclusions Nintedanib seems to downregulate in vitro the transition of fibrocytes into myofibroblasts and their pro-fibrotic activity, particularly in cells isolated from Scl70+ILD+ SSc patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02555-2.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy.
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Paola Montagna
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Samuele Tardito
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Carmen Pizzorni
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Alberto Sulli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| | - Vanessa Smith
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center (IRC), Ghent, Belgium
| | - Stefano Soldano
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, University of Genova, IRCCS San Martino Polyclinic Hospital, Genoa, Italy
| |
Collapse
|
11
|
Murthy S, Wannick M, Eleftheriadis G, Müller A, Luo J, Busch H, Dalmann A, Riemekasten G, Sadik CD. Immunoglobulin G of systemic sclerosis patients programs a pro-inflammatory and profibrotic phenotype in monocyte-like THP-1 cells. Rheumatology (Oxford) 2021; 60:3012-3022. [PMID: 33230552 DOI: 10.1093/rheumatology/keaa747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Functional IgG autoantibodies against diverse G protein-coupled receptors, i.e. antibodies with agonistic or antagonistic activity at these receptors, are abundant in human serum. Their levels are altered in patients with SSc, and autoantibodies against angiotensin II receptor 1 (ATR1) and endothelin receptor A (ETA) have been suggested to drive SSc by inducing the chemokines CXCL8 and CCL18 in the blood. The objective of our study is to profile the effect of IgG in SSc (SSc-IgG) on the production of soluble mediators in monocytic cells. METHODS Monocyte-like THP-1 cells were stimulated with SSc-IgG and their secretome was analysed. Furthermore, the significance of major pro-inflammatory pathways for the induction of CXCL8 and CCL18 in response to SSc-IgG was assessed by a pharmacological approach. RESULTS Stimulation with SSc-IgG significantly alters the secretome of THP-1 cells towards a general pro-inflammatory and profibrotic phenotype, which includes an increase of CCL18 and CXCL8. The consequent expression profiles vary depending on the individual donor of the SSc-IgG. CCL18 and CXCL8 expression is thus regulated differentially, with AP-1 driving the induction of both CCL18 and CXCL8 and the TAK/IKK-β/NF-κB pathway and ERK1/2 driving that of CXCL8. CONCLUSIONS Our results suggest that SSc-IgG contributes to the generation of the pro-inflammatory/profibrotic tissue milieu characteristic of SSc by its induction of a respective phenotype in monocytes. Furthermore, our results highlight AP-1 as a critical regulator of gene transcription of CCL18 in monocytic cells and as a promising pharmacological therapeutic target for the treatment of SSc.
Collapse
Affiliation(s)
- Sripriya Murthy
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Melanie Wannick
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Georgios Eleftheriadis
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Antje Müller
- Clinic for Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Jiao Luo
- Clinic for Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany.,Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Anja Dalmann
- Clinic for Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Gabriela Riemekasten
- Clinic for Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| | - Christian D Sadik
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany.,Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany
| |
Collapse
|
12
|
Sepsis and Autoimmune Disease: Pathology, Systems Medicine, and Artificial Intelligence. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Riemekasten G, Petersen F, Heidecke H. What Makes Antibodies Against G Protein-Coupled Receptors so Special? A Novel Concept to Understand Chronic Diseases. Front Immunol 2020; 11:564526. [PMID: 33384684 PMCID: PMC7770155 DOI: 10.3389/fimmu.2020.564526] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Expressions of G protein-coupled receptors (GPCR) on immune and tissue resident cells are the consequence of the cellular environment, which is highly variable. As discussed here, antibodies directed to GPCR (GPCR abs), their levels and correlations to other abs, serve as biomarkers for various diseases. They also could reflect the individual interplay between the environment and the immune system. Thus, GPCR abs could display pathogenic chronic conditions and could help to identify disease-related pathways. Moreover, by acting as ligands to their corresponding receptors, GPCR abs modulate autoimmune as well as non-autoimmune diseases. This article introduces GPCR abs as drivers for diseases by their capability to induce a specific signaling and by determining immune cell homeostasis. The identification of the individual GPCR ab function is challenging but might be pivotal in the comprehension of the aetiology of diseases. This, hopefully, will lead to the identification of novel therapeutic strategies. This article provides an overview about concepts and recent developments in research. Accordingly, GPCR abs could represent ideal candidates for precision medicine. Here, we introduce the term antibodiom to cover the network of abs with GPCR abs as prominent players.
Collapse
Affiliation(s)
- Gabriela Riemekasten
- Clinic of Rheumatology and Clinical Immunology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
- Research Center Borstel, Division of Pulmonary Immune Diseases, Member of the German Center for Lung Research (DZL), Borstel, Germany
- Research Center Borstel, Member of the German Center for Lung Research (DZL), Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Frank Petersen
- Research Center Borstel, Division of Pulmonary Immune Diseases, Member of the German Center for Lung Research (DZL), Borstel, Germany
- Research Center Borstel, Member of the German Center for Lung Research (DZL), Borstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | | |
Collapse
|
14
|
Do HTT, Nguyen TNT, Le DH, Kanekura T. Auto-antibody profile and clinical presentation of Vietnamese with systemic sclerosis. Australas J Dermatol 2020; 62:e301-e303. [PMID: 33216959 DOI: 10.1111/ajd.13511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Hien Thi Thu Do
- National Hospital of Dermatology and Venereology, Hanoi, Vietnam
| | | | - Doanh Huu Le
- National Hospital of Dermatology and Venereology, Hanoi, Vietnam
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
15
|
Perelas A, Silver RM, Arrossi AV, Highland KB. Systemic sclerosis-associated interstitial lung disease. THE LANCET RESPIRATORY MEDICINE 2020; 8:304-320. [PMID: 32113575 DOI: 10.1016/s2213-2600(19)30480-1] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
Systemic sclerosis is an autoimmune connective tissue disease, which is characterised by immune dysregulation and progressive fibrosis that typically affects the skin, with variable internal organ involvement. It is a rare condition that affects mostly young and middle-aged women, resulting in disproportionate morbidity and mortality. Currently, interstitial lung disease is the most common cause of death among patients with systemic sclerosis, with a prevalence of up to 30% and a 10-year mortality of up to 40%. Interstitial lung disease is more common among African Americans and in people with the diffuse cutaneous form of systemic sclerosis or anti-topoisomerase 1 antibodies. Systemic sclerosis-associated interstitial lung disease most commonly presents with dyspnoea, cough, and a non-specific interstitial pneumonia pattern on CT scan, with a minority of cases fulfilling the criteria for usual interstitial pneumonia. The standard therapy has traditionally been combinations of immunosuppressants, particularly mycophenolate mofetil or cyclophosphamide. These immunosuppressants can be supplemented by targeted biological and antifibrotic therapies, whereas autologous haematopoietic stem-cell transplantation and lung transplantation are reserved for refractory cases.
Collapse
Affiliation(s)
- Apostolos Perelas
- Division of Pulmonary and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Richard M Silver
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Andrea V Arrossi
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
16
|
Abstract
Discovered in 1987 as a potent endothelial cell-derived vasoconstrictor peptide, endothelin-1 (ET-1), the predominant member of the endothelin peptide family, is now recognized as a multifunctional peptide with cytokine-like activity contributing to almost all aspects of physiology and cell function. More than 30 000 scientific articles on endothelin were published over the past 3 decades, leading to the development and subsequent regulatory approval of a new class of therapeutics-the endothelin receptor antagonists (ERAs). This article reviews the history of the discovery of endothelin and its role in genetics, physiology, and disease. Here, we summarize the main clinical trials using ERAs and discuss the role of endothelin in cardiovascular diseases such as arterial hypertension, preecclampsia, coronary atherosclerosis, myocardial infarction in the absence of obstructive coronary artery disease (MINOCA) caused by spontaneous coronary artery dissection (SCAD), Takotsubo syndrome, and heart failure. We also discuss how endothelins contributes to diabetic kidney disease and focal segmental glomerulosclerosis, pulmonary arterial hypertension, as well as cancer, immune disorders, and allograft rejection (which all involve ETA autoantibodies), and neurological diseases. The application of ERAs, dual endothelin receptor/angiotensin receptor antagonists (DARAs), selective ETB agonists, novel biologics such as receptor-targeting antibodies, or immunization against ETA receptors holds the potential to slow the progression or even reverse chronic noncommunicable diseases. Future clinical studies will show whether targeting endothelin receptors can prevent or reduce disability from disease and improve clinical outcome, quality of life, and survival in patients.
Collapse
Affiliation(s)
- Matthias Barton
- From Molecular Internal Medicine, University of Zürich, Switzerland (M.B.)
- Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan (M.Y.)
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX (M.Y.)
| |
Collapse
|
17
|
Foster MH, Ord JR, Zhao EJ, Birukova A, Fee L, Korte FM, Asfaw YG, Roggli VL, Ghio AJ, Tighe RM, Clark AG. Silica Exposure Differentially Modulates Autoimmunity in Lupus Strains and Autoantibody Transgenic Mice. Front Immunol 2019; 10:2336. [PMID: 31632407 PMCID: PMC6781616 DOI: 10.3389/fimmu.2019.02336] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022] Open
Abstract
Inhalational exposure to crystalline silica is linked to several debilitating systemic autoimmune diseases characterized by a prominent humoral immune component, but the mechanisms by which silica induces autoantibodies is poorly understood. To better understand how silica lung exposure breaks B cell tolerance and unleashes autoreactive B cells, we exposed both wildtype mice of healthy C57BL/6 and lupus-prone BXSB, MRL, and NZB strains and mice carrying an autoantibody transgene on each of these backgrounds to instilled silica or vehicle and monitored lung injury, autoimmunity, and B cell fate. Silica exposure induced lung damage and pulmonary lymphoid aggregates in all strains, including in genetically diverse backgrounds and in autoantibody transgenic models. In wildtype mice strain differences were observed in specificity of autoantibodies and site of enhanced autoantibody production, consistent with genetic modulation of the autoimmune response to silica. The unique autoantibody transgene reporter system permitted the in vivo fate of autoreactive B cells and tolerance mechanisms to be tracked directly, and demonstrated the presence of transgenic B cells and antibody in pulmonary lymphoid aggregates and bronchoalveolar lavage fluid, respectively, as well as in spleen and serum. Nonetheless, B cell enumeration and transgenic antibody quantitation indicated that B cell deletion and anergy were intact in the different genetic backgrounds. Thus, silica exposure sufficient to induce substantial lung immunopathology did not overtly disrupt central B cell tolerance, even when superimposed on autoimmune genetic susceptibility. This suggests that silica exposure subverts tolerance at alternative checkpoints, such as regulatory cells or follicle entry, or requires additional interactions or co-exposures to induce loss of tolerance. This possibility is supported by results of differentiation assays that demonstrated transgenic autoantibodies in supernatants of Toll-like receptor (TLR)7/TLR9-stimulated splenocytes harvested from silica-exposed, but not vehicle-exposed, C57BL/6 mice. This suggests that lung injury induced by silica exposure has systemic effects that subtly alter autoreactive B cell regulation, possibly modulating B cell anergy, and that can be unmasked by superimposed exposure to TLR ligands or other immunostimulants.
Collapse
Affiliation(s)
- Mary H Foster
- Department of Medicine, Duke University Health System, Durham, NC, United States.,Durham VA Medical Center, Durham, NC, United States
| | - Jeffrey R Ord
- Department of Medicine, Duke University Health System, Durham, NC, United States
| | - Emma J Zhao
- Department of Medicine, Duke University Health System, Durham, NC, United States
| | - Anastasiya Birukova
- Department of Medicine, Duke University Health System, Durham, NC, United States
| | - Lanette Fee
- Department of Medicine, Duke University Health System, Durham, NC, United States.,Durham VA Medical Center, Durham, NC, United States
| | - Francesca M Korte
- Department of Medicine, Duke University Health System, Durham, NC, United States
| | - Yohannes G Asfaw
- Division of Laboratory Animal Resources, Duke University Medical Center, Durham, NC, United States
| | - Victor L Roggli
- Department of Pathology, Duke University Health System, Durham, NC, United States
| | - Andrew J Ghio
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Chapel Hill, NC, United States
| | - Robert M Tighe
- Department of Medicine, Duke University Health System, Durham, NC, United States.,Durham VA Medical Center, Durham, NC, United States
| | - Amy G Clark
- Department of Medicine, Duke University Health System, Durham, NC, United States.,Durham VA Medical Center, Durham, NC, United States
| |
Collapse
|
18
|
Busch M, Wefelmeyer KL, Walscheid K, Rothaus K, Bauer D, Deeg CA, Degroote RL, Ackermann D, König S, Thanos S, Kasper M, Heiligenhaus A. Identification of Ocular Autoantigens Associated With Juvenile Idiopathic Arthritis-Associated Uveitis. Front Immunol 2019; 10:1793. [PMID: 31447836 PMCID: PMC6691058 DOI: 10.3389/fimmu.2019.01793] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/16/2019] [Indexed: 12/28/2022] Open
Abstract
The purpose of the current study was to analyze the binding patterns of serum autoantibodies from juvenile idiopathic arthritis (JIA) and JIA-associated uveitis (JIAU) patients to proteomes from different ocular tissues and to identify potential ocular autoantigens in JIAU. Proteomes from porcine iris, ciliary body, or retina tissue were isolated, separated using 2D-gel electrophoresis, and transferred to a blotting membrane. The binding pattern of serum antibodies from JIA or JIAU patients or healthy controls to ocular proteins was visualized by using anti-human IgG secondary antibodies and chemiluminescence reaction. Selected protein spots were excised from silver-stained 2D gels and subjected to mass spectrometry. Serum antibodies binding to ocular proteins were detected in all patient groups and healthy controls. Irrespective of the patient groups, serum antibodies bound to 49 different protein spots of the retina proteome, to 53 of the ciliary body proteome, and to 44 of the iris proteome. The relative binding frequency of sera to these iris protein spots was significantly higher in JIAU than in JIA patients or healthy controls. Particularly in JIAU patients, cluster analyses indicated a broad range of serum antibodies directed against ocular antigens, mostly in the iris proteome. Iris proteins frequently bound by serum antibodies in all groups were identified as tubulin beta chain, vimentin, ATP synthase subunit beta, actin, and L-lactate dehydrogenase B chain. Iris proteins exclusively bound by JIAU serum antibodies were heat shock cognate 71 kDa protein and keratin. Although serum autoantibody binding to ocular antigens was not disease-specific, a significant diversity of autoantibodies against a broad range of antigens, particularly from the iris tissue, was detected in JIAU patients. As the iris is a major site of inflammation in JIAU, the present data give further evidence that autoantibodies may be involved in JIAU immunopathology.
Collapse
Affiliation(s)
- Martin Busch
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Münster, Germany
| | - Kira Leona Wefelmeyer
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Münster, Germany
| | - Karoline Walscheid
- Department of Ophthalmology at St. Franziskus Hospital, Münster, Germany
| | - Kai Rothaus
- Department of Ophthalmology at St. Franziskus Hospital, Münster, Germany
| | - Dirk Bauer
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Münster, Germany
| | - Cornelia A Deeg
- Chair of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Roxane L Degroote
- Chair of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Doreen Ackermann
- IZKF Core Unit Proteomics, University of Münster, Münster, Germany
| | - Simone König
- IZKF Core Unit Proteomics, University of Münster, Münster, Germany
| | - Solon Thanos
- Institute of Experimental Ophthalmology, University of Münster, Münster, Germany
| | - Maren Kasper
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Münster, Germany
| | - Arnd Heiligenhaus
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Münster, Germany.,Department of Ophthalmology at St. Franziskus Hospital, Münster, Germany.,University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
19
|
Raschi E, Chighizola CB, Cesana L, Privitera D, Ingegnoli F, Mastaglio C, Meroni PL, Borghi MO. Immune complexes containing scleroderma-specific autoantibodies induce a profibrotic and proinflammatory phenotype in skin fibroblasts. Arthritis Res Ther 2018; 20:187. [PMID: 30157947 PMCID: PMC6116570 DOI: 10.1186/s13075-018-1689-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022] Open
Abstract
Background In systemic sclerosis (SSc), autoantibodies provide the most accurate tool to predict the disease subset and pattern of organ involvement. Scleroderma autoantibodies target nucleic acids or DNA/RNA-binding proteins, thus SSc immune complexes (ICs) can embed nucleic acids. Our working hypothesis envisaged that ICs containing scleroderma-specific autoantibodies might elicit proinflammatory and profibrotic effects in skin fibroblasts. Methods Fibroblasts were isolated from skin biopsies obtained from healthy subjects and patients with diffuse cutaneous SSc (dcSSc). ICs were purified by polyethylene-glycol precipitation from sera of SSc patients bearing different autoantibodies. ICs from patients with systemic lupus erythematosus (SLE) and primary anti-phospholipid syndrome (PAPS) and from normal healthy subjects (NHS) were used as controls. After incubation with ICs, fibroblasts were evaluated for ICAM-1 expression, interleukin (IL)-6, IL-8, monocyte chemoattractant protein (MCP)-1, matrix metalloproteinase (MMP)-2, tumor growth factor (TGF)-β1 and Pro-CollagenIα1 secretion, collagen (col)Iα1, mmp-1, toll-like receptor (tlr)2, tlr3, tlr4, tlr7, tlr8, tlr9, interferon (ifn)-α, ifn-β and endothelin-1 mRNA, and NFκB, p38MAPK and SAPK-JNK activation rate. Experiments were also performed after pretreatment with DNase I/RNase and NFκB/p38MAPK inhibitors. Results The antigenic reactivity for each SSc-IC mirrored the corresponding serum autoantibody specificity, while no positivity was observed in NHS-ICs or sera. SSc-ICs but not NHS-ICs increased ICAM-1 expression, stimulated IL-6, IL-8, MMP-2, MCP-1, TGF-β1 and Pro-CollagenIα1 secretion, upregulated et-1, ifn-α, ifn-β, tlr2, tlr3 and tlr4, and activated NFκB, p38MAPK and SAPK-JNK. tlr9 was significantly upregulated by ARA-ICs, mmp-1 was significantly induced by ACA-ICs whereas colIα1 was not modulated by any SSc-ICs. SLE-ICs and PAPS-ICs significantly upregulated MMP-2 and activated NFκB, p38MAPK and SAPK-JNK. SLE-ICs and PAPS-ICs did not affect colIα1, mmp-1 and Pro-CollagenIα1. DNase I and RNase treatment significantly reduced the upregulation of study mediators induced by SSc-ICs. Pretreatment with NFκB/p38MAPK inhibitors suggested that response to anti-Th/To-ICs was preferentially mediated by p38MAPK whereas ATA-ICs, ACA-ICs and ARA-ICs engaged both mediators. In dcSSc fibroblasts, stimulation with SSc-ICs and NHS-ICs upregulated IL-6 and IL-8. Conclusions These data provide the first demonstration of the proinflammatory and profibrotic effects of SSc-ICs on fibroblasts, suggesting the potential pathogenicity of SSc autoantibodies. These effects might be mediated by Toll-like receptors via the interaction with nucleic acid fragments embedded in SSc-ICs.
Collapse
Affiliation(s)
- Elena Raschi
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy
| | - Cecilia Beatrice Chighizola
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy. .,Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy. .,Allergology, Clinical Immunology and Rheumatology Unit, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.
| | - Laura Cesana
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy
| | - Daniela Privitera
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Francesca Ingegnoli
- Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.,Division of Rheumatology, ASST G. Pini, Piazza C Ferrari 1, 20122, Milan, Italy
| | - Claudio Mastaglio
- Rheumatology Unit, Ospedale Moriggia-Pelascini, Via Pelascini 3, 22015, Gravedona, Como, Italy
| | - Pier Luigi Meroni
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.,Division of Rheumatology, ASST G. Pini, Piazza C Ferrari 1, 20122, Milan, Italy
| | - Maria Orietta Borghi
- Experimental Laboratory of Immunological and Rheumatologic Researches, IRCCS Istituto Auxologico Italiano, Via Zucchi 18, 20095 Cusano Milanino, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| |
Collapse
|
20
|
Fritzler MJ, Choi MY. Editorial: Are Autoantibodies Involved in the Pathogenesis of Systemic Sclerosis? Arthritis Rheumatol 2018; 68:2067-70. [PMID: 27111351 DOI: 10.1002/art.39727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 04/19/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Marvin J Fritzler
- University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - May Y Choi
- University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Harris ES, Meiselman HJ, Moriarty PM, Metzger A, Malkovsky M. Therapeutic plasma exchange for the treatment of systemic sclerosis: A comprehensive review and analysis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2018; 3:132-152. [PMID: 35382237 PMCID: PMC8892860 DOI: 10.1177/2397198318758606] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/03/2018] [Indexed: 01/30/2023]
Abstract
Background Therapeutic plasma exchange has been tried as a treatment approach for systemic sclerosis since 1978 based on the rationale that some circulating factor is involved in disease pathogenesis, for example, autoantibodies or immune complexes, and that removing the potential pathogenic factors could lead to symptom improvement. Based on our impression that clinicians and researchers are largely unaware that a large volume of research has been published about the use of therapeutic plasma exchange as a treatment for systemic sclerosis, we conducted a comprehensive review and analysis of all published research on this topic. Results We identified 46 relevant articles that met our search criteria, involving a total of 572 patients. Of these, 19 were case studies; the rest ranged from small observational studies to prospective randomized clinical trials. In all but two studies, most patients receiving therapeutic plasma exchange showed improvements in both clinical symptoms and laboratory markers, including significant improvement in Raynaud's symptoms and healing of digital ulceration after three to four weekly treatments. The beneficial effects from even a short course of therapeutic plasma exchange treatments were long-lasting, typically 6 months or longer. Therapeutic plasma exchange was very well tolerated. Adverse events were rare and, in almost all cases, mild and transitory. Conclusion These results suggest that long-term therapeutic plasma exchange may offer a low-risk way to control and in some cases reverse systemic sclerosis symptoms. The mechanism for the clinical improvements seen from therapeutic plasma exchange in systemic sclerosis patients is unclear. Therefore, additional studies of therapeutic plasma exchange effects in systemic sclerosis appear to be highly desirable.
Collapse
Affiliation(s)
- Edward S Harris
- Department of Medicine, University of
Wisconsin, Madison, WI, USA
| | - Herbert J Meiselman
- Department of Physiology &
Biophysics, Keck School of Medicine, University of Southern California, Los Angeles,
CA, USA
| | - Patrick M Moriarty
- Division of Clinical Pharmacology,
University of Kansas Medical Center, Lawrence, KS, USA
| | | | - Miroslav Malkovsky
- Department of Medical Microbiology and
Immunology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
22
|
Shen CY, Li KJ, Lai PH, Yu CL, Hsieh SC. Anti-CENP-B and anti-TOPO-1-containing sera from systemic sclerosis-related diseases with Raynaud’s phenomenon induce vascular endothelial cell senescence not via classical p53-p21 pathway. Clin Rheumatol 2017; 37:749-756. [DOI: 10.1007/s10067-017-3845-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
|
23
|
Functional autoantibodies targeting G protein-coupled receptors in rheumatic diseases. Nat Rev Rheumatol 2017; 13:648-656. [PMID: 28855694 DOI: 10.1038/nrrheum.2017.134] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
G protein-coupled receptors (GPCRs) comprise the largest and most diverse family of integral membrane proteins that participate in different physiological processes such as the regulation of the nervous and immune systems. Besides the endogenous ligands of GPCRs, functional autoantibodies are also able to bind GPCRs to trigger or block intracellular signalling pathways, resulting in agonistic or antagonistic effects, respectively. In this Review, the effects of functional GPCR-targeting autoantibodies on the pathogenesis of autoimmune diseases, including rheumatic diseases, are discussed. Autoantibodies targeting β1 and β2 adrenergic receptors, which are expressed by cardiac and airway smooth muscle cells, respectively, have an important role in the development of asthma and cardiovascular diseases. In addition, high levels of autoantibodies against the muscarinic acetylcholine receptor M3 as well as those targeting endothelin receptor type A and type 1 angiotensin II receptor have several implications in the pathogenesis of rheumatic diseases such as Sjögren syndrome and systemic sclerosis. Expanding the knowledge of the pathophysiological roles of autoantibodies against GPCRs will shed light on the biology of these receptors and open avenues for new therapeutic approaches.
Collapse
|
24
|
Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, Komorowski L, Luo J, Cabral-Marques O, Hammers CM, Lindstrom JM, Lamprecht P, Fischer A, Riemekasten G, Tersteeg C, Sondermann P, Rapoport B, Wandinger KP, Probst C, El Beidaq A, Schmidt E, Verkman A, Manz RA, Nimmerjahn F. Mechanisms of Autoantibody-Induced Pathology. Front Immunol 2017; 8:603. [PMID: 28620373 PMCID: PMC5449453 DOI: 10.3389/fimmu.2017.00603] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Autoantibodies are frequently observed in healthy individuals. In a minority of these individuals, they lead to manifestation of autoimmune diseases, such as rheumatoid arthritis or Graves' disease. Overall, more than 2.5% of the population is affected by autoantibody-driven autoimmune disease. Pathways leading to autoantibody-induced pathology greatly differ among different diseases, and autoantibodies directed against the same antigen, depending on the targeted epitope, can have diverse effects. To foster knowledge in autoantibody-induced pathology and to encourage development of urgently needed novel therapeutic strategies, we here categorized autoantibodies according to their effects. According to our algorithm, autoantibodies can be classified into the following categories: (1) mimic receptor stimulation, (2) blocking of neural transmission, (3) induction of altered signaling, triggering uncontrolled (4) microthrombosis, (5) cell lysis, (6) neutrophil activation, and (7) induction of inflammation. These mechanisms in relation to disease, as well as principles of autoantibody generation and detection, are reviewed herein.
Collapse
Affiliation(s)
- Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Frank Leypoldt
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel, Germany
- Neuroimmunology, Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
- Department of Neurology, University of Kiel, Kiel, Germany
| | - Ziya Kaya
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sandra M. McLachlan
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Lars Komorowski
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Jie Luo
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | | | | | - Jon M. Lindstrom
- Department of Neuroscience, University of Pennsylvania Medical School, Philadelphia, PA, United States
| | - Peter Lamprecht
- Department of Rheumatology, University of Lübeck, Lübeck, Germany
| | - Andrea Fischer
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany
| | | | - Claudia Tersteeg
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | | | - Basil Rapoport
- Thyroid Autoimmune Disease Unit, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA, United States
| | - Klaus-Peter Wandinger
- Department of Neurology, Institute of Clinical Chemistry, University Medical-Centre Schleswig-Holstein, Lübeck, Germany
| | - Christian Probst
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany
| | - Asmaa El Beidaq
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Alan Verkman
- Department of Medicine, University of California, San Francisco, CA, United States
- Department of Physiology, University of California, San Francisco, CA, United States
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
25
|
Choi MY, Fritzler MJ. Progress in understanding the diagnostic and pathogenic role of autoantibodies associated with systemic sclerosis. Curr Opin Rheumatol 2016; 28:586-94. [PMID: 27387266 PMCID: PMC5029444 DOI: 10.1097/bor.0000000000000325] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW At the time of diagnosis, systemic sclerosis (SSc) is often well established with significant irreversible tissue and organ damage. Definitions of 'early SSc' have been proposed, which include the presence of SSc-associated autoantibodies. In addition, functional autoantibodies that are believed to be involved in SSc pathogenesis need to be considered. In this review, recent advances in the diagnostic utility and pathogenic role of autoantibodies in early SSc are summarized. Moreover, we propose a clinical care pathway illustrating how autoantibody testing along with key clinical features can be used to make an earlier diagnosis of SSc. RECENT FINDINGS Recent evidence has helped to develop a clearer understanding of the natural history, early clinical features, and autoantibodies that are predictors of SSc. The role of functional autoantibodies is leading to innovative approaches to evidence-based interventions and therapies that are based on mechanisms of disease. SUMMARY Despite substantial advances, the high morbidity and mortality that currently characterizes SSc can largely be attributed to a delay in diagnosis, gaps in our understanding of the role of autoantibodies in early disease, and limited effective therapeutic options. An early and accurate diagnosis of SSc and use of autoantibody testing embedded in evidence-based clinical care pathways will help improve SSc-associated clinical outcomes and healthcare expenditures.
Collapse
Affiliation(s)
- May Y Choi
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
26
|
|
27
|
[Autologous stem cell transplantation in systemic sclerosis]. Z Rheumatol 2016; 75:762-769. [PMID: 27510996 DOI: 10.1007/s00393-016-0168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Autologous hematopoietic stem cell transplantation (HSCT) is a very effective treatment option for patients with severe systemic sclerosis (SSc). In addition to various case series two randomized controlled trials could prove its superiority over intense cyclophosphamide pulse therapy. Nevertheless, HSCT is associated with a treatment-related mortality of approximately 10 %; therefore, further studies should be carried out to reduce the toxicity of HSCT by adaptation of the therapy regimen and the option of HSCT should be made available earlier to patients with a high risk of mortality. The mechanism of action of HSCT is still poorly understood. While profibrotic cytokines or even autoantibodies hardly appear to be influenced by the treatment, alterations to regulatory T‑cells may play a role. Further improvement of transplantation regimens as well as a better understanding of the underlying pathogenetic principles and mechanisms of action should be the aim of further studies on HSCT.
Collapse
|
28
|
Role of PAR2 in the Development of Lower Urinary Tract Dysfunction. J Urol 2016; 196:588-98. [PMID: 26860791 DOI: 10.1016/j.juro.2016.01.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE Lower urinary tract symptoms are a common finding in patients with chronic prostatitis/chronic pelvic pain syndrome. We previously reported that the mast cell-tryptase-PAR2 (protease activated receptor 2) axis has a critical role in the development of chronic pain in experimental autoimmune prostatitis, a mouse model of chronic prostatitis/chronic pelvic pain syndrome. Therefore, we examined whether PAR2 activation mediates lower urinary tract dysfunction. MATERIALS AND METHODS Functional cystometry was done in male B6 mice along with immunoblotting and immunohistochemistry for the expression of COL1A1 (collagen type I α I) and α-SMA (α-smooth muscle actin). Flow cytometry analysis was performed on single cell suspensions of the prostate, bladder, lymph nodes and spleen. RESULTS Experimental autoimmune prostatitis resulted in increased urinary voiding frequency and decreased bladder capacity 30 days after initiation. Concurrently, there was increased expression of COL1A1 and α-SMA in the prostates and bladders. In contrast, induction of experimental autoimmune prostatitis in PAR2 knockout mice did not result in altered urodynamics or increased markers of fibrosis in the prostate or the bladder. Single cell suspensions of the prostate, bladder, lymph nodes and spleen demonstrated that in the absence of PAR2 cellular inflammatory mechanisms were still initiated in experimental autoimmune prostatitis but PAR2 expression may be required to maintain chronic inflammation. Finally, antibody mediated PAR2 neutralization normalized urinary voiding frequency and bladder capacity, and attenuated chronic pelvic pain. CONCLUSIONS PAR2 activation in the prostate may contribute to the development of lower urinary tract dysfunction through proinflammatory as well as profibrotic pathways.
Collapse
|